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Abstract

This paper presents a model of stock price behavior that encompasses both short-term fluctuations and long-term exponential trends punctuated by crashes. The model represents stock market behavior as the interaction of two self-organizing processes. The first process represents business-as-usual stock price fluctuations. It builds on a simple model of stock price behavior introduced by Cont and Bouchaud. The second process is a risk process that determines the severity of crashes. It is a random graph process driven by macroeconomic variables. The model is based on the assumption that changes in the structural features of the economy (e.g., income distribution, investment and consumption patterns) affect economic performance. A stock market that grows at a higher rate than the real economy forces structural changes that, in turn, create underlying tensions and leverage the risk of a crash. The transition from a business-as-usual regime to a crash regime is determined by trigger events. In our model trigger events are exponentially distributed, i.e. they are a fixed-rate hazard process. The number of crashes in a given period is distributed as a Poisson variable. The size of a crash depends on the state of the underlying process.

1.  Introduction

Financial markets might experience sudden significant downward price movements, but no comparable upward movements. Crashes such as those of 1929 and 1987 have no equivalents in positive terms. There would appear to be two distinct regimes governing the stock markets: 1) business-as-usual nearly symmetrical price fluctuations in the short term and 2) smooth upward trends punctuated with crashes in the long term.

We propose a market model that integrates the speculative behavior of agents and long-term macroeconomic trends. Our approach is to build a model that is both simple and intuitive - and consequently highly idealized - but that captures some fundamental behavior of financial markets. The key assumption behind our model is that stocks have no fundamental value: prices are determined by the interplay of supply and demand. The latter is determined, in the short term, by phenomena where opinion aggregation prevails and, in the long term, by macroeconomic forces.

In this century, the US stock market as measured by the Dow Jones Industrial Average has experienced prolonged periods of both high and low growth. Low-growth markets such as those preceding the decade that closes with the 1929 crash and the roughly twenty years following the crash were characterized by low volatility while bull markets such as those prevailing in the 1920s and the 1990s show increased volatility. Our model is particularly applicable to bull markets, but also correctly predicts the absence of crashes in markets that do not experience prolonged rapid revaluation.

In a nutshell, we hypothesize that a stock market whose growth rate is considerably higher than that of the nominal GNP is driven by inflationary pressure. Opinion aggregation plays a role, but we postulate that, in the long run, the determinants are of a macroeconomic nature. The latter allows explaining the excess inflow of investment in financial markets which we postulate fuels bull markets. Asset inflation in an otherwise low-inflation economy can be correlated with structural changes in the economy in response to the need to channel a steady flow of earnings to the market. These structural changes in turn create underlying tensions. When a trigger event is activated, these tensions produce a sudden aggregation of sell orders and consequent falls in share prices.

We believe that the conceptual novelty (and importance) of this model is in its explicit linking of economic value to structure. In so doing, it provides a theoretical background for the theory of market behavior. Two consequences of our model should be mentioned:

· Crashes cannot be avoided: rather than being a defect of agent aggregation, crashes are the materialization of underlying tensions embodied in economic structure. Crashes might be predictable; they are not avoidable with market risk management techniques. (Policy changes, on the other hand, could avoid market crashes)
· As a consequence, investment management might profit from risk-reduction techniques such as those currently used in the insurance sector. In particular, managing investments in a bull market might require notions of the role of time and “time diversification” other than those commonly used in current market risk management practice.

2.  Phenomenology of stock market prices

A large amount of high-frequency data on financial markets has been accumulated in recent years. This has allowed establishing a number of stylized facts. Still, the modeling of financial time series remains conjectural. Competing statistical models explain the same data with roughly the same accuracy.

Our model attempts to offer a theoretical explanation for the following types of stock price behavior:

· Exponential price trends: Equity prices can be characterized by a steady bull run with fluctuations around some exponential trend punctuated by a sharp drop. Even accounting for crashes, equity markets exhibit long-term upward movement.

· Low-growth and high-growth periods: This century has seen long periods of relative stock price stability alternate with long bull runs without this difference being in direct correlation with the growth rate of the real economy
· Broad variations in the price/earnings ratio over long periods of time: Markets might not react to fundamentals as classical finance theory postulates. For example, the sixteen-year period between 1982-1998 saw Standard & Poor’s 500 index rise more than 900 percent while the price/earnings ratio on the index went from 8 to around 28.5 based on end-1998 earnings.

· Business-as-usual price fluctuations: Fat-tailed fluctuations are superimposed on upward long-term trends. The distribution of price increments exhibits fat tails for time horizons ranging from a few minutes to a day and becomes normal at a time horizon of approximately one month. Empirical studies have shown that daily returns have kurtosis in the range of 30-40, a clear indication of the presence of fat tails. For comparison, Gaussian distributions have kurtosis 3 (see Campbell, Lo, and McKinlay, 1997). Various ways of representing short-term fluctuations have been advanced. A recent suggestion is to represent short-term fluctuations as truncated Levy distributions (see Mantegna and Stanley, 1998).

