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Abstract

This work investigates some uses of self-monitoring in classifier systems (CS) using Wilson’s recent
XCS system as a framework. XCS is a significant advance in classifier systems technology which shifts
the basis of fitness evaluation for the Genetic Algorithm (GA) from the strength of payoff prediction
to the accuracy of payoff prediction. Initial work consisted of implementing an XCS system in Pop-
11 and replicating published XCS multiplexer experiments from (Wilson 1995, 1996a). In subsequent
original work, the XCS Optimality Hypothesis, which suggests that under certain conditions XCS systems
can reliably evolve optimal populations (solutions), is proposed. An optimal population is one which
accurately maps inputs to actions to reward predictions using the smallest possible set of classifiers.
An optimal XCS population forms a complete mapping of the payoff environment in the reinforcement
learning tradition, in contrast to traditional classifier systems which only seek to maximise classifier payoff
(reward). The more complete payoff map allows XCS to deal with payoff landscapes with more than 1
niche (i.e. those with more than 2 payoff levels) which traditional payoff-maximising CS find very difficult.
This makes XCS much more suitable as the foundation of animat control systems than traditional CS.
In support of the Optimality Hypothesis, techniques were developed which allow the system to highly
reliably evolve optimal populations for logical multiplexer functions. A technique for auto-termination
of learning was also developed to allow the system to recognise when an optimal population has been
evolved. The self-monitoring mechanisms involved in this work are discussed in terms of the design space
of adaptive systems.
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1 Introduction

This work is based on that of Stewart Wilson in (Wilson 1995, 1996b), two papers which present a new form
of classifier system called XCS, results of experiments with it and theoretical analysis. XCS is significant in
that it allows better representations of problem environments than traditional classifier systems, and as a
result has the potential to have more sophisticated animat' cognitive architectures based on it (e.g. those
which incorporate planning.)

The current work endeavours to explore the potential of XCS further by presenting new mechanisms, new
experimental findings and further analysis (in addition to replication of published experiments). The main
theoretical contribution of this work is the proposal of the Optimality Hypothesis (see 5.7), which proposes
that under certain conditions optimal classifier populations can reliably be evolved. (This is an extension of
Wilson’s Generalization Hypothesis (see 5.6)). Experimental results provide support for (but do not prove)
the Optimality Hypothesis. In particular, it is shown that XCS can reliably evolve optimal solutions for 6
and 11 multiplexer problems (see section 6.5).

1.1 The Structure of this Document

This document is divided into the following major parts:

e Section 2 sketches the context of the current work as an analysis of the functional properties of certain
classes of control system.

e Section 3 provides a brief overview of the architecture of the traditional classifier system, a well-known
example of an adaptive system. It will be contrasted with its more sophisticated descendent, XCS.

e Section 4 introduces the reinforcement learning paradigm and the multiplexer problems used with the
systems discussed here.

e Section 5 contains a high-level description of Wilson’s recent XCS system, an analysis of the system
and brief discussions of its relationships with two other widely studied adaptive systems, the traditional
classifier system and the Q-Learning technique.

e Section 6 introduces work with a Pop-11 implementation of XCS. In this section replication of exper-
iments from (Wilson 1995, 1996a) are reported. Following this the results of original work using the
XCS system are presented.

¢ Following the conclusion, various topics of less general interest are addressed in the appendices.

2 The Design Space of Adaptive Systems

Adaptive systems include a vast range of living, natural and artificial systems. One way to compare these
diverse systems is to conceptualise their architectures within a design space of functional systems.? Architec-
ture dominates mechanism (Sloman 1993) sums up the view that architectures have a greater influence on the
capacities of the system than the mechanisms it consists of. Designs map into a niche space of requirements,
and understanding a design involves understanding how it maps into niche space.

The design-based approach involves taking the role of an engineer who is trying to design a system that
meets certain requirements, and is inspired by software engineering and conceptual analysis in philosophy. It
involves analysing alternative sets of requirements, designs and implementations in an attempt to establish
the nature of their relationships. It allows a high level functional comparison of systems, both natural and
artificial, despite differences in origin or implementation. This comparison seeks to identify which aspects
of a system are essential for given functions and which are not. Note that this approach does not require a
full understanding of the requirements or the available tools at the outset, nor does it assume that there is
a single correct design to be found. For discussion of the design-based approach see (Sloman & Humphreys
1992; Sloman 1993, 1994, 1995, 1996).

1 Animats are autonomous adaptive agents implemented in software or hardware.
2 An architecture is some level of abstraction of a functional system.



Reinforcement learning systems (section 4) are one form of adaptive system. The current work will focus
on a particular kind of reinforcement learning system, the classifier system (see section 3).

2.1 Feedback Loops

“(A basic negative feedback loop) is the simplest example of a teleological machine, i.e. a
machine that appears to function with a definite ‘goal’ in mind, a representation of a state-of-
affairs that it attempts to bring about. A basic negative feedback loop has four elements: (a) a
sensory signal measuring an environment variable, (b) a reference value, (¢) a comparator, and
(d) an effector signal that alters the environment variable. The comparator compares the sensory
signal with the reference value and computes an effector signal. The effector signal is such that it
moves the environment variables closer to the reference value. Such a negative feedback control
loop will tend to maintain the variable around the reference value equilibrium. A thermostat is a
well-known example of this kind of system (temperature = environment variable, dial position =
reference value, bi-metallic strip = comparator, turn heating on/off = effector signal).” (Wright
1995)

Self-monitoring is a form of feedback in which the environmental variable is internal to the system,
and includes cases where the variable is a statistic based on other variables. Introducing capacities for
self-monitoring may be considered as effecting a movement in design space which introduces corresponding
changes in the niche space of the system. Some of these movements may be involve continuous change in
some dimension while others may cross discrete boundaries. This project can be seen as an examination of
some of the uses of self-monitoring in a particular form of adaptive system, the classifier system.

3 Traditional Classifier Systems

3.1 A Brief Overview

Classifier systems are a form of adaptive system introduced by John Holland in the mid-1970’s (Holland
1975, see also Holland 1986) as a form of domain-independent learning system. The term “traditional” will
be used to refer to those systems closely related to Holland’s original system, primarily in order to distinguish
them from the more recent XCS classifier system.

A classifier is essentially a condition-action rule with some associated values or parameters (these are
typically estimates of the classifier’s utility to the system). The condition part of a classifier is represented
by a ternary bitstring composed from the set {0, 1, #}, while the action part is composed from {0, 1}.3 A
classifier system generates, evaluates and makes use of classifiers for decision-making in interaction with some
problem environment. These functions are carried out by three major subsystems: the performance system,
the learning (or credit assignment) system, and the rule discovery system. Each classifier has a strength
parameter which represents the system’s evaluation of the utility of that classifier. In traditional classifier
systems the strength parameter is used as a measure of utility in both performance and rule discovery.

The following subsections describe the main features of the traditional classifier system’s version of these
subsystems very briefly; those familiar with classifier systems may want to skip to the next section. In
section 5 the versions of these subsystems used in XCS, a new form of classifier system, are described in
more detail.

3.2 The Performance System

The performance system is composed of four parts:

Input Interface Generates messages in the form of binary bitstrings representing detected environmental
features.

Message List Stores messages generated by the input interface and by classifiers.

3In the traditional CS, multiple bitstrings can be linked with logical ANDs in a classifier’s condition. In addition, a negation
prefix can be used to indicate that the classifier is matched when no input matches its condition.



Classifier List A list of classifiers which are applied to the message list and which may add messages to it.

Output Interface Translates action messages from the message list into actions in the environment.

The basic execution cycle of the performance system is called a major cycle. It consists of the following
steps:

1. Add the messages from the input interface to the message list.

2. Compare each message on the message list to the condition part of each classifier and record which pairs
of messages and classifiers have matched. The # symbol in a condition will match either 1 or 0 in a
message and is sometimes called the “don’t care” symbol.

