
Working Paper IS-97-007, Leonard N. Stern School of Business, New York University.

In: Journal of Computational Intelligence in Finance 6 (1998) 14{23.

(Special Issue on \Improving Generalization of Nonlinear Financial Forecasting Models".)

http://www.stern.nyu.edu/�aweigend/Research/Papers/InteractionLayer

EXPLOITING LOCAL RELATIONS

AS SOFT CONSTRAINTS

TO IMPROVE FORECASTING

ANDREAS S. WEIGEND

Department of Information Systems

Leonard N. Stern School of Business

New York University

44 West Fourth Street, MEC 9-74

New York, NY 10012

aweigend@stern.nyu.edu

www.stern.nyu.edu/�aweigend

HANS GEORG ZIMMERMANN

Siemens AG, Corporate Research

Otto-Hahn-Ring 6

D-81730 M�unchen, Germany

georg.zimmermann@mchp.siemens.de

Abstract. Predictive models for �nancial data are often based on a

large number of plausible inputs that are potentially nonlinearly combined

to yield the conditional expectation of a target, such as a daily return of an

asset. This paper introduces a new architecture for this task: On the output

side, we predict dynamical variables such as �rst derivatives and curvatures

on di�erent time spans. These are subsequently combined in an interaction

output layer to form several estimates of the variable of interest. Those

estimates are then averaged to yield the �nal prediction. Independently

from this idea, on the input side, we propose a new internal preprocessing

layer connected with a diagonal matrix of positive weights to a layer of

squashing functions. These weights adapt for each input individually and

learn to squash outliers in the input. We apply these two ideas to the real

world example of the daily predictions of the German stock index DAX

(Deutscher Aktien Index), and compare the results to a network with a

single output. The new six layer architecture is more stable in training due

to two facts: (1) More information is 
owing back from the outputs to the

input in the backward pass; (2) The constraint of predicting �rst and second

derivatives focuses the learning on the relevant variables for the dynamics.

The architectures are compared from both the training perspective (squared

errors, robust errors), and from the trading perspective (annualized returns,

percent correct, Sharpe ratio).

1



1 Introduction

Historically, the problem of time series prediction has often been reduced to

mere regression or pattern recognition.a This popular approach ignores any

explicit relation between adjacent patterns in time. In fact, the presentation

order of the patterns is often randomized during training in order to avoid

local minima and to improve the training speed.

On the other extreme, fully recurrent networks allow for a perfect rep-

resentation of temporal dependencies. Unfortunately, despite a lot of e�ort

in the last decade, fully recurrent networks have proven di�cult to train, in

particular for long-term dependencies.

Recently, two new classes of approaches have been applied to �nancial

markets that are located between these two extremes. The �rst class employs

the idea of a hidden state that cannot be inferred from a �nite window in

time. This state can be continuous (see Timmer & Weigend (1997) for the

application of state space models to volatility prediction), or it can describe

the switching between several discrete models (see Shi & Weigend (1997) for

the application of Hidden Markov experts for predictions of returns). These

examples of the �rst class rely on heavy statistical machinery to estimate the

hidden states.

The second class, described in this paper, focuses on the variables used

for the targets of the network. It incorporates dynamics as architectural con-

straints, such as the �rst and second derivatives of the dynamical system. It

turns out that this architecture improves learning behavior since it uses several

outputs that are variations of the quantity of interest. Apart from providing

perspectives of the problem on di�erent time scales, this approach enables an

information 
ow in the backward pass of an amount similar to that in the

forward pass. In contrast to the �rst class of approaches mentioned in the

previous paragraph, this second class maintains the training simplicity of a

feed-forward network and does not introduce the notion of hidden states.

We begin by discussing the �rst point, the use of variables that formulate

the problem in terms of adequate dynamic quantities. A common approach to

time series prediction is using (potentially nonlinear) ARMA models. Their

main goal is to obtain a point prediction of a future value by regressing the

point to be predicted onto past values of the same observable, as well as on

external variables.

aA pattern typically consists of a target and several inputs, such as lagged values of the

time series variable.