· Crashes and their precursors: Statistical analysis suggests that crashes might be outliers rather than the fat tails of business-as-usual market movements (see Johansen and Sornette, 1998). Recent studies seem to indicate that markets exhibit specific log-periodic movements before crashes; these might be considered precursors (see Sornette, Johansen and Bouchaud, 1995 and Sornette and Johansen, 1997).

3.  Assumptions behind our model

It is perhaps useful to give a rough sketch of the assumptions behind our model. Though only qualitative and informal, the sketch elucidates the economic intuition behind our modeling of market crashes which will be developed in successive sections. The key notion is the link between economic value and economic structure. We postulate that the economy can be represented as a statistical ensemble of closely interacting agents. This leads naturally to applying the methods of statistical physics to economics.

Conceptual developments in the physical sciences in this century provide a source of inspiration. The great 20th century British physicist A. S. Eddington remarked that, in its scientific endeavor, the mind has to extract from natural phenomena the very laws that it has put in these phenomena; a much harder task, he added, is to extract laws on phenomena over which the mind has no control. He was making reference to the theory of relativity and the fundamental discovery that, though physical laws depend on the reference frame, there are invariants valid in every reference frame.

We believe that economics might have reached the stage where a critical reappraisal of the reference frame is needed. Concepts such as economic output, growth, and inflation cannot be considered “givens” but depend on the reference frame that is adopted. Let's begin with four considerations pertinent to our modeling approach.

i. No physical measure of output can be assumed to represent the size of the economic output of the economy, not even in rough terms.

By “physical measures of output” we mean quantities such as the unit of goods produced or physical measures such as the total number of miles traveled in a given year. The economy is a physical system that produces physical output whose measures, though meaningful, do not quantify the economic output as represented by quantities such as the GNP.

An illustration is offered by information and information-related products, a sector now responsible for a sizable fraction of the GNP of advanced economies. If we attempt to measure the physical output of any advanced economy in terms of information or information-related products, we arrive at numbers that bear no direct relationship to the economic size of the sector. If we take information-theoretic measures such as the number of bits produced annually as a measure of the information output of the economy, these numbers would change by factors of thousands from year to year due to the spread of technologies such as graphical devices and digital communications. If we measure output by the number of units (e.g., PCs) produced, we are hardly in a better position; the performance of information-processing devices is augmented by huge factors every year. Today's PCs have storage capabilities in the range of several gigabytes, a hundred-fold increase with respect to five years ago.

Though simple truisms, the above examples imply far-reaching consequences: if there is no direct relationship between physical measures of output and economic values, what determines economic value?

ii.
Economic value is determined by the interplay of supply and demand within a given structure of economic links.

There is wide agreement that economic value in a free-market economy is determined by the interplay between supply and demand. However, such a statement risks being quite meaningless unless “supply” and “demand” are clearly defined. This is not so easy to do in general terms as these notions express propensity to buy and sell rather than actual observable transactions. In most cases, the schedule of the propensity to buy or sell is not explicit; the terms "supply" and "demand" are therefore theory-defined. In addition, one would need a coherent theory that models simultaneously the evolution of supply and demand as well as their impact on prices.

We espouse the view that supply and demand depend critically on the structure of economic links. The demand for a product or service cannot be defined simply as market consensus reached by independent agents; the reference frame of links in which the transactions will take place must be specified. From the modeling point of view, this implies that the supply and demand schedules of different agents are functionally related.

The structure of economic links that determine supply and demand is due to many factors among which volatile factors such as opinion aggregation due to mutual pairwise influences or field effects, or more stable factors such as the structuring of production or distribution channels or the institutional framework. Income distribution clearly has an important effect on the structuring of demand. (See Kirman, 1997, and Weisbuch, Kirman, Herreiner, 1996, for a discussion of market structure.) The role played by structure is such that slightly different products and services might command very different prices. This phenomenon can be seen at work in products as diverse as luxury or consumer goods as well as in financial assets as corporate shares.

This leads us to conclude that economic value is created or destroyed not only by producing "better" or "worse" products or "more" or "less" of them, but also by changes in the structure of links. Rather than a simple number related to the global physical performance of an economic system, economic output is related to physical output in complex ways and is filtered through a structure of economic links and constraints.

iii.
The economy is a self-organizing system where structure is continuously being created and destroyed.

Structure is not an economic invariant. Economic structure undergoes a process of continuous change with phases of expansion in which new connections are created followed by phases of contraction in which structure is destroyed. The process of structure creation/destruction is a key ingredient of economic dynamics. We believe that the dynamics of economic structure is not simply a consequence of economic development, but fundamental to an understanding of the dynamics of the economy.

The creation and destruction of structure is the basis of the concept of self-organized criticality introduced by the physicist Per Bak (1988) to explain the emergence of power-law distributions evident in different types of physical, economic, and social phenomena. It associates the dynamics of structure with critical threshold when phenomena have no intrinsic scale. However, the finite nature of the economy introduces finite ranges for the scaling of phenomena. The dynamics of structure might therefore have many different rates and ranges. Our market models, as mentioned, assume two scales for the dynamics of structure, one for short-term fluctuations, the other for long-term trends punctuated with crashes.

iv.
Inflation and, consequently, economic growth are theoretically defined terms that depend on the reference frame.