3. Generate new messages from the matches in 2 using the action parts of the classifiers. Classifiers are
required to compete against each other to be allowed to post their messages, so only a subset of the
matching classifiers will post messages.

4. Replace the contents of the message list with the new messages.

5. Use the output interface to translate the new messages into the system’s actions. An environmental
reward may or may not be returned as a result of the actions taken.

6. Return to step 1.

The classifier system interacts with its environment by repeating the major cycle. One application of
classifier systems is to drive animats in which case the input and output interfaces link the classifier system
to the animat environment (which may be either simulated or real). Classifier systems are also used for more
abstract problems, such as the boolean multiplexer problems which will be discussed later.

The classifier system program is simply a particular classifier list, i.e. a collection of condition-action
rules. Note that classifiers are computationally complete; a list of classifiers can implement any computable
function (although not necessarily very efficiently).

3.3 The Learning System

The performance system itself is not adaptive, so the classifier system must include some form of learning
system. In the traditional classifier system the bucket-brigade algorithm is used to allow the system to
perform credit assignment with the classifiers. The credit assignment problem is the problem of determining
which components of a complex system are responsible for producing which outcomes.* The bucket-brigade
operates by adjusting the strength parameter of classifiers in response to the reward (or payoff) the system
receives as a result of its actions. A classifier’s strength is thus a prediction of the reward the system will
receive if it selects that classifier from the set of classifiers matching the current messages and allows it to
post its message. (Another way at looking at strength is a measure of how useful the classifier has been in
the past.)

To allow selective activation of some classifiers satisfied (i.e. matched) during a major cycle an element of
competition is introduced: each classifier that has its condition part satisfied makes a bid to become active.
Only the highest bidders are allowed to post their messages. The bid of a classifier depends on two factors:

e Its strength, which is a measure of the classifier’s “usefulness” to the system. The strength of a classifier
should be modified as a result of the system’s experience with a particular task domain.

o Its specificity, the number of 1’s and 0’s in its condition part. Specificity can be thought of as a measure
of a classifier’s relevance to a particular set of messages.

4The temporal credit-assignment problem is the version where the outcome to which components contribute does not occur
for some time.



A classifier’s bid is:
B = k x strength * speci ficity
where ‘k’ is a universal constant for all classifiers. The higher a classifier’s strength (usefulness), the higher
its bids and the more likely it will win the competition and post messages. The same applies for specificity.

Consequently, the behaviour of a classifier system can be modified by changing the strengths associated
with classifiers. If the strength of classifiers that tend to lead to “useful” behaviour can be increased, and
the strength of classifiers that tend to lead to “useless” behaviour can be decreased, the system will learn
to produce more useful behaviour. The bucket-brigade algorithm is designed to bring about these types of
changes in strength.

The basis for the bucket-brigade is information from the environment about whether or not the classifier
system as a whole is behaving correctly. This is achieved via rewards. The system receives positive reward
from the environment when it produces the right behaviour and negative reward when it produces incorrect
behaviour. In some situations neither positive or negative reward will be received, or it may be received some
time in the future, and it may be contingent upon other factors (hence the credit assignment problem).?

The bucket-brigade acts in two ways:

1. When a reward is received the bucket-brigade adds the reward value to the strength of all classifiers active
during the major cycle. In other words, the algorithm changes the strength of all classifiers that were
directly associated (in time) with the receipt of the reward. The mapping from classifier system state
to reward is called the payoff function.

2. When a classifier is activated it pays the amount it bid to the classifiers that made it possible to become
active (i.e. those which posted the messages which matched the classifier’s condition). Consequently,
the strength of the active classifiers is decreased by the amount of its bid. In this way the bucket-
brigade also acts to increase the strength of classifiers that indirectly lead to useful behaviour, i.e.
rewards. The bucket-brigade allows rewards to “circulate back” to antecedent classifiers that produce
rewarding behaviours.

The algorithm is called a “bucket-brigade” because strength flows from an ultimate source, the rewarding
mechanism, to distal producers of useful behaviour.®

3.4 The Rule Discovery System

A complete classifier system needs some means of generating new rules for use in the performance and
learning systems. Well-known genetic algorithm (GA) techniques have been used as the main source of rule
discovery in CS. Genetic algorithms were inspired by natural selection and operate by evolving generations
of individuals which are successively more fit according to some fitness evaluation function. In traditional
classifier systems, a classifier’s strength is taken as a measure of its fitness or utility in rule discovery (in
addition to its use in the performance system).

The basic operation of a genetic algorithm is summarised as follows:

1. Select classifiers for reproduction. The probability of a classifier being selected as a parent is based
on its strength.

2. Apply genetic operators to the new classifiers. Copies of the parent classifiers are generated and
transformed using genetic operators. The most commonly used operators are crossover, which combines
elements of the bitstrings of two parents as in sexual reproduction, and mutation which is a change
effected probabilistically on some part of the bitstring.

3. Select classifiers for deletion. In order for the population of classifiers to remain within some rea-
sonable size limit, existing classifiers must be deleted as new ones are introduced. There are various
means of selecting classifiers for deletion, for example probabilistically based on an inverse function of
the classifier’s strength (i.e. weaker classifiers are more likely to be deleted).

5To be precise, this applies only for multi step problems. In single step problems, the reward (positive or negative) is always
received immediately, and no cycle influences any other, except through the action of the learning system. Also, reward may be
some scalar value rather than just a positive/negative signal. Single and multi step problems are explained in section 4. More
complex forms of environmental feedback (e.g. supervised learning) are beyond the scope of this discussion.

6Much of this section was drawn from (Wright 1995) with permission. Wright’s work was based on (Riolo 1988).



3.5 Some Forms of Self-Monitoring in Classifier Systems

There are many ways in which a classifier system may make use of internal state to improve its operation
in some respect. One obvious example is the hierarchical classifier system where the input to one layer is
based on another. Another example is the use of register memory, which has been shown to overcome simple
perceptual aliasing problems for animats in non-Markov environments (Cliff & Ross 1994).” A more general
form of internal memory is the message list of the traditional CS. This has the potential to form adaptive
chains of behaviour, although useful coupling of classifiers appears to be difficult to achieve and maintain in
the traditional system (Riolo 1989).

The current work revolves around an even more fundamental form of self-monitoring in the classifier
system, that of credit-assignment to classifiers in response to environmental reward. Many credit-assignment
schemes have been implemented to date (e.g. the bucket-brigade, ZCS’s “implicit bucket-brigade”, tabular Q-
Learning) using a variety of mechanisms. However, only a small part of the design space of credit-assignment
systems has yet been explored. For instance, many variations on existing schemes could be produced by
adding additional self-monitoring capacities. Some such variations will be explored herein. In some cases,
systems which do not make use of self-monitoring are missing opportunities to optimise learning with the
help of additional information. In other cases, it may not be possible for learning to occur (or to advance
as far) without the use of such additional information (examples being the use of register memory bits to
overcome perceptual aliasing, or the use of accuracy based fitness to deal with payoff environments with
more than one niche).

This work, then, can be seen as an exploration of some example uses of performance monitoring (e.g.
reward received, ratio of correct responses to incorrect responses, the achievement of goals and subgoals) and
database analysis (directing exploration, measuring representational efficiency) to improve performance.? In
some cases experiments were actually carried out with an XCS system, in other cases it was used as a
conceptual framework in which to base discussion.

4 Reinforcement Learning Problems

In the most basic form of reinforcement learning scenario the interaction between the environment (the
teacher) and the learner is highly restricted. The following demonstrates a single trial (cycle) of this scenario
(in which the learner is a classifier system):

¢ Input A random binary bitstring is generated and presented to the CS as input from its environment.

e Action The CS must respond with either a 1 or a 0. (The response is generally referred to as the
system’s action.)