2



When such simple point predictions are carried out with a very rich non-

linear model class, such as a neural network or connectionist model, they often

lead to the serious problem of over�tting. For noisy data in particular, the

small amount of information contained in a single point does not su�ce in

determining the structure of the model and the values of all the parameters.

Because of high 
exibility and usually insu�cient constraints, the model tends

to memorize the training points well, but the out-of-sample performance does

not improve beyond chance.

In this paper we exploit the additional structure that originates from the

nature of a dynamical system. This is in contrast to the assumption of arbi-

trary mappings between random inputs and random outputs, typically made

in machine learning. Speci�cally, we use the following two features:

� Inspired by physics and economics, we use variables, both for the inputs

and the targets, that characterize dynamic behavior (such as curvatures,

corresponding to accelerations that are proportional to external forces

driving the system).

� It is well known that the information provided by the input needs to

capture the state of the system. We take the idea of state seriously

also for the output side, by providing a su�cient number of outputs to

describe the subsequent state of the systems, as opposed to almost all

other prediction models that only use information from a single target

(e.g., the value to be predicted).

Thus far, one might think that it would su�ce to just predict several such

dynamical system quantities. This more symmetrical approach between inputs

and outputs would indeed have the added advantage to accelerate iterative

learning procedures such as error backpropagation, since more information is

\
owing back" from the target side. However, networks trained on many such

outputs tend to learn the individual mappings quite well, ignoring the fact

that they are related in time. In many cases, just sharing hidden units does

not stipulate su�cient interactions between these outputs, particularly when

the complexity of the problem requires many hidden units.

We thus add a third feature to the speci�cation of the network architecture

for time series prediction: an additional layer that we call the interaction layer.

The interaction layer encodes the relationship between its neighbors. Examples

include derivatives and curvatures on di�erent scales between predicted points.

This feature is missing in standard multivariate regression where the di�erent

3



outputs typically do not have a relation to one another.

The general ideas are made concrete in Section 2 through two speci�c ar-

chitectures: (1) point predictions followed by an interaction layer, and (2) an

indicator layer of dynamical system variables followed by an interaction layer

combining the dynamical system variables. Section 3 introduces another use-

ful ingredient for modeling that is inserted between the inputs and the hidden

units. This internal preprocessing layer connects each input with one pre-

processing hidden unit with a hyperbolical tangens (tanh) transfer function.

Adapting the corresponding weights allows for a problem-driven suppression of

outliers. These architectural elements are combined in Section 4 and applied

to daily forecasts of the German equity index DAX (Deutscher Aktien Index).

The learning performance is shown to be more stable compared to a standard

network with a single output unit, and the performance is comparable to a

state-of-the-art neuro-fuzzy model (Zimmermann et al :, 1996). Section 5 dis-

cusses why the observed stability cannot be reached by simply reducing the

learning rate.

2 Taking relations to neighbors into account: the interaction layer

This section presents two new architectures that take relations between neigh-

boring values in time into account. The �rst architecture adds an interaction

layer on top of a layer with individual point predictions. The second archi-

tecture (which will be used for the DAX example) �rst computes dynamical

quantities on several time scales such as �rst derivatives and curvatures, and

subsequently combines them to predictions of the desired value.

2.1 Architecture 1: Point-predictions followed by the interaction layer

In most applications of neural nets in �nancial engineering, the number of

inputs is huge (of the order of a hundred), but only a single output is used.

This can be viewed as a large \inverted" funnel; the hard problem is that the

only information provided in learning is that of the single output. This is one of

the reasons for the \data-hungryness" of single-output neural networks, i.e., a

large set of training data is often required in order to distinguish nonlinearities

from noise.b

bToo small data sets also imply a bias towards linear models. This is not to be confused

with the bias towards linear models that is a consequence of some over�tting techniques such

as early stopping or weight decay.

4



Hidden layer

y y yt t t+ −− +1 12y yt t− −1 y yt t+ −1

yt−1 yt+1yt

-2

Input layer

Point prediction 
layer

Interaction layer

11 -1 11-1

Figure 1: The �rst architecture, where point predictions are followed by the interaction layer.