An immediate and far-reaching consequence of the above is that there is no natural measure of economic inflation or growth. Products change rapidly and the structure of links that determine their value undergoes a process of creation/destruction. To define a panel of products as a benchmark for inflation is to impose a bias on our economic theory. We define what products and services we consider equivalent year after year. The choice of an inflation benchmark is somehow equivalent to the choice of a reference frame in dynamics; laws change in function of the reference frame adopted. As there is no unique natural way to define and measure inflation, there is no unique natural way to define and measure economic growth.

This is not to say that inflation does not exist or that the concept of inflation is meaningless, simply that inflation is a complex concept that should be understood as a reference frame - not as a given. Whether or not a particular situation is inflationary depends on the reference frame used. The point is that in modern economies there are no "fundamental” values. Different and fast-changing physical output is transformed into economic output by market systems characterized by highly constrained structures. Structure - together with the physical quantity and quality of products - determines the size of the economic output. In particular, high stock price inflation might co-exist with an otherwise low-inflation economy.

4.  Business-as-usual market behavior, growth, and crashes

Let's now apply these remarks to financial markets. A number of considerations suggest, or at least constrain, the theories that one might advance to explain market behavior. First, one has to be explicit on just what is meant by “market behavior.” In principle, the market value of any product or service is the price at which it can be bought or sold in the market within the constraints of market structure and size. In particular, the value of financial assets is the price at which these assets (or more correctly a limited amount of the outstanding assets) are traded in the market.

It is generally not possible to carry out a very large transaction without seriously impacting the price of the asset(s) concerned. In this sense, a market crash is the impact of a very large market transaction. A market crash is embodied in orderly transactions: sellers find buyers, albeit at very low prices. In this sense, market crashes should be distinguished from other types of market anomalies, namely conditions when markets essentially cease to exist. In the latter case, liquidity dries up; transactions cannot be completed, market prices cannot be established.

The market value of financial assets is therefore not a consensus price that involves all market participants but the price of the latest transactions involving only a limited number of agents. These considerations suggest a theory of market value where price is the result of a sequence of market impacts. Theories of this type are explicitly developed in Cont-Bouchaud (1998), in Farmer (1999), in Solomon (1997), and are espoused in this work. They are implicit in most continuous-time market models based on the interaction between heterogeneous agents.

How do we represent the long-term evolution of demand that is partially driving our model? Although markets can exhibit large fluctuations in the short term, they exhibit remarkably stable and often fast rises over relatively long periods. In the twelve-year period following the 1987 crash which saw the Dow Jones Industrial Average (DJIA) fall 31% in four days, the DJIA has appreciated fivefold; in the seventeen-year period since 1982, it has appreciated tenfold. In view of our above framing remarks, this would suggest that markets have been operating under a situation of average imbalance between supply and demand.

Per se, this statement does not explain anything unless we can model how demand is formed. Note that, as we cannot observe the decision-making process of agents, modeling remains highly conjectural. As frequent in science, the choice between competing models might be made on the grounds of conceptual economy and elegance. Ultimately, different models might explain the same facts.

A clue to the choice of models comes from the fact that markets, as represented by indexes such as Standard & Poor’s 500 index, might grow steadily for years while price/earnings ratios undergo considerable variation. As mentioned above, from the start of 1982 to the end of 1998, the p/e ratio on the S&P 500 went from 8 to almost 30 while the index itself rose more than 900 percent. In the same period, the annual rate of growth of the US economy as measured by current measures of growth was 2.6.

In light of the above, we believe that stock prices cannot be taken to represent the growth of physical capital; it also appears difficult to maintain that markets are necessarily driven by fundamentals. Rather, we would suggest representing the rise in the value of (at least some) markets as an inflationary process fueled by the availability of funds for investment. To explain a continuous average rise of stock prices (and their fluctuations) such as that we have been witnessing in the long US bull market that started in 1982, we assume that the economy produces a continuous flow of earnings and that this flow is not only reinvested in new stock issues but also creates an excess demand for existing stocks.

Let’s relate this comment to the following considerations. The seventeen-year period 1982-1999 which saw US shares generate total annual returns of around 20 percent has been rated as one of the biggest accruals of private wealth in history. As investors (US and foreign) have been pouring money into US equities, firms have been buying back their own shares. It is estimated that in 1998 alone, US firms bought back $263bn more of their own shares than they issued.

While short-term market fluctuations can be explained by aggregation phenomena, over longer time horizons, average excess demand prevails. To make our model more concrete, we assume that there are market-makers that ensure the functioning of markets. Agent decision-making combines speculative behavior and the need to reinvest earnings. Market-makers force demand to fluctuate with zero mean; to ensure that this occurs, they must operate to ensure that prices grow on average.

The presence or not of an excess amount of money for investment is an empirical fact. It is related to the structure of the economy and of the market and, in particular, the interplay between economic output, the market filter, and wealth distribution. An excess amount of money for investment will change market behavior. We model this flow of excess money as a process similar to a steady inflationary process. The critical condition for growth is that the economy continues to produce a growing, albeit small, flow of earnings.