¢ Reward The correctness of the response is determined by the environment (e.g. by computing some
function on the input string to derive a value which is then compared to the response). Some reward
is then returned to the CS by the environment, e.g. the CS may receive 100 reward units for correct
answers and 0 reward units for incorrect answers. How much reward is returned is typically related to
the “correctness” of the CS’s actions (but can really use any function - see section 4.1).

This is a single step problem as the input is generated randomly; the choice of action by the learner
does not affect future inputs at all.® This cycle is typically repeated thousands of times, giving the system
the opportunity to learn which actions to associate with which inputs. To do so it must form some kind of
internal representation of the problem in order to predict which answers will result in more reward being
returned.

"This approach has the advantage of greater simplicity over the message lists of traditional classifier systems, but Cliff &
Ross conclude that the technique is not likely to scale well.

8Optimising representational efficiency may be seen as a goal in its own right, but tends to have implications for performance
as well.

9In multi step problems, the choice of action may affect possible future inputs. Animat environments are a form of multi
step problem (e.g. the animat’s choice of direction to walk in on cycle ¢ affects what it will sense on cycle ¢t41). In multi step
problems the environmental reward may be due to series of actions and thus there may be a delay in receiving rewards (this is
the temporal credit assignment problem from section 3.3).



4.1 Payoff Landscapes, Payoff Niches and XxA = P Maps

In a reinforcement learning problem some payoff landscape is used to determine the reward value to return
to the learning system for its response to a particular input.
Suppose a reinforcement learning experiment uses the following payoff landscape:

Input string Reward Level if Correct Reward Level if Incorrect

00 200 0
01 200 0
10 100 0
11 100 0

where the answer 1 is always correct and the answer 0 is always incorrect. Input/action pairs which pay
off at the same rate (i.e. whose rewards for correct answers 7. are equal and whose rewards for incorrect
answers r; are equal) are said to belong to the same payoff layer or payoff niche. (The term payoff niche
will be given preference to help distinguish layers from levels.) This landscape has 2 payoff niches. The first
includes the inputs {00, 01} while the second includes {10, 11}. In this case, each niche has 2 payoff levels,
one for correct answers and one for incorrect answers. (Condition/action pairs which have the same reward
(i.e. Xz A pairs with the same P) belong to the same payoff level.)

The internal model which a reinforcement learning system uses to predict reward levels will form some
kind of map of the input X to action A to prediction P space (written XzA = P). Payoff niches form
regions within this space, and the CS uses classifiers to describe the boundaries and payoff levels of these
regions.

4.2 Boolean Multiplexer Problems

Multiplexer functions are used as reinforcement learning problems for classifier (and other reinforcement
learning) systems, using the basic form of reinforcement learning scenario discussed in section 4. Neural
networks, classifier systems and Q-Learning are all forms of reinforcement learning systems which are able
to learn multiplexer problems (at least the shorter multiplexer problems). Classifier systems learn the
multiplexer problems by generating, evaluating and basing decisions on classifiers as described in section 3.

Boolean multiplexer problems are highly nonlinear logical functions commonly used for testing machine
learning systems. They provide a series of related problems of increasing difficulty which makes them
suitable for evaluating the ability of a system to scale up. Further, they are useful as a common measure of
performance for different systems as they have been used with a variety of systems including neural networks
(Anderson 1986), simple GAs (Goldberg, 1989), messy GAs (Skurikhin & Surkan), niche GAs (Booker 1989),
perceptrons (Wilson 1990) and the BOOLE system (Wilson, 1987). All the experiments reported in this
work were on forms of multiplexer problem.

Multiplexer functions exist for strings of length L = k + 2% with k& > 0, a series that begins {3, 6, 11,
20, 37 ...}. At present only the 6, 11 and 20 multiplexers are typically used due to the difficulty of the
succeeding ones.

In disjunctive normal form, the six multiplexer is as follows (the primes indicate negation):

1! ! !
Fs = 2qx1 T2 + £p2123 + ToT12T4 + ToX1Ts5

The first k bits may be considered as an address indexing the remaining 2* bits. The value of the function
is the value of the indexed bit. For example, the value of 010100 is 1. k = 2 for the 6 multiplexer, so the
first 2 bits are used as an address (whose value is 1), which indexes bit 1 (the second bit) of the remainder
of the string. Eight classifiers will match this input string, the most specific, 010100, has no #’s while the
most general, 01#1## has 2 — 1 #°s (i.e. all remainder bits save the indexed one are #). Ol#1## is
mazimally general; it cannot be made any more general (i.e. cannot have any more #’s added) without
losing its accuracy.

Multiplexers are used as a form of single step Markov environment for the classifier system. The multi-
plexer is encoded as a binary bitstring by the classifier system’s input interface, and the system’s action is
returned by the output interface. The environment then uses the input/action pair to locate the appropriate
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reward value in the payoff landscape. This problem environment is Markov as the value of the input string
is sufficient to determine the correct response, and the value of the reward depends only on the response of
the system and the state encoded by the input string.

The payoff landscape traditionally used with multiplexer problems simply associates one reward level with
correct answers and another with incorrect answers (i.e. it has 2 levels). In this case, learning to predict the
payoff corresponds to learning the logical value of the function. (Wilson 1996a) reports experiments with
this form of payoff landscape (see section 6.1.3 for replication). However, (Wilson 1995) used a different
payoff landscape, one with 8 niches (each with a unique value for correct and incorrect answers - see 6.1.1 for
replication). The ability to learn payoff landscapes with more than 1 niche is one advantage of XCS systems
over traditional CS discussed in section 5.1.

The Suitability of Multiplexer Problems

A 6 multiplexer problem is not a completely trivial problem. Imagine a human being attempting to work
out a means of predicting the correct answer in place of the classifier system. The number of trials required
to solve the problem (if, indeed, the subject was able to solve it at all) would depend heavily on the subject’s
prior knowledge. It would be far easier to do with pencil and paper than purely mentally, indicating that
humans are not well suited to this type of problem, perhaps due to temporary memory requirements. It
seems unlikely that a rat in a Skinner box'® would be able to learn to predict the correct response no matter
how many trials it was given. However, rats do possess some level of intelligence. These may be indications
that multiplexer problems are not very suitable for evaluating intelligent systems in general. Certainly they
seem to bear little resemblance to the problems faced by real creatures. Nonetheless, they do provide well
defined benchmarks useful for evaluating current reinforcement learning systems.

Animat problems (e.g. the “woods” environments used by Wilson) may be more suitable ways of evalu-
ating the kinds of intelligent behaviour we expect from real creatures (and from animats).

5 XCS

5.1 Introduction

XCS is a class of classifier systems introduced in (Wilson 1995) whose primary distinguishing features are
the basing of classifier fitness on the accuracy of classifier reward prediction and the use of a niche genetic
algorithm (i.e. a GA which only operates on a subset of the general classifier population [P] on each
invocation). In addition, there are many more subtle differences between traditional classifier systems and
XCS systems as the reader will discover later in this section. XCS has many features in common with
Wilson’s earlier ZCS work (Wilson 1994).™

Classifier systems have traditionally based fitness on classifier strength (i.e. a predictor of the payoff to
be received if the classifier’s action is taken). Wilson was motivated to change the basis of fitness calculation
for a number of reasons.'?

e Different environmental niches may have different payoff levels (see the example in 4.1). If fitness is
simply based on payoff prediction, then classifiers in the higher-payoff niches will tend to take over the
population. By basing fitness on classifier accuracy, XCS allows classifiers to evolve without regard for
relative niche payoff level.

e Traditional classifiers systems only attempt to find the most rewarding classifiers, in contrast to re-
inforcement learning work which has focused on the construction of relatively complete maps of the
payoff environment. Maintaining a more complete map is more expensive (at least in terms of space)
but may benefit action selection as a range of alternative predictions are made. A more complete map

107.e. the rat takes the place of the classifier system in the cycle above. Rather than some scalar value, the rat might receive
a food pellet for correct answers and an unpleasant electric shock for incorrect answers. It could signal its answers by any
number of means, e.g. by pressing a lever to indicate 1, and not pressing it to indicate 0.