One approach to increase the information 
ow from the output side to the

input side is to increase the number of output units. In the simplest case, two

outputs can be used, one to predict the return, and the other one to predict

the sign of the return, see Weigend et al : (1991), as well as the experiments

described by Caruana (1994) and Caruana (1997).

While the idea of increasing the information 
ow through multiple outputs

can generally be used, the speci�c task of time series allows us to exploit yet

another source of information. We would like to provide enough information to

characterize the state of the autonomous part of the dynamics on the output

side, similarly to Takens' theorem for the notion of state on the input side,

see e.g., Gershenfeld (1989). In this time series context, this embedding of the

output can be done analogously to the input side of a tapped \delay" line,

indicated in Fig. 1 as point prediction layer.

The forecast we are interested in is yt, the t-step ahead forecast of vari-

able y. Additionally, we here also predict yt�1 and yt+1. However, the ex-

periments with this architecture were disappointing; contrary to our original

hopes, sharing hidden units does not promote signi�cant interactions between

the outputs. This prompted us to add an explicit second output layer, the

interaction layer. It computes the next-neighbor derivatives (yt � yt�1) and

(yt+1 � yt), as well as the curvature (yt+1 � 2yt + yt�1).

5



1

2

Observations

Model 1

Model 2

Figure 2: Geometric interpretation of the e�ect of the interaction layer on the cost function

(schematic). Given are three curves connecting points at three adjacent steps in time. The

solid line connects the target points. Model 1 (dashed line) is an example of a model that

takes relationships between neighbors into account, as proposed in this paper. Model 2

(dotted line) only focuses on the quality of the point predictions. Note that we constructed

this �ctitious example such that both models have the same point-by-point errors, but when

derivatives and curvatures are taken into account, Model 1 is favored.

Since the di�erences between neighbors are encoded as �xed weights, they

do not have to be estimated. Therefore they do not increase the number of

free parameters that have to be determined from the data. The overall cost

function is the sum of all six contributions. Here we weigh all individual

contributions evenly. An alternative is to give equal contribution to the error

and down-weigh each error output by the average error of that output unit.

If the point forecasts were perfect, the interaction layer would have no

e�ect at all. To explain the e�ect of non-zero errors, consider Fig. 2. Both

predictions of the three points have the same pointwise errors at each of the

three neighboring points. However, both the slopes and the curvature are

correct in Model 1; they do not contribute to the error. In Model 2, however,

they are nonzero and thus increase the error.c

Despite all of these desirable features, this architecture has a disadvantage

when viewed from the input side: In order to be able to make predictions on

several time horizons on the output side, we have to use the preprocessing

transformations (such as moving averages) on all corresponding time scales.

This unfortunately increases the number of inputs dramatically, yielding once

again a strong asymmetry between the information 
ow in the forward and in

the backward pass, defying our original intention. Furthermore, the additional

parameters increase the problem of over�tting.

cIn the case of a quadratic error function, the interaction layer can be substituted by

a single output layer of point predictions that are combined with a positive de�nite non-

diagonal quadratic form to create an equivalent target function.

6



2.2 Architecture 2: An indicator layer recombined by the interaction layer

The second architecture keeps the advantages of the model given above but

avoids its disadvantages. Let us assume that the target of ultimate interest

has the form:

TARGET =
yt � y0

y0
=

yt

y0
� 1 : (1)

y denotes a price, y0 is the value at the present time, and yt is the price for

t days into the future. This target thus corresponds to the relative return for

t-day trading. We now de�ne an indicator layer that adds a series of additional

pairs of targets to this true goal:

TARGET =
yt+n + yt + yt�n

3y0
� 1 (2)

TARGET =
�yt+n + 2yt � yt�n

3y0
: (3)

where n de�nes the span of the embedding. Eq. (2) describes a \smoothed"

return centered at time t, and Eq. (3) is proportional to the curvature, nor-

malized similarly to the average by the current price y0. The curvature, as a

second derivative, can be seen to re
ect an acceleration, revealing an underly-

ing force, as well as drawing attention to the turning points. Note that these

pairs are chosen such that they add up to the ultimate target, Eq. (1). All

of the targets are centered around the same midpoint t. This indicator layer

is followed by the interaction layer. It recombines the N pairs of smoothed

returns and curvatures, yielding N estimates of the ultimate target.