So how do we model crashes? The fact that there is no positive equivalent of market crashes suggests that representing crashes as simple bouts of collective panic might not be sufficient in itself. This leads us to hypothesize the two different regimes to characterize market behavior mentioned above: 1) the business-as-usual regime responsible for both short-term growth and fluctuation and 2) a distinct regime responsible for market crashes. This is suggested not only by the statistical rarity of crashes (which would characterize them as outliers more than fat-tails) but also by the asymmetric and apparently compulsory dynamics of crashes. There is something inherently singular in the way agents aggregate during a crash as opposed to during business-as-usual trading.

We make the assumption that to ensure growing dividends and earnings, firms undergo structural changes that can include various strategies for cost reduction, acquisitions, or disposals. The distribution of wealth and income is modified, modifying in turn the structure of the demand for goods and services. The economy undergoes changes in output and the pricing structure. Globalization acts as an amplifier.

Modifications in the structure of production, distribution and services, in output itself, and in the pricing structure pose the question of the sustainability of the exponential rise of equity values. In developed countries, the real economy is managed by various public bodies including, principally, governments and central banks. The end result of their multifaceted action is that the economic output is constrained to grow within narrow limits.

It seems obvious that the value of markets cannot grow indefinitely at a rate significantly higher than the rate of growth of the economy, whatever is meant by the latter. But so long as there is average excess demand, share prices will continue to go up, inducing changes in the real economy, creating underlying tensions that might build up to a crash. This suggests that crashes might be the materialization of underlying tensions that have been building up in the economy.

Such tensions can be of various natures. First, the fast changing structure of the economy creates uncertainty as to the ability of firms to continue to wring out profits sufficient to maintain (rising) equity values. Uncertainty propagates in the background and might take different forms. For example, market participants might begin to put in place policies that mandate the liquidation of subsets of positions should certain events occur. The “shape” of risk aversion changes. Perhaps more important is the tension due to the leverage present in financial markets; firms with highly leveraged positions simply cannot afford to be exposed to large falls in prices.

How can the level of tensions building up in an economy be gauged? We suggest that an important indicator might be the distance between the market's appreciation and compound riskfree interest rates. This distance gives an indication of how far the appreciation of stock markets has gone with respect to the basic level of capital accumulation that is behind the policies regulating the economy. We assume that this indicator supplies the aggregation parameter on which the size of crashes depends.

5.  Modeling agent aggregation

Agent aggregation represents the fundamental fact that an agent's decision-making process is influenced by that of other agents. Ideally, this calls for an understanding of how the "natural" behavior of one agent is influenced by others, giving rise to a global stochastic process. This approach presents the difficulty of infinite regress: if the behavior of each agent is subject to modification due to the environment, changes in its behavior feed back into the environment, modifying, in turn, its own behavior and thereby producing an infinite regress.

Similar questions of self-reflectivity are routinely solved in the physical sciences. For example, the motion of a charged particle in a system of other charged particles perturbs the system and is influenced, in turn, by the same perturbation it induces. In this case, and in physics in general, the problem is addressed by stating a set of conditions that the global system must satisfy. In the case of charged particles, the conditions are supplied by the equations of dynamics and of electrodynamics.

The approach we take is conceptually similar. We model not the effects of an agent on other agents but the end result of aggregation. Therefore we consider the probability that two agents share the same behavior rather than the probability that an agent's behavior propagates to another agent. We assume that there is a uniform random distribution of decision-making links between agents and observe how connected components (i.e., clusters) develop. This allows avoiding the problem of self-reflectivity.

To model agent aggregation, we chose stochastic percolation or random graph models (see Stauffer, 1998). The exact nature of the models is relatively unimportant as all share some fundamental characteristics. Among these characteristics, are the following:

· All percolation and random graph models are characterized by one fundamental connectivity parameter which gives the probability that two nodes are linked.

· All percolation and random graph models produce fat-tailed distributions of the size of aggregates. These distributions are truncated if the values of the connectivity parameter are below a certain critical threshold, and self-similar at every scale at the critical threshold. Above the critical threshold, an infinite cluster appears.

The radical change in behavior at the critical threshold occurs in a very short interval of the connectivity parameter. For values of the connectivity parameter close to the critical threshold, there might be truncated power laws with a correlation length much smaller than the size of the market. A small change in connectivity produces disruptive behavior. It is this characteristic that is central to our choice of these models.

6.  Presentation of the model

As mentioned, two parallel processes drive our market models: 1) a business-as-usual stochastic price behavior process that is both stable and bounded and 2) a process that represents crashes. When a trigger event occurs, control shifts from a business-as-usual to a crash regime. The severity of the crash depends on the random state of the underlying process.

We build on the Cont-Bouchaud (1998) model in which demand in a business-as-usual regime is originated by clusters, not individuals. We use a random graph process to model the building up of links in the background. The key idea is that, in the background, the web of links becomes progressively more connected, without any appreciable consequences for the business-as-usual regime.