117CS is intended as a minimalist classifier system whose mechanisms are more easily understood than those of the traditional
CS. Wilson showed that learning in ZCS has strong similarities to the reinforcement learning technique @-Learning (see 5.4).

12please see (Wilson 1995) for a more detailed discussion.
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may also make it easier to escape from local minima (Wilson 1995). Basing fitness on accuracy allows
XCS to construct such payoff maps (see Appendix D).

¢ In traditional classifier systems there is a lack of pressure for accurate generalizations in the classifier
conditions to evolve. However, XCS tends to evolve mazimally general classifiers (classifiers which
could not have any more #’s without becoming inaccurate) within the limits of an accuracy criterion
(see section 5.6 on the Generalization Hypothesis). Evolving maximally general classifiers is desirable
because it minimises the number of different concepts (represented as classifier conditions) the system
needs to deal with and thus makes the working system simpler and more efficient. Accuracy-based
fitness intrinsically promotes accurate generalizations.

e With fitness based on predicted payoff, the system does not distinguish between accurate classifiers and
overgeneral classifiers with the same predicted payoff (see 5.2). At the same time, overgeneral classifiers
may have an advantage since they are matched more often. (Although this should ultimately be offset
by their inaccuracy, their early success could inhibit GA performance.) Basing fitness on accuracy
allows the system to avoid giving undue preference in the GA to overgeneral classifiers.

In traditional CS, classifier strength plays a double role: it is used as a predictor of payoff in action-
selection, and as a measure of fitness in the GA. In XCS, strength is replaced by three parameters: payoff
prediction, prediction error and fitness. Prediction fills the role of strength in the action-selection component,
and is also used to calculate prediction error, a measure of classifier accuracy. Fitness is an inverse function
of the prediction error (put another way, it is a function of the accuracy of the prediction).

By relieving payoff prediction of its double role Wilson has significantly improved the classifier system
architecture. In XCS, payoff prediction is only relevant in action selection which means XCS classifiers are
free to map any region of the input/action/payoff space. As a results XCS tends to form “complete and
accurate mappings X x A = P from inputs and actions to payoff predictions ...which can make payoff-
maximising action-selection straightforward” (Wilson 1995). The attempt to construct a complete mapping
of the payoff environment is in the spirit of much reinforcement learning work, and indeed the function of the
learning subsystem in XCS is related to the reinforcement learning technique Q-learning (see section 5.4).

Following Booker’s idea of conducting the GA in niches (Booker 1982), XCS’s GA operates on subsets of
the classifier list. Drawing classifiers for crossover from a subset of the population should be more effective
than panmictic (i.e. global population) selection as the classifiers in a match or action set are related (see
section 5.5.3 for definitions of these sets). Another interesting feature is that the probability of a classifier’s
deletion is proportional to its estimate of its match set size. This has the effect of allocating resources (GA
invocations) approximately equally to the different match sets.

A number of other researchers have incorporated accuracy information in their classifier systems (for an
overview see (Wilson 1995)). Indeed, Holland, in the original paper on classifier systems (Holland 1975),
suggested that accuracy information be incorporated in calculating classifier fitness, but he later focused on
payoff based fitness. Unlike other systems, XCS has completely shifted to accuracy based fitness.

Some of the problems with the traditional CS discussed above can be overcome by modifying its archi-
tecture (e.g. by sharing payoff among active classifiers, or by using a niche GA - See (Wilson 1995) for
discussion). However, these modifications still leave the CS without evolutionary pressure towards accurate
generalization, or a means of detecting overgeneral classifiers (see 5.2). In order to simplify matters, the
discussion herein will be restricted to comparison of XCS and the traditional CS.

Wilson refined the XCS system in (Wilson 1996a) by introducing subsumption deletion (see section 5.5.7)
and by moving the site of the niche GA from the match set to the action set. These changes were successful
in producing smaller (but not yet optimal) final population sizes (see replication in section 6.1.2).

5.2 Overgeneral, Maximally General and Suboptimally General Classifiers

Classifiers express generalizations using the don’t care symbol # in their conditions. For example, a classifier
with condition 00# will match both 001 and 000 and treats these two inputs as equivalent. A classifier is
either overgeneral, maximally (optimally) general, or suboptimally general in respect to the inputs it matches,
as the following example illustrates.

Suppose an XCS system attempting to maximise payoff from the payoff landscape in section 4.1 has a
population consisting of the following classifiers:
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Classifier Condition Action Predicted Payoff Prediction Error Accuracy

a #H# 1 100 0.5 0.0
b 0 # 1 200 0.0 1.0
c 10 1 100 0.0 1.0
d 11 1 100 0.0 1.0

(The accuracy of a is 0.0 because its prediction error exceeds some threshold level called the accuracy
criterion.) We can describe each classifier as one of the following;:

e Overgeneral An overgeneral classifier matches too many inputs, as in the case of classifier a above.
What makes the classifier overgeneral is that some of the condition/action pairs it refers to have
different payoff levels (as shown in 4.1). Classifier a is overgeneral; its conceptualisation of the input
space is inaccurate, and it should ideally be replaced by more specific classifiers whose conditions do
not cross payoff level boundaries.

If fitness is based on strength, overgeneral classifiers may survive as “guessers” which are sometimes
correct and sometimes not. The prediction of a, 100, is an average of the payoffs it receives. To a
system which bases fitness on strength (a prediction of payoff), a will look as valuable as ¢ or d for use
in rule discovery. However, to a system which bases fitness on accuracy of payoff prediction, it is clear
that a is not as valuable as the other classifiers.

e Maximally General A classifier which matches all and only those inputs from the same payoff level is
mazximally general. Tt cannot become any more general (add any more #s) without becoming inaccurate
(matching classifiers from more than one payoff level). Classifier b is maximally general as it matches
all and only those classifiers in one payoff level (i.e. the one for inputs: {00, 01}).

¢ Suboptimally General Classifiers ¢ and d are suboptimally general; each only matches inputs from
the same payoff level, but neither covers its payoff level completely. Thus they could each be made
more general without losing accuracy (notice that they are perfectly accurate, i.e. their accuracy is
1.0). Ideally they would both be replaced by a single more general classifier with condition 1#.

5.3 Limitations of the Descriptive Power of Single Classifier Conditions

There are two differences between the classifier conditions used in XCS work to date and those of traditional
CS. In XCS, each classifier has been limited to a single condition bitstring, and no negation prefix is allowed.
The following discussion refers to the single bitstring form of condition used with XCS.

Classifier conditions define regions within the input action space XxA. However, the ternary alphabet,
as used in XCS classifier conditions, is not able to describe arbitrary regions within this space. For example,
to match both 01 and 10, a classifier condition must be ##. However, this classifier will also match 00 and
11, which may belong to different payoff levels. I.e. no single condition can describe all three of the following
XzA = P mappings: i) 001 z 0 = 100, ii) 010 z 0 = 100 and iii) 000 = 0 = 0, even though the first two
belong to the same payoff level and thus could, in principle, be generalised over.

Another two locations that cannot both be matched by a single classifier are 001 2 0 => 100 and 001 z 1 =
100 as don’t cares are not allowed in the action part of the classifier.

This may be viewed as an inability to express certain logical relationships between bit positions. E.g., a
condition can specify that bits a AND b both be 0, but cannot specify that only bit a OR bit b be 0 (i.e.
an exclusive OR).