The number N of such pairs used is one of the modeling choices. In the

task of one-day forecasts discussed in this paper we use three pairs, covering in

their union the forces of one week. In another problem of six-month forecasts,

we �nd six spans useful; they can be seen as attempting to cover the forces of

one year.

In the �nal step, all of the individual forecasts in the interaction layer will

be averaged in a �nal output layer. Combining forecasts is bene�cial to the

degree to which the individual forecasts are uncorrelated, see Bates & Granger

(1969) and Granger (1989), as well as the corresponding ideas in the mean

variance framework of modern portfolio theory, e.g., Elton & Gruber (1995).

Experimenting with this architecture, we �nd that forecasts of the indi-

vidual averages and the individual curvatures resemble each other more than

we had hoped for. If the degree of correlation between the forecasts should be

7



reduced, a remedy consists of including additional targets, such as combina-

tions of dynamic variables, indicating to the learning algorithm that it should

also consider the di�erences between the individual forecasts, not just their

commonalities. In other works we use the pairwise di�erences of the point

averages of the spans, as well as the pointwise di�erences of the curvatures of

the spans. This corresponds to 2(N � 1) additional targets for the interaction

layer.

3 Internal preprocessing layer

In order to have potentially very di�erent inputs on a comparable scale, we

follow the common practice and standardize the input data to zero mean and

unit variance. A problem with this approach is that outliers in the input

can have a large impact. This is particularly serious for data in �nance and

economics that contain large shocks.d To deal with the shocks, we inserted an

additional preprocessing layer between the inputs and the �rst hidden layer.

The complete network architecture is shown in Fig. 3.

This additional preprocessing layer has the same number of hidden units

as the input layer and uses standard tanh squashing functions. But the weight

matrix between the input layer and the preprocessing layer is only a square

diagonal matrix. The weights have initial values of 0.1, ensuring that the

tanh is initially in its linear range, letting the external inputs pass through

essentially unchanged.

The diagonal weights to the preprocessing layer are constrained to be posi-

tive. Furthermore, no bias term is included for the preprocessing layer to avoid

numerical ambiguities. The weights are adaptive and updated in the same way

as all the other weights in the network. In practice, we observe both growing

and shrinking values for the weights. The growing values cause a larger pro-

portion of the inputs to be compressed by the squashing function of the tanh.

Shrinking diagonal elements indicate that the corresponding input might be

a candidate to be pruned away. So as to not mix too many features in this

analysis, we do not use pruning in the simple example presented in this paper.

dThe same reasoning about shocks and outliers in the data lead us to use a robust error

function on the output side. Rather than using squared errors between target and outputs,

we minimize in all the examples in this paper 1

2
log (cosh (2 (target - output))) : This function

approximates the parabola of the squared errors for small di�erences (Gaussian noise model),

and is proportional to the absolute value of the di�erence for larger values of the di�erence

(Laplacian noise model).

8



Bias

Average forecast

Interaction layer

Indicator forecasts

Hidden layer

Preprocessing

Input layer

Figure 3: The second architecture, the six layer network. The novel features are the prepro-

cessing layer that learns to scale the importance of the individual inputs, and the indicator

forecasts of di�erences and curvatures followed by the interaction layer of individual predic-

tions of the target that are averaged to the �nal forecast.

4 Real-world application: One-day ahead predictions of DAX

We now apply the ideas about the interaction layer and the preprocessing layer,

introduced in the previous sections, to a real world example. We chose the

benchmark problem of predicting the German stock index (DAX, Deutscher

Aktien Index). Section 4.1 describes the task and the data, and Section 4.2

presents the results, and compares the new six-layer architecture to a neural

network with a single output.

4.1 Data

The task is a DAX one-day ahead return forecast based on twelve input time

series that include various stock indices, bond indices, and in
ation indicators.e

eIn full detail, the variables used are:

1. DAX Price Index (30 �rms);

2. DAX Price-Earnings Ratio;

3. DAX Composite (several hundred �rms);

9



We present information from these time series in a variety of ways to the net-

work. The \momentum" in the market is represented by the �rst di�erence of

the prices. If we only chose such �rst di�erences as inputs and nothing else, the

forecast model will very likely be trending. In order to avoid the bias towards

a trending model. Additional inputs include the underlying \forces" expressed

as second derivatives, as well as a simple description of the \distances" to the

estimated equilibria.