The driving parameter of the background cluster is the distance between compound interest rates and actual compound market returns. We assume that the background will evolve as a random graph process driven by the distance between compound interest rates and actual compound market returns. In time, this random graph process becomes more connected than the random graph process related to a business-as-usual regime. 

6.1.  The business-as-usual component

The fundamental component of our model is the representation of business-as-usual stock price behavior, for which, it should be said, high-frequency data have become available only recently. Empirical analysis shows that the distribution of price changes at short time horizons has kurtosis in the range of 30-40. This distribution can be fit with a truncated power-law distribution for time horizons ranging from a few minutes to a day (see Mantegna and Stanley, 1998) while it reverses to a lognormal distribution at longer time horizons, say over one month. The exponent of the truncated power law is believed to be 1.4-1.5.

To model this behavior, we use a modified version of the herding model presented in Cont and Bouchaud (1998) and extended in Chowdhury and Stauffer (1999) and in Focardi and Marchesi (1999). We chose this model because of its simplicity and coherence with modeling the underlying criticality in the economy as a random graph. In its original formulation, this model assumes that there are N agents in the market, each occupying a node of a random graph. It is assumed that each agent has an independent probability p of being linked to another agent. Linked agents make identical buy/sell decisions.

Given that agents are linked with probability p, at each moment there is a distribution of clusters of linked agents. The size distribution of such clusters (i.e., the number of agents in each cluster) can be theoretically determined by the theory of random graphs (see Appendix A for a brief presentation of the theory). Theory predicts that the cluster size distribution follows a truncated power-law distribution with exponent 
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The original Cont-Bouchaud model assumes that each cluster can buy or sell with the same independent probability a. Assuming that price changes are proportional to the total excess demand, it can be shown that the distribution of price changes follows approximately a truncated power-law distribution (see Cont and Bouchaud, 1998). In this way, the average price change is zero and the price behavior is symmetrical.

To capture the essentials of the process, we make simplifying assumptions. First observe that the value of stocks is set by the relative demand between stocks and cash. If there are many stocks in the market, agents exchange pools of stocks. In this case, trading does not change the global market capitalization but only the relative value of stocks. We therefore do not need to consider the multiplicity of stocks, but model the market as if only one stock were available. As a consequence, trading can be seen as the transfer of a pool of cash and stocks between agents.

Second, we impose a division of the market between potential buyers and sellers. Agents exchange a fixed amount of the stock at each trading moment. For simplicity, we assume that this amount is exactly one stock. We further impose that every seller becomes a buyer after selling its stock and that every buyer becomes a seller after buying its stock. In other words, we bar agents buying or selling for two or more time-contiguous periods. This condition precludes agents' building up unbounded stocks of financial assets.

At the start, the market is divided in two equal sets: buyers and sellers. Every seller holds at least one stock for sale. We assume that the pool of stocks is fixed. At each transaction, agents trade one stock (or the same fixed amount of stocks) and receive in exchange a variable amount of cash. Therefore a pool of stocks rotate between agents and market-makers. This choice is somewhat similar to the modeling choice of Bak, Paczusky, and Shubik (1997) in their assumption that the market is made of N agents and there are only 
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 stocks. As a result, half of the agents hold stocks, the other half cash. In our model, agents might hold different amounts of stocks but exchange only one stock in a sequence of alternate buy/sell decisions.

Agents aggregate at each trading period. Our model makes the simplifying assumption that at each time step only one cluster from the set of buying clusters and one from the set of selling clusters are chosen for trading. In this way we assume that the random nature of trading is completely captured by the variable size of the trading clusters. This assumption avoids the difficulty, inherent in these models, that if many clusters are selected in one time step it is no longer possible to consider their size as independent random draws from the same distribution.

Assuming that only one cluster is selected in each time step from buyers and sellers, the total demand in each time step is the difference between two identical and independent truncated power-law distributions. Therefore, as shown in Appendix B, the price distribution for each time step follows a truncated power law and can be approximated by a symmetrical truncated Levy flight (TLF).

We also depart from the Cont-Bouchaud model by considering returns (i.e., price increments scaled by the price itself) as opposed to pure price increments. This makes no difference for small time steps but allows recovering the lognormal behavior with an exponential trend over long time horizons.

Before proceeding, a difficulty must be solved. In the Cont-Bouchaud 1998 model, no distinction is made between supply and demand and the effective order flow. As there is imbalance between supply and demand at each period, we must assume that this imbalance is absorbed by market-makers. In the long run, as the average demand of each agent is zero, market-makers experience a zero net balance of orders. However, our model assumes a small positive average excess demand. This excess demand is supplied by the willingness of agents to reinvest earnings. In so doing, we can no longer identify orders with transactions as market-makers would have to satisfy an average excess of buy orders.

To model average excess demand, we need to make a distinction between demand and actual transactions. Price movements must readjust supply and demand in order to reach a statistical equilibrium of transactions. Modeling this process would require specific assumptions as regards the fine trading mechanism. The objective of our model is to capture a more coarse-grained picture of trading. Therefore, we assume that market-makers will force supply and demand to adjust to the trend by progressively raising prices. Market-makers experience only residual zero-average fluctuations whose price change is determined by the imbalance between supply and demand.