Due to these limitations, inexpressible (for a single condition/action bitstring) generalizations may exist
within the payoff landscape. This is the case with the multiplexer problems, and as a result XCS requires a
minimum of 16 classifiers to completely map the payoff landscape of a 2 payoff level 6 multiplexer problem.

The use of conjunctions of classifier conditions and a negation prefix allow classifiers in the traditional CS
to overcome the restrictions discussed above. If these two features were incorporated into XCS the optimal
population size for a 2 level 6 multiplexer would be 2 rather than 16 (although the two classifiers involved
would each be more complicated, which might tend to offset any advantage derived from there being less of
them). In this case there would simply be one maximally general classifier for each payoff level, regardless
of the number of payoff levels.
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5.4 Relationship to Q-Learning

Like classifier systems, Q-Learning (Watkins 1989; Watkins & Dyan 1992) is a form of much-studied re-
inforcement learning system. A Q-Learning system maintains a reward prediction P for each input action
X1z A combination. (In Q-Learning work, P is referred to as the quality of the input action pair and is written
Q(z,a). Quality values are stored in a Q-Learning table.) Thus for a 6 multiplexer problem, a Q-Learning
system needs to maintain Xz A, or 222! = 128 estimates of P (i.e. the system needs a table of size 128).
The inability of the basic Q-Learning system to generalise is a serious weakness as the number of estimates
it needs to maintain can easily become unmanageable.

Q-Learning and CS have traditionally been considered different approaches to reinforcement learning,
possibly because of their different origins. However, the similarities between the two have recently been
pointed out by a number of researchers (see Dorigo & Bersini 1994). It can be seen that the following
definition of reinforcement learning can be applied to classifier systems.

“Reinforcement Learning (RL) is a class of problems in which an autonomous agent acting
in a given environment improves its behaviour by progressively maximising a function calculated
just on the basis of a succession of scalar responses (rewards or punishments) received from the
environment. No complementary guidance is provided for helping the exploration/exploitation of
the problem space, and therefore the agent can rely only on a trial-and-error strategy.” (Dorigo
& Bersini 1994)

ZCS and XCS are forms of CS in which the traditional bucket-brigade has been replaced with a system
resembling Q-Learning, drawing the fields of Q-Learning and CS research closer together. Each field can
gain from insights provided by the other. As will be discussed, CS research can benefit from the Q-Learning
approach of constructing complete mappings of the environment. In addition, it has been shown that
in certain environments Q-Learning converges to an optimal policy (Watkins & Dayan 1992) and that a
restricted form of CS does as well (Dorigo & Bersini 1994). In return, Q-Learning can benefit from existing
CS work on the uses of internal state, structural change, and generalization (effected in CS by the use of
the don’t care symbol #). These are all areas of recent work in Q-Learning. A comparison of the ability
of XCS8, traditional CS, and Q-Learning to form complete and accurate maps of various multiplexer payoff
environments is made in Appendix D.

5.5 Overview of XCS

This overview is drawn from Wilson’s description of XCS in (Wilson 1995) and an attempt has been made
to retain his terminology and notation in order to reduce confusion. The parameter list in section 10 reflects
this. Some of Wilson’s newer (post-(Wilson 1996a)) developments in the XCS architecture are included in
this overview and hopefully some aspects of the system will be clarified.

5.5.1 The MAM Technique

The MAM technique (“moyenne adaptive modifiée”) was introduced in (Venturini 1994) as a means of
speeding up the estimation of various classifier parameters based on information obtained on successive
cycles. Using this technique, a parameter is updated using one method early on and a second method later.
The reasoning is that the first method can be used to quickly get a rough approximation of the true value
of the variable, while the second method can make more conservative adjustments and refine the estimate.

In all experiments reported in this work the MAM technique was implemented as follows. Each classifier
includes an ezxperience parameter which is a count of the number of times it has occurred in the action set
(and thus the number of times it has been updated). For the first few updates the parameter is simply an
average of the samples to date. However, after 1/ updates have occurred, the standard Widroff-Hoff delta
rule p; < p; + B(P — p;) is used to update the parameter (see 5.5.4 for examples).

5.5.2 Macroclassifiers

XCS makes use of macroclassifiers in its operation as a means of increasing the run-time speed of the system.
Statistics based on distribution of macroclassifier numerosity within the population also offer potentially
interesting information.
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Macroclassifiers are simply a type of classifier with a numerosity parameter. Instead of directly inserting
newly generated classifiers into the population, XCS checks to see if there is an existing classifier with the
same condition and action as the new one. If so, the new classifier is discarded and the existing classifier has
its numerosity field incremented by one. Similarly, when a classifier is selected for deletion it is actually only
deleted if it has a numerosity of one. Otherwise, its numerosity is decremented by one. The numerosity of
a classifier indicates how many microclassifiers (regular classifiers) it represents. As a result, XCS needs to
be implemented in such a way as to take a classifier’s numerosity into account and treat it as an equivalent
number of microclassifiers in all relevant cases. For example, in calculating the probability of selecting
classifiers for reproduction, the system must treat a classifier with a numerosity of 5 as 5 times more likely
to be selected than one of the equivalent microclassifiers.!?

The following table shows a population of microclassifiers:

Classifier Condition Action Predicted Payoff Prediction Error Accuracy

a ## 00 11 1 200.0 0.0 1.0
b ## 00 11 1 200.0 0.0 1.0
c ## 00 11 0 100.0 0.0 1.0
d 00 11 10 1 100.0 0.0 1.0
e 10 ## 01 0 501.1 0.0011 0.75
f 10 ## 01 0 500.8 0.0008 0.80
g 10 ## 01 0 500.3 0.0003 0.95

The next table shows the equivalent population implemented with macroclassifiers (note the additional
numerosity parameter):

Classifier Condition Action Predicted Payoff Prediction Error Accuracy Numerosity

m ## 00 11 1 200.0 0.0 1.0 2
n ##0011 0 100.0 0.0 1.0 1
o 00 11 10 1 100.0 0.0 1.0 1
p 10##01 0 500.3 0.0003 0.95 3

As a more fit population is evolved, the rule discovery component tends to produce more and more copies
of the same highly fit condition/action pairs, so the proportion of the population consisting of classifiers with
a numerosity greater than one tends to grow as the population evolves. As a result, there can be a significant
reduction in the length of the classifier list, resulting in a improvement of processing speed.

In keeping with (Wilson 1995), the term “macroclassifier” will be reserved for those situations in which
it makes explanation clearer. In an attempt to reduce confusion they will normally simply be referred to as
“classifiers”. However, it should be understood that all classifiers in XCS have a numerosity field and are
thus macroclassifiers.

Wilson reports informally (Wilson 1995) that there is no apparent difference between a system which uses
macroclassifiers and one which does not, other than the speed of operation. Appendix A reports the results
of a comparison of POP-XCS running 6 multiplexer trials with and without the use of macroclassifiers.

5.5.3 The Performance System

The performance system in XCS is similar to that of a traditional classifier system, except that it has no
message list and thus no internal memory. Strings are sent directly from the input interface to the module
which generates the set of matching classifiers, and the action selected by the system is sent directly to the
output interface.

Operation is as follows. A match set [M] is formed from those classifiers in the general population [P]
which match the system’s input. Next, a system prediction P(a;) is computed for each action a; in [M] using
a fitness-weighted average of the predictions of classifiers advocating a;. The system prediction for each
advocated action is placed in a prediction array in preparation for action selection. Some actions may not
be advocated by any classifier in the current [M] and will have a void prediction, meaning they cannot be

13Technical note: Because the fitness calculation in XCS already takes numerosity into account, the fitness of a classifier is
not multiplied by its numerosity in determining its probability of selection.
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Figure 1: This schematic illustration of XCS is reproduced from (Wilson 1996a) by kind permission of
Stewart Wilson.

selected. If no action is advocated (i.e. [M] is empty), then a random classifier is generated through covering
(see section 5.5.5).