In the experiments reported here, we use the time period from the begin-

ning of January 1986 up to the end of February 1993 as training set, and the

period from March 1993 up to mid-August 1996 as the test set. We trained for

300 epochs without any early stopping nor pruning. (This justi�es the omis-

sion of a validation set.) For performance comparison, a simple buy-and-hold

strategy on this period gives an annualized return of 12 percent.

4.2 Results and Comparisons

We compare the six-layer network with a standard three-layer network using

the same 44 inputs in both cases. Both networks have 40 hidden units. The

resulting behavior during the �rst 300 epochs of learning is shown in Fig. 4 for

the log(cosh(.)) target function used to train the networks, and in Fig. 5, for

the normalized mean squared error.

Fig. 4 compares a standard network with a single output unit (left panel)

with the six-layer architecture (right panel). The level is not normalized but

re
ects the di�erent volatilities of the training and test sets. The relative shape

of each curve matters, not their absolute values.

Fig. 5 shows the normalized mean squared error, ENMS, as a function of

the training time. Note the stabilizing e�ect of the six layer architecture, in

4. Dow Jones Industrial Average;

5. Nikkei 225;

6. 3-month German interest rate (re
ecting decisions by the Bundesbank);

7. Yield of German circulating bonds (average over all maturities);

8. U.S. 30-year bond;

9. Morgan Stanley Price Index Germany (in
ation indicator);

10. Morgan Stanley Price Index Europe (in
ation indicator);

11. Gold price (in
ation indicator);

12. DEM/USD exchange rate (Frankfurt closing);

10



comparison to a single output on the left. Furthermore, the out-of-sample be-

havior measured by squared errors is better for a network trained on the robust

log(cosh(.)) than for a network trained directly on squared error minimization.

The next three �gures, Figs. 6{8, evaluate the network from a trading

perspective. The forecast needs to be translated into a strategy in order to

compute �nancial objectives. We use a simple strategy based on the sign of

the forecasting model: We buy when the predicted return is positive, and we

sell short when the predicted return is negative, both to the full position size.

Using this speci�cation, Fig. 6 shows annualized return as a function of

training iterations, Fig. 7 shows the percentage of correct predictions, and

Fig. 8 shows the Sharpe ratio of the six layer architecture followed by the sim-

ple strategy. Here, we compute the Sharpe ratio simply by dividing the returns

by the standard deviation of the returns, and annualizing it. In contrast to

usual practice, no risk-free interest rate has been subtracted from the returns.

For more details on the Sharpe ratio, as well as its explicit optimization with

variable position sizes, see Choey & Weigend (1997). Furthermore, no trans-

action costs have been applied. The key point here is the comparison between

the new and the standard architecture.

Using the forecast model as part of a decision model, especially in a trading

application, it is important to interpret the major input in
uences at a given

day. The input-output sensitivities can vary over time in a nonlinear model,

depending on the current operating point. Fig. 9 shows as an example the

sensitivities for the 20 days leading up to December 17, 1992. The rightmost

column represents the values for the day of the evaluation. Variations over

time indicate changes in the importance of the input indicators.

Summarizing the results, the six layer architecture stabilizes the learning

process. Given the simple sign-based strategy of translating the forecast into

a trading signal, this behavior carries over to the decision process.

5 Discussion and implications

This paper introduced a new architecture for time series prediction. The most

important result is that this six layer architecture stabilizes learning in the

sense that the network does not over�t on a learning time scale where a stan-

dard network has already over�tted strongly. This is mainly caused by the

richer error evaluations in the interaction layer. We showed that this can be

understood as a consequence of the penalty function e�ect of the interaction

layer. Instead of this approach, we included features of the dynamics in the

11



0 100 200 300

0.35

0.4

0.45

0.5

0.55

0.6

0.65

epoch

co
st

 fu
nc

tio
n 

(lo
g 

co
sh

()
)

3 Layer Architecture (single output)

training set

test set

0 100 200 300

0.35

0.4

0.45

0.5

0.55

0.6

0.65

epoch

co
st

 fu
nc

tio
n 

(lo
g 

co
sh

()
)

6 Layer Architecture

training set

test set

Figure 4: Learning curves for the DAX example. The left panel describes a standard network

with a single output unit; the right panel gives the training and testing for the six-layer

architecture. Each panel has the performance for both the training and test set. Note the

clear over�tting on the network without interaction layer.