We can assume that the price change is formed by two terms, a fixed amount responsible for the trend and a stochastic amount with a zero average as in the Cont-Bouchaud model. We can thus write:
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where W is the size of the cluster of buyers, X is the size of the cluster of sellers, ( is the proportionality constant or market depth, and ( is the average excess demand.

We introduce the self-organization of the process in the following way. At each period, a number of sellers become buyers and buyers sellers. We assume that the clusters to which each belongs are destroyed in the corresponding trading period. We assume that at each period a (small) number of new links are randomly added. This slow growth in connectivity makes up for the loss of links after trading. In the long run, the average cluster size must be identical to the number of links added during each time step. The process is globally self-organizing. Of course the average number of links added during each time step remains an exogenous parameter. This is reasonable as it represents a genuine characteristic of the economy. A global electronic market, for instance, will not have the same connectivity parameter as traditional exchanges.

Let's now look at a critical point: the cash balance of each agent. At each transaction, the cash holding of each agent changes by an amount equal to the market price of one stock. Transactions shift cash from buyers to sellers. As we assume that agents buy and sell in sequence, the cash holding of each agent changes by a sequence of random draws from the price distribution. We assume that the market has or can create sufficient liquidity - eventually as credit lines collateralized by purchased stock - to continue operating indefinitely.

Individual agents might go bankrupt due to trading losses, but the cash losses of bankrupt agents are the cash gains of other agents. We therefore assume that bankrupt agents are replaced by new agents created with endowments supplied by other agents. Because this paper is concerned with the dynamics of prices and not with the dynamics of agent wealth, we simply assume that there is some mechanism of agent replacement that holds constant the number of fully functional agents. We do not model the wealth and the cash balance of agents.

6.2.  The behavior of the model

If P(i) is the random variable that represents price at moment i, the price behavior of the model is represented by the equation:
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We can thus write:
[image: image32.wmf](

)

(

)

(

)

(

)

(

)

(

)

i

D

P

D

i

P

P

i

P

i

P

D

+

+

=

D

+

+

=

D

+

=

+

l

m

l

m

1

0

1

1

[image: image33.wmf]
The latter term is a sum of i independent and identically distributed (iid) variables with bounded variance; it therefore tends to a normal distribution. Thus the price P(i) is a lognormal variable. 

In order to compute the growth rate of the process, we have to estimate the mean of the normal distribution of the logarithm of prices. If we expand the logarithm in a McLaurin series truncated at the terms of order two, we can write:
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We can therefore write:

The mean of the variable P(i+1) is the sum of a deterministic term 
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 plus the variance of  the sum of variables of the second term. In fact, the variable (D is symmetric and has zero mean, while the mean of  (D2 is its variance. The variance 
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of the sum of i TLF variables has been estimated by Mantegna and Stanley (1995). They show that 
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 is proportional to i and we can thus write: 
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. Therefore, the logarithm of the price is a normal variable with mean: 
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We can estimate the number NG of time steps needed to cross over to a lognormal regime. In fact, it has been shown by Mantegna and Stanley (1995) that if a process is represented by the sum of iid truncated Levy flights whose tail distribution T(x) can be represented as:
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then the number of steps NG needed to cross over to a normal regime is of the order 
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In the above case, the number NG becomes 
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From this expression it is clear that if c(0 then NG (0, as it should be as c=0 means that distributions do not have any power-law region in the tails. If c(1, on the other hand, NG ((, as it should because there is no exponential truncation to the power-law region of the tails. We can conclude that if relative increments are independent and follow a truncated Levy distribution, the price behavior at long time horizons is lognormal.

6.3.  The crash component

The next step is to model the transition to a crash regime and the crash regime itself. In a nutshell, the mechanics of a crash is the following. Markets rise exponentially under the pressure of demand created by the reinvestment of earnings. When earnings begin to falter, the built-up tensions result in an aggregation of sell decisions.

The key assumptions of our model are the following:

· In parallel with the business-as-usual behavior of stocks, a web of links is building up in the background. These links are activated in case of a transition to a crash regime. They can represent a variety of conditions, such as underlying opinion links, highly leveraged positions that might require unwinding, programmed automatic trade controls which are activated in the case of price deterioration, etc.

· The size distribution of this underlying network can be represented as a random graph process. The speed at which links are added is a function of macroeconomic quantities. We assume that there is a reference rate of riskfree interest and choose as the leading quantity the logarithm of the difference between compound interest rates and compound stock gains. The rationale behind this choice is that the distance between compound interest rates and compound stock gains is a measure of the tensions building up in the economy. The larger this distance, the higher the probability that earnings will not be able to grow sufficiently to sustain the rise in share prices. As sensitivity to this situation grows, protection strategies are put in place.

· We assume that there is a price change threshold for activating the transition to a crash regime. We put a threshold on price movements and switch to a crash regime when this threshold is crossed. The threshold can be interpreted as corresponding to the maximum amount of imbalance between supply and demand that market-makers can absorb.