The system next selects an action from the prediction array and forms an action set [A] of classifiers in
[M] advocating the selected action. Action selection may occur in any of a number of ways. The chosen
action is sent to the output interface and an environmental reward may be returned as a result.

Wilson reports (Wilson 1996¢) that he has begun to use a modified method of calculating the prediction
array which is not mentioned in either of the XCS papers (Wilson 1995, 1996a). In this new version, if a
classifier’s experience is less than a threshold (e.g. 20), its fitness is considered as 1/16" of its actual value
for the purpose of calculating the system prediction. This has the effect of reducing the influence of relatively
untested classifiers which may have unreasonably high fitness values. This technique has the advantage of
having no effect if all classifiers involved are inexperienced since they are all then subjected to the same
devaluation.

The basic execution cycle of the performance system is as follows (please refer to figure 1):

1. Obtain the single input string from the environment.
2. Form the match set [M] of classifiers whose condition matches the input string.

3. Select an action based on the advocacy of the classifiers in [M]. This may be accomplished by a variety
of methods.

4. Form the action set [A] of classifiers in [M] which advocated the action selected in 3 above.

5. Translate the selected action into the output of the system.

The more complete XxA = P mapping of XCS relative to traditional CS will allow the development of
more sophisticated action selection techniques than previously possible in CS. XCS systems can predict the
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consequences of alternative (non payoff maximising) actions which in principle will allow them to deal more
effectively with complex environments, e.g. those which require planning.

5.5.4 The Learning System (or Reinforcement Component)

In XCS the traditional bucket-brigade has been replaced with a Q-Learning-like system. The effect of the
use of this system, in combination with accuracy-based fitness, is to construct more complete mappings of
the problem space than traditional CS can.

Reinforcement in XCS works somewhat differently for single step and multi step problems. For single
step problems the classifiers in [A] are updated using

P « current cycle's reward

where P is the payoff returned by the environment. For multi step problems, the previous cycle’s action
set [A]_1 is updated using the sum the of the previous cycle’s reward and the discounted maximum of the
prediction array.*

P « previous cycle's reward + (v x max(P(a;)))

Wilson (Wilson 1996¢) has experimented with the following parameter update order: 1. prediction error
(with MAM) 2. prediction (with MAM) and 3. fitness (without MAM). (This is the order used in all work
reported here.) This is a conservative order as the fitness begins at a low value and rises slowly. This is
a result of updating the prediction error first (typically resulting in a large error on the first update as a
default value is used for the as-yet unupdated prediction) and of not using the faster MAM technique for
updating the fitness parameter. This order works well on the more difficult 20 multiplexer problem where
fitness needs to established over the course of many input matches due to the size of the bitstrings involved.
Other update orders may be more effective on other problems, but in any case the differences are not great.

Using the update order discussed in the previous paragraph, the reinforcement process for each classifier
in the set (i.e. [A] or [A]_4) is:

e Update Prediction Error
if experience < 1/4 then
€j < average(|P — p;|)
else

gj &5 + B(IP — pj| — &)

¢ Update Prediction
if experience < 1/ then
pj + average(P)
else
pj + pj + B(P —pj)

e Update Fitness This has three steps:

e Calculate Accuracy
if €j > ¢€o then
k; =exp[(lna)(e; —e,)/e0)] x 0.1
else
kj =1

141f 3 multi step problem is completed on the first cycle the update occurs as for a single step problem.
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e Calculate Relative Accuracy &} =k;/ ) K[a

e Calculate Fitness F; « F; + B(x}; — F})

The accuracy calculation considers classifiers with error up to €, to be accurate (that is, they have an
accuracy of 1.0). For error above ¢,, accuracy declines sharply. €, is the accuracy criterion which is used in
section 5.6 to define what is meant by “equally accurate” classifiers.

5.5.5 The Rule Discovery System
The Niche Genetic Algorithm

The genetic algorithm in XCS acts upon niches rather than panmictically. Originally the GA operated upon
[M] but was moved in (Wilson 1996a) to [A].

“...the rate of incidence of the GA is controlled with the aim of allocating classifier resources
approximately equally to the different match sets (such an allocation being consistent with the
purpose of forming a relatively complete mapping). This cannot in general be achieved if the GA
simply occurs with a certain probability in each match set. Depending on the environment, some
match sets (niches) may occur much more often than others. Instead, the GA is run in a match
set if the number of time-steps since the last GA in that match set exceeds a threshold. As a
result, the rate of reproduction per match set per unit time is approximately constant - except
in the most rarely occurring match sets.” (Wilson 1995)

The genetic algorithm operates as follows:

1. Select classifiers for reproduction. The probability of a classifier being selected for reproduction is
proportional to its fitness.

2. Apply genetic operators to the new classifiers. Copies of the parent classifiers are generated and
transformed using genetic operators. Crossover occurs with probability x per pair of chromosomes (i.e.
per pair of bitstrings) and mutation occurs with probability u per allele (i.e. per bit).

3. Select classifiers for deletion. If the population size M exceeds the limit N, classifiers are deleted
to return M to N. In the following quotation from (Wilson 1995), Wilson discusses two methods of
selecting classifiers for deletion with XCS.

1. “Every classifier keeps an estimate of the size of the match sets in which it occurs. The estimate
is updated every time the classifier takes part in an [M], using the MAM technique with rate 3.
A classifier’s deletion probability is set proportional to the match set size estimate, which tends
to make all match sets have about the same size, so that classifier resources are allocated more or
less equally to all niches (match sets).!®

2. A classifier’s deletion probability is as in (1), except if its fitness is less than a small fraction §
of the population mean fitness. Then the probability from (1) is multiplied by the mean fitness
divided by the classifier’s fitness. If for example ¢ is 0.1, the result is to delete such low-fitness
classifiers with a probability 10 times that of the others.” (Wilson 1995)

Covering

Another method of introducing classifiers into the population is covering. When a classifier is created through
covering, its condition is made to match the current system input and it is given a randomly chosen action.
Each allele in the condition is then mutated with probability Py into a #. The covering classifier is then
inserted into [P] and if necessary a classifier is deleted using the normal method.

Covering is used to supplement an existing [M] which has been found deficient for one of two reasons:

15 An estimate of the size of [A] instead of [M] is kept if the GA operates in [A].
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e [M] is empty. Covering ensures that some classifier always matches the input, and can be used in place
of an initial population.

o The total prediction of [M] is less than ¢ times the mean prediction of [P]. This condition will be
triggered in multi-step environments if the system becomes stuck in a loop as the discounting mecha-
nism will cause the predictions of the classifiers involved to fall steadily. Inserting a new classifier via
covering is usually sufficient to break the system out of the loop.

5.5.6 Classifier Parameter Initialisation

Each of the three means of introducing new classifiers into [P] has its own method of determining the initial
settings of the classifier parameters. The aim in setting initial values is to make the best guess possible as
to the true parameter value in order to improve system performance.

The Initial Population. If an initial population is used, the parameters are set to constant default values.

Covering. Classifiers created through covering are initialised as follows: initial prediction and error are set
to the population means and initial fitness is set to 0.1 times the mean fitness of [P].

Genetic Algorithm. If crossover occurred, prediction is the mean of the parent’s predictions. Otherwise,
prediction is the same as the parent’s prediction. Prediction error is always set to 0.25 times the mean
error of [P] and fitness is set to 0.1 times the mean fitness of [P].

5.5.7 Subsumption Deletion

Subsumption deletion was introduced in (Wilson 1996a) as a way of biasing the genetic search towards more
general (but still accurate) classifiers. Using subsumption deletion, when new classifiers are generated they
are compared to existing classifiers rather than directly inserting them into [P]. This comparison is done to
determine if the new classifier is subsumed by an existing one. New classifiers are compared to their parents
and members of [A] in checking for subsumption.