12



0 100 200 300

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

epoch

E
N

M
S

test set

training set

3 Layer Architecture (single output)

0 100 200 300

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

epoch

E
N

M
S

training set

test set

6 Layer Architecture

Figure 5: Normalized mean squared error as a function of the training time. The picture

shows the stabilizing e�ect of the six layer architecture on the right, in comparison to a

single output on the left.

13



0 100 200 300
0

20

40

60

80

100

120

140

160

epoch

re
tu

rn
 (

an
nu

al
iz

ed
)

3 Layer Architecture (single output)

training set

test set

0 100 200 300
0

20

40

60

80

100

120

140

160

epoch

re
tu

rn
 (

an
nu

al
iz

ed
)

6 Layer Architecture

training set

test set

Figure 6: Annualized return as a function of the training time. Whereas the network with a

single output (left) over�ts dramatically, there is no strong deterioration of the out-of-sample

performance for the six layer architecture on the right. (No transaction costs are taken into

account.)

14



0 100 200 300
45

50

55

60

65

70

75

epoch

pe
rc

en
t c

or
re

ct

3 Layer Architecture (single output)

training set

test set

0 100 200 300
45

50

55

60

65

70

75

epoch

pe
rc

en
t c

or
re

ct

6 Layer Architecture

training set

test set

Figure 7: Probability of correct sign (\hit rate") as a function of the training time. Note

the close proximity of training and test set values for the six layer architecture on the right.

15



0 100 200 300
0

1

2

3

4

5

6

7

8

9

epoch

S
ha

rp
e 

ra
tio

 (
an

nu
al

iz
ed

)

3 Layer Architecture (single output)

training set

test set

0 100 200 300
0

1

2

3

4

5

6

7

8

9

epoch

S
ha

rp
e 

ra
tio

 (
an

nu
al

iz
ed

)

6 Layer Architecture

training set

test set

Figure 8: Sharpe ratio as a function of the training time. This network was not optimized on

the risk-adjusted performance measure but only evaluated on the annualized return divided

by the standard deviation of the returns. (No risk-free interest rate is taken into account.)

16



Figure 9: Sensitivity analysis from SENN (Software Environment for Neural Networks).

The partial derivative of the �nal output with respect to each input is shown for the 20 days

leading up to the date shown (December 17, 1992). The ranking of the input importance

is, starting with the most important one: (1) U.S. 30-year bond (2) Dow Jones Industrial

Average, (3) Gold price, and (4) DAX price.

17



network architecture. This type of penalty is not a bias towards linear models

or any structural feature unrelated to the task|the central point is to for-

mulate the time series problem in terms of dynamics variable on several time

scales.

From the viewpoint of early stopping, one may argue that a simple re-

duction of the learning rate would also stabilize the learning behavior. Beside

the facts (1) that over�tting often starts already right in the �rst epoch, and

(2) that there is a well-known bias towards a linear solutions,f a smaller learn-

ing rate would change the global stochastic search to a local optimization which

may end in the nearest local minimum. On the other hand, if the local learning

does not stop in the nearest local minimum, it has a bias towards maximum

likelihood solutions instead of Bayesian solutions. In general, it is important

to exploit noise as a central part of the training procedure. Furthermore, we

introduced another idea for the input side, independent of the interaction layer

on the output side. The new preprocessing layer on the input side consists of

adaptive weights on the diagonal and zeros everywhere else (i.e., each input is

connected to one tanh preprocessing hidden unit). The purpose is to allow for

an adaptive outlier suppression for each input individually.