The next step is to represent the dynamics of the crash regime. We assume the following differences between business-as-usual and crash regimes:

· During a crash regime, market-makers cannot absorb the excess offer. Therefore - and because buy/sell transactions must be in equilibrium – we make the assumption that a suficient number of agents in the set of buyers will enter a transaction.

· The fall in prices is quadratic with excess demand, i.e., 
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. The rationale behind this choice is that during crashes sellers have "compulsory" reasons for selling and therefore sell at prices lower that what normal circumstances would command. On the other hand, buyers require large price drops.

When the crash regime is activated, we make the simple assumption that the current cluster of sellers is expanded to the cluster in the underlying web to which it belongs. This means that to each seller all other sellers that belong to the cluster in the underlying random graph to which it belongs are added. The rationale behind this choice is to capture the randomness of activated crashes. We assume that the underlying cluster involved in the crash is destroyed and that, after a crash, the market reverts to standard trading.

What happens next depends on the size of the underlying cluster. If only a small cluster is "hit," the market will experience only a small readjustment and will revert to a business-as-usual regime. If the underlying cluster is large, the induced price drops will activate successive drops and the process will continue until prices fall below the crash threshold. If a major cluster is hit, the market will experience a large crash; prices will eventually move upwards again, but from a significantly lower price level. The destruction of major clusters corresponds to real changes in the economy: bankruptcies, massive restructuring, policy changes.

6.4.  Global behavior of the model

At short time horizons, our model behaves as a truncated Levy flight; over long time horizons it behaves as a jump-diffusion process. As crashes are activated by events of constant probability per time step, jumps (i.e. crashes) are exponentially distributed. The number of crashes per time interval is a Poisson variable. Crashes are therefore distributed as a Poisson process. Globally our model is not Markovian as the size of crashes depends on the past history of crashes.

7.  Simulation results

We performed numerical simulations on an artificial market made up of 1000 agents. Our model requires the exogenous setting of the following parameters:

tr = the riskfree interest rate
P0 = the initial price of the stock

pa = aggregation probability of new nodes at each simulation step

Sc = threshold of negative returns that trigger crashes

KA, KS = coefficients for computing the aggregation probability of underlying clusters

( = market depth

(C = market depth in a crash regime.

Our model is characterized by two variables:

P = stock price
Cf = value of compound riskfree interest.

The numerical simulation proceeds as follows. The system is initialized creating N=1000 agents. Half of the agents are marked as buyers B, the other half as sellers S. There are 
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 possible links between agents in each set. Links are selected from both sets with probability pa. Clusters are formed using a fast cluster-formation algorithm. The total number of buyers NB and of sellers NS are computed. The return is computed as:
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After trading, the clusters of buyers and sellers are destroyed. Each buyer becomes a seller and is randomly aggregated to existing sellers and each seller becomes a buyer and is randomly aggregated to existing buyers. New clusters are then formed using the probability pa. New prices are computed and the process repeated until negative returns exceed the threshold Sc.

When 
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, the crash regime is activated. Agents are aggregated with probability of links pS where 
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. The coefficient KA is slightly less than (/2 to ensure that ps is only slightly larger than 1. All clusters made up of sellers are successively expanded to the underlying clusters to which they belong. The new number of sellers N’S is computed. The new price is computed as: 
[image: image16.wmf](

)

2

'

S

B

N

N

P

-

-

=

D

l

. Clusters of sellers and buyers are then destroyed and the process repeat itself as in the business-as-usual regime.
The following figures show the results of simulations under different choices of the parameters. Although the system is still highly idealized, simulations show a rich dynamics. The exponential trend and a number of crashes occur in each simulation. Some drops in price are essentially without effect on the upward trend; others produce large price falls. For some choices of parameters, crashes become the fundamental phenomenon and the system cannot grow.
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Fig. 1 - This simulation corresponds to the following choice of parameters: (: 0.0003; (C: 0.000015; (: 1.0; pa: 0.035; tr: 1.0002; SC: 0.09; KA: 1.5; KS: 10.0; P0:10.0.
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Fig. 2 - This simulation corresponds to the following choice of parameters: (: 0.0003; (C: 0.000015; (: 1.0; pa: 0.035; tr: 1.0002; SC: 0.07; KA: 1.5; KS: 10.0; P0:10.0.
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Fig. 3 - This simulation corresponds to the following choice of parameters: (: 0.0003; (C: 0.000015; (: 1.0; pa: 0.04; tr: 1.0002; SC: 0.1; KA: 1.5; KS: 10.0; P0:10.0.
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Fig. 4 - This simulation corresponds to the following choice of parameters: (: 0.0005; (C: 0.000015; (: 1.0; pa: 0.04; 0.05; tr: 1.0002; SC: 0.1; KA: 1.5; KS: 10.0; P0:10.0.