New classifiers are subsumed by an existing classifier if the existing classifier i) has experience exceeding
some subsumption threshold value (i.e. its parameters have been adjusted some minimum number of times),
ii) if it is accurate (i.e. has an accuracy of 1.0) and iii) if it logically subsumes the new one (the inputs it
matches are a superset of the inputs matched by the new classifier). If a new classifier is subsumed, it is
discarded and the subsuming classifier’s numerosity is incremented.

“...(subsumption deletion) may be viewed genetically as a kind of directed mutation. In effect,
for parents “known” to be accurate, the GA is constrained to generate and evaluate only offspring
that are more general than the parents.” (Wilson 1996b)

The use of subsumption deletion is effective in reducing the population size of the system (see 6.1.2 for
evaluation).

5.5.8 Explore vs. Exploit Behaviour

Learning systems can engage in two forms of activity: exploration and exploitation. The problem of deciding
how to allocate resources between these two activities is often called the “explore/exploit dilemma”.l® More
resources should typically be allocated to exploratory behaviour in the early stages of problem-solving in
order to avoid local minima. As the system learns about its environment, more resources can be shifted to
exploiting it (maximising payoff).

The problem of selecting between exploration (maximising learning potential) and exploitation (max-
imising performance) was solved in XCS as follows. In all experiments the nature of each cycle (explore or
exploit) was determined randomly at the outset with equal probability of either occurring. On explore cycles
the system’s actions were selected randomly from those advocated in the prediction array but the learning
and rule discovery components operated normally. On exploit cycles, action selection was deterministic (the
action with the highest advocacy was chosen), but learning and rule discovery were disabled. Results were
only recorded for the exploit cycles (as indicated on the graphs).

16(Wilson 1996b) discusses various means of addressing this dilemma.
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5.6 Wilson’s Generalization Hypothesis

It appears that the interaction of accuracy based fitness and a niche GA results in evolutionary pressure to
generate classifiers that are both accurate and maximally general (as general as possible while remaining
within some accuracy criterion). Wilson refers to this as the Generalization Hypothesis and explains the
logic behind it thusly:

“Consider two classifiers C1 and C2 having the same action, where C2’s condition is a gener-
alization of C1’s. That is, C2’s condition can be generated from C1’s by changing one or more of
C1’s specified (1 or 0) alleles to don’t cares (#). Suppose that C1 and C2 are equally accurate
in that their values of ¢ are the same. Whenever C1 and C2 occur in the same action set, their
fitness values will be updated by the same amounts. However, since C2 is a generalization of C1,
it will tend to occur in more match sets than C1. Since the GA occurs in match sets, C2 would
have more reproductive opportunities and thus its number of exemplars would tend to grow with
respect to C1’s (or, in macroclassifier terms, the ratio of C2’s numerosity to C1’s would increase).
Consequently, when C1 and C2 next meet in the same action set, a larger fraction of the constant
fitness update amount would be “steered” toward exemplars of C2, resulting through the GA in
yet more exemplars of C2 relative to C1. Eventually, it was hypothesised, C2 would displace C1
from the population.” (Wilson 1995)

The logical conclusion of this preference for the more general of two equally accurate classifiers is that
the most general yet accurate, or mazimally general, classifier for a payoff level will tend to be evolved and
tend to displace others from the payoff level. This is the basis of the Optimality Hypothesis proposed in
section 5.7.

5.7 Proposal of the Optimality Hypothesis

As an extension to Wilson’s Generalization Hypothesis, I propose the Optimality Hypothesis. Given that,
according to the Generalization Hypothesis, evolutionary pressure towards maximally general classifiers
exists in XCS, an XCS system should eventually evolve a maximally general classifier for any payoff level
which it is able to sample sufficiently. We will define the criterion of sampling sufficiency for a payoff level
as the following requirements:

1. That the samples obtained are representative enough of the payoff level for the learning and rule
discovery components to tend to locate the maximally general classifier for that payoff level.

2. That the samples are obtained sufficiently frequently to allow the system to evaluate the classifiers
matching them before the GA deletes them.

Precisely what range of sample series is sufficient to meet these requirements for a payoff level is deter-
mined by the architecture and parameters of the system. One area of classifier design that may prove fruitful
to explore is attempts to ensure this criterion is met by adjusting the GA search rate parameters for each
payoff level.

Another requirement for the Optimality Hypothesis to apply may be that the problem be Markov (see
4.2). Ideally the criterion of sampling sufficiency would be formally defined and used in a proof of the
Optimality Hypothesis. However, this is well beyond the scope of the current work.

Environments with Equiprobable Inputs

The first part of the criterion of sampling sufficiency essentially says that the actual sample inputs received
must be well-distributed over the space of possible inputs. Problems where input strings occur equiprobably,
as in the boolean multiplexer experiments, satisfy this in the long run.!?

17«In the long run” is a reference to Bernoulli’s Theorem. (Hayes 1988) offers this “more or less precise statement” of the
theorem:

“If the probability of occurrence of the event X is p(X), and if N trials are made, independently and under
exactly the same conditions, then the probability that the relative frequency of occurrence of X differs from p(X)
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If all input strings are equiprobable, all payoff levels should, in the long run, evolve maximally general
classifiers. Furthermore, as a maximally general classifier will tend to occur in more match sets than any of
the classifiers it subsumes and will thus have more reproductive opportunities, the ratio of its numerosity to
any classifier it subsumes will increase.

In short, when an XCS system is run on a problem where all inputs occur equiprobably, the system will,
in the long run, evolve a population containing a maximally general classifier for each payoff level, and that
classifier will have a greater numerosity than any other in the payoff level.

Optimal Populations

We will refer to the set of maximally general classifiers for each payoff level in the payoff environment as [O].
On its own, [O] is the optimum population for a problem; it is the smallest possible population of classifiers
to form an accurate covering of the input space.'® Once the system has evolved a population which includes
[O], the constant injection of new classifiers by the GA becomes problematic, i.e. once [P] contains [O], new
classifiers are superfluous and render [P] non-optimal.

The Optimality Hypothesis states that:

For each payoff level satisfying the criterion of sampling sufficiency, the GA will, in the long
run, evolve a maximally general classifier which will have greater numerosity than any other
classifier in the payoff level. When all payoff levels satisfy the criterion of sampling sufficiency,
a complete set of maximally general classifiers, [O], will, in the long run, evolve within the
population [P]. Further, elements of [O] will be distinguishable from the rest of [P] on the basis
of their numerosity, so that, once [O] is complete, [P] may be reduced to [O] by removing all
classifiers but those with the highest numerosity in their payoff level.

5.7.1 Obtaining Optimal Populations in Practice

Given that evolutionary pressure towards maximally general classifiers exists, the following problems remain
in obtaining an optimal population:

e The point at which evolution of the complete set of maximally general classifiers [O] within [P] has
occurred needs to be identified. One of the conclusions of this work is that in the problem-independent
case it may only be possible to estimate this event (see section 6.4.1).

o Superfluous classifiers (elements of [P] not in [O]) need to be eliminated from the population. This can
be achieved by the combined use of two techniques introduced by this work:

— Dynamic Condensation (section 6.5), a technique for eliminating low-fitness classifiers from the
population.

— Auto-termination (section 6.6), a technique for identifying the point past which further conden-
sation is counter-productive.

5.7.2 More Difficult Types of Problem

Problems in which all inputs occur equiprobably form a small subset of reinforcement learning problems
which does not include many typical animat problems. Certainly real creatures encounter some situations
far more commonly than others (e.g. eating breakfast vs. winning the lottery), and they may never encounter
some possible situations. Nonetheless, we cannot expect a system to construct mappings of regions of the
payoff environment it never encounters (not when it learns solely on the basis of a scalar reward for actions

by any amount, however small, approaches zero as the number of trials grows indefinitely large.” (Hayes 1988)

For practical purposes it may be a matter of establishing confidence limits for the evolution of a maximally general classifier
by a certain number of cycles.

183aying that [O] is accurate means each classifier in [O] meets the accuracy criterion €,. E.g. a single classifier, ######,
could be evolved as a complete solution to the 6 multiplexer problem but would obviously be very inaccurate (it would answer
incorrectly half the time). To be the smallest possible population to cover the input space means that the classifier conditions
will be non-overlapping; all possible inputs will be matched by one and only one classifier.
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which are in response to input it cannot select). In other words the information available to a reinforcement
learning system limits what it can learn.?

However, we can say something about environments in which inputs do not occur equiprobably. In
environments where the input tends to satisfy the criterion of sampling sufficiency, XCS will tend to evolve
a full set of maximally general classifiers. Similarly, XCS will, in the long run, evolve maximally general
classifiers for those payoff levels in the environment which satisfy the criterion of sampling sufficiency, even
if other payoff levels do not.

In multi step problems where the system is able to influence the input it will receive in the future, it
might not be unreasonable for the system to actively pursue exploration of payoff level it feels could benefit
from further exploration. For example, an animat might realise that it had infrequently (or never) eaten
a certain type of plant, and that as a plant of this type was nearby and as the animat was in good health
it might profit by sampling the plant to see if it was edible or poisonous. This particular scenario requires
some sophistication on the part of the system, but should nonetheless illustrate the principle that directed
exploration of payoff environments may be beneficial. Adding “local” (i.e. payoff level specific) mechanisms
would allow active direction of exploration. This would help the system to allocate resources to exploration
efficiently by targeting those regions of the payoff environment insufficiently explored.

5.8 Evaluating XCS
5.8.1 Boolean Multiplexer Problems

Wilson (Wilson 1995, 1996a) used boolean multiplexer problems to evaluate the ability of XCS to learn
single step problems, using the basic reinforcement learning scenario described in section 4.2.

Due to the representational capacity of the ternary alphabet as used in XCS classifier conditions (see
section 5.3), there are 8 maximally general classifiers conditions for the 2 payoff level 6 multiplexer. Each
classifier advocates 1 of 2 actions so, since XCS attempts to construct a complete Xz A = P mapping, the 2
level 6 multiplexer has 16 maximally general classifiers. Thus the optimal population size (the smallest set
of classifiers which completely covers the input space without any overlaps) is 16 classifiers.

Many payoff landscapes can be used with the 6 multiplexer, the simplest of which has 2 levels (one payoff
level r; for correct answers and a different level 7, for incorrect answers). The most complex payoff landscape
is one in which there is a different payoff level P for each condition action Xz A mapping. In this case no
generalizations are possible as each permutation has its own payoff level.

It should be clear that the complexity of the payoff landscape affects the size of [O], and that increasing
the complexity of the payoff landscape is another means of varying the difficulty of the multiplexer problem
series. An interesting area of investigation would be the comparative difficulty of various payoff landscapes
for the multiplexer problems, for both XCS and traditional strength based classifier systems. First, XCS
systems should be much better able to learn payoff landscapes with more than 1 niche (see section 5.1)
than traditional CS, setting a standard for other systems to meet. Second, the increasing complexity of the
increasingly layered landscapes provides another series of benchmark problems for reinforcement learning
systems. These benchmarks should complement the multiplexer series as their difficulty increases more
rapidly in terms of completing [O] than in achieving correct performance (initial investigation supports
this). Because the size of [O] should influence system error more than it does performance, this series may
prove to be a more suitable means of evaluating system error. Although the difficulty of minimising system
error increases in the multiplexer series, it is currently only practical to work with the first few multiplexers
which limits the number of difficulty levels available for testing. An advantage of this new series of tests is
that the run time resources required increase much more slowly than in the multiplexer series. In addition
there is the issue of confounding effects between the increased performance difficulty and increased system
error difficulty in the multiplexer series. Such confounding effects would be smaller in the niche increase
series as performance difficulty does not rise as quickly. Densely layered payoff landscapes are discussed in
more detail in Appendix D.

19The system could form hypotheses based on exploiting apparent patterns in the environment, although this would not work
in patternless environments. The whole area of higher-level cognitive functions contributing top-down information is outside
the scope of this discussion. However, both approaches are in practice open to exploitation.
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5.8.2 Measures of Performance

Wilson collected three statistics when running XCS on the multiplexer problems, updating their values on
each exploit cycle (see section 5.5.8). These three statistics are presented in graphs using the number of
cycles as the x axis (see figure 3 in (Wilson 1995) and figure 2 on page 24 for examples). Moving averages
are used in some cases where the statistic has a high variance as averaging tends to smooth out the curve
and make it more comprehensible.

¢ Performance For each trial, the CS’s response is either correct or incorrect. The performance statistic
used on graphs is a moving average of the last 50 trials. The curve is scaled so that it reaches 1.0 when
the last 50 trials have all been correct.

e System Error The sum of the predictions of the classifiers in [A] is referred to as the system prediction.
The difference between the reward actually received from the environment and the system prediction
is called the system error. A moving average of the system error for the last 50 trials is graphed.
Perfect system error is 0.0, and suggests that the system will be able to exactly predict the reward it
will receive.

¢ Population Size This is M, the population size in macroclassifiers. This statistic is not averaged as
it tends to change by small amounts. For display purposes, the value is divided by 1000.

Because the multiplexer learning experiments were partly random (i.e. in the random generation of input
strings and the operation of the GA), Wilson presented averages of these statistics over ten runs.

6 POP-XCS

POP-XCS is, to the best of my knowledge, the first replication of Wilson’s XCS system.2? It was written in
Pop-11 by the author over the period May - August 1996 at the University of Birmingham. POP-XCS was
implemented as the most up to date version of Wilson’s XCS possible at the time. It can be configured to
use the subsumption deletion and niche GA set switch from (Wilson 1996a) or to run as in (Wilson 1995).
In addition, thanks to correspondence with Stewart Wilson, it includes several modifications not mentioned
in either paper:

e The method of calculating system predictions was modified slightly to penalise classifiers with low
experience (see 5.5.3).

e The accuracy formula differs slightly from that published, although the effect does not appear significant
(see 5.5.4).

e The order in which parameters are updated has been revised and made more suitable for more difficult
problems (see 5.5.4).

These modifications were used in all experiments reported in this work unless otherwise noted. In (Wilson
1995) two deletion methods are mentioned in section 3.3. Only the first has been used with POP-XCS.

The level of description of the XCS system given in section 5 is comparable to that given in (Wilson
1995), and should be sufficient for implementation. A brief overview of the implementation of POP-XCS is
given in Appendix E, but more detailed description of the actual implementation would be too involved to
present here.

6.1 Replication of XCS Experiments
6.1.1 Wilson (1995)

Replication work began with the 6 and 11 multiplexer experiments from (Wilson 1995). Figure 2 shows
performance, system error and population size for the 6 multiplexer averaged over 10 runs of 10,000 cycles
each. In this case the POP-XCS system was configured to run as the version of XCS described in (Wilson

20There is some indication that others have been working on XCS systems, but I have been unable to confirm this.
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Figure 2: A 6 multiplexer experiment replicating that of (Wilson 1995). System settings are as in (Wilson
1995) figure 3, (i.e. as in section 14, except N = 400, the GA operated in the match set, subsumption
deletion was not used and the payoff landscape had 16 levels). Curves are the average of 10 runs.

1995), and used the same parameter settings reported by Wilson for this experiment. As reported in (Wilson
1995), performance