For the interaction layer, the penalty e�ect vanishes for noise-free data

as well as for extreme over�tting on noisy data when the network completely

memorizes the data. This paper does not focus on this situation; many ap-

proaches including additive noise on the inputs (Weigend et al :, 1991) and

weight pruning methods (Zimmermann, 1994) have been proposed to curb

over�tting. We did not want to clutter the discussion and obscure the results

of the new architecture by also including methods against over�tting here.

We would like to note, however, that the additional topology optimization by

pruning methods rests on an evaluation of the error signals 
owing through

the network. We thus expect these techniques to also pro�t from the extended

error signal created by the new six layer architecture proposed in this paper.

Acknowledgments. We thank Mark Choey for his kind help in the �nal

production of this paper during his time with the Information Systems De-

partment of NYU's Leonard N. Stern School of Business. The simulations

were performed with the Software Environment for Neural Networks (SENN)

by Siemens Nixdorf. This work was partially supported by an award (ECS-

9309786) from the National Science Foundation to the �rst author.

fLeBaron & Weigend (1998) give an empirical evaluation on �nancial data.

18



References

Bates, J. M. and C. W. J. Granger. 1969. The combination of forecasts.

Operations Research Quarterly 20, 451{468.

Caruana, R. A. 1994. Multitask connectionist learning. In Proceedings of the

1993 Connectionist Models Summer School, M. C. Mozer, P. Smolen-

sky, D. S. Touretzky, J. L. Elman and A. S. Weigend (eds), pp. 372{379,

Hillsdale, NJ. Lawrence Erlbaum Associates.

Caruana, R. 1997. Multitask learning. Machine Learning 28, 41{75.

Choey, M. and A. S. Weigend. 1997. Nonlinear trading models through

Sharpe Ratio maximization. In Decision Technologies for Financial

Engineering (Proceedings of the Fourth International Conference on

Neural Networks in the Capital Markets, NNCM-96), A. S. Weigend,

Y. S. Abu-Mostafa and A.-P. N. Refenes (eds), pp. 3{22, Singapore.

World Scienti�c.

Elton, E. J. and M. J. Gruber. 1995. Modern Portfolio Theory and Investment

Analysis. John Wiley and Sons, New York, �fth edition.

Gershenfeld, N. A. 1989. An experimentalist's introduction to the observation

of dynamical systems. In Directions in Chaos, H. B. Lin (ed), vol. 2,

pp. 310{384. World Scienti�c, Singapore.

Granger, C. W. J. 1989. Combining forecasts{Twenty years later. Journal of

Forecasting 8, 167{173.

LeBaron, B. and A. S. Weigend. 1998. A bootstrap evaluation of the e�ect of

data splitting on �nancial time series. IEEE Transactions on Neural

Networks 9, forthcoming.

Shi, S. and A. S. Weigend. 1997. Taking time seriously: Hidden Mar-

kov experts applied to �nancial engineering. In Proceedings of the

IEEE/IAFE 1997 Conference on Computational Intelligence for Fi-

nancial Engineering (CIFEr), pp. 244{252, Piscataway, NJ. IEEE Ser-

vice Center.

Timmer, J. and A. S. Weigend. 1997. Modeling volatility using state space

models. International Journal of Neural Systems 8, forthcoming.

Weigend, A. S., D. E. Rumelhart and B. A. Huberman. 1991. Generalization

by weight-elimination with application to forecasting. In Advances in

Neural Information Processing Systems 3 (NIPS*90), R. P. Lippmann,

J. Moody and D. S. Touretzky (eds), pp. 875{882, Redwood City, CA.

Morgan Kaufmann.

19



Zimmermann, H. G. 1994. Neuronale Netze als Entscheidungskalk�ul. In

Neuronale Netze in der �Okonomie (In German), H. Rehkugler and

H. G. Zimmermann (eds), pp. 1{87, M�unchen. Vahlen Verlag.

Zimmermann, H. G., R. Neuneier, H. Dichtl and S. Siekmann. 1996. Modeling

the German stock index DAX with neuro-fuzzy. In EUFIT'96, Fourth

European Congress on Intelligent Techniques and Soft Computing, H.-

J. Zimmermann (ed), vol. 3, pp. 2187{2190.

20