10.  Conclusions and future research directions

We have presented a model of market crashes as they characteristically occur at the end of bull markets. Throughout a bull run, equity prices rise at a rate significantly higher than that of the GNP. Agent aggregation results in fat-tailed truncated asset price fluctuations in the short term. As these fluctuations have finite variance and mean, they add up to produce lognormal behavior over longer time horizons. Price changes in excess of a given threshold are the trigger events that activate crashes. These trigger events can be represented as a fixed-rate hazard process. In each time period, the number of crashes is distributed as a Poisson variable. The size of each crash is, however, determined by the state of the underlying random graph that represents a web of economic links.

Though still highly idealized, we believe that our model exhibits some essential features of stock price behavior and, in particular, fat-tailed fluctuations around an exponential trend punctuated with rare crashes. 

We used a single-parameter trigger mechanism to activate crashes; future research could explore more realistic triggers that might depend on several parameters. Perhaps the key future development is to introduce the modelling of variable earnings. This step requires a fully developed macroeconomic theory along the lines outlined in this work.

Appendix A: Random graphs

Random graphs can be loosely considered as a model of percolation in infinite dimensions. Random graphs and finite-dimensional percolation models are characterized by critical points (i.e., critical values of some parameters) and threshold functions that mark an abrupt and qualitative change of behavior. The relevant parameter for both random graphs and finite-dimensional percolation is the probability p that an edge is open or closed.

We are interested in the limit behavior when the number of nodes 
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. It is possible to imagine a sequence of graphs of growing N and the limit distribution as the limit of distributions for 
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 if this limit exists. The probability threshold is replaced by different threshold functions that prescribe how the probability p grows with the number of vertices.

The critical behavior of a random graph that is of interest here is the size distribution of the connected components of the graph when 
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 where c is a constant. For values of c<1, the cluster size distribution is a truncated power law that exhibits a correlation length. In other words, there is a cut-off size such that clusters above a given size are exponentially rare. For c=1, the cluster size distribution is a power law such that cluster size distribution is self-similar; clusters do not have an intrinsic size. For c>1, there is only one giant cluster.

We develop our argument using the theory of random graphs, which can be thought of as percolation on infinite-dimensional lattices. Suppose that a finite set of N vertices Vi, i=1,N, is given. A link (or edge) is defined as an unordered pair of vertices (i,j(. A graph is defined by a set of vertices V and by a set of edges E. Each of the N vertices can be connected with an edge to N-1 other nodes. Therefore there are a total of 
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 possible edges.

Suppose that each pair of vertices has a probability p of being connected by an open edge and a probability 1-p of not being connected and that these probabilities are independent. As each edge is randomly open or closed, the corresponding graph is called a random graph. The sample space is the set of all possible configurations. There are 
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 possible edges and thus 
[image: image22.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

2

n

 configurations. On average, each vertex will be connected to p(N-1) vertices. It is convenient to represent p as: 
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We are interested in the distribution of the size of clusters (i.e., connected components). It can be demonstrated (see Bollobas, 1985, chapters IV and V) that for 
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<c<1 most clusters will be trees or will contain at most one cycle. It is possible to infer that the probability distribution of S decays as an exponentially truncated power law for large values of S:
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For c=1, the distribution becomes:
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If c=1, the size distribution has an infinite variance in the limit of an infinite cluster while for c<1, the size distribution has a finite variance. For c(1, a giant cluster is formed in the limit of infinite N.

F(S) has an ensemble probability interpretation as the probability distribution of the size of a randomly chosen cluster. The following figures illustrate the cluster size [image: image43.wmf](
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distribution obtained through simulation of a network of 30,000 vertices with c=1 and c=0.5.

[image: image44.wmf]Fig. A.1 - Cluster size distribution in the case c=1. The power-law distribution with exponent 
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 of the cluster size is evident in the log-log plot.

Fig. A.2 - Cluster size distribution in the case c=0.5. The distribution follows the same power law with exponent 
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 but is exponentially truncated.

Appendix B: Levy distributions and truncated Levy flights

The size distribution of open clusters is discrete, follows a power law for large cluster sizes, and is not defined at zero. There is a class of continuous probability distributions characterized by a power-law decay and defined at the origin: these are stable laws (see Samorodnitsky and Taqqu, 1994, for a definition). Stable laws are characterized by four parameters: 
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. The first parameter, (, is the characteristic index of the distribution. The tail distribution of any stable variable P(x>() decays as a power law with exponent - This implies that the relative probability generating function decays with exponent . The second parameter, , is the skewness parameter. Where , the distribution is totally skewed to the right or to the left. If <1 and =+/-1, the support of the distribution is the half real line. The third parameter, , is a scale parameter, and the last one is the shift parameter. If 2, the shift parameter ( is the mean of the distribution.

A linear combination of independent stable laws with index ( has the same index (. The tail distribution of a linear combination of independent and identical stable laws X decays with the same power-law distribution of X. Probability distributions that exhibit power-law decay but that are not stable laws do not have the latter’s nice mathematical properties. It can be shown however (see Chowdhury and Stauffer, 1998) that the sum of two or more laws that decay asymptotically as 
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 is a variable that decays asymptotically with the same exponent -((+1). The difference of two truncated power law distributions can also be approximated by a truncated Levy flight (TLF)
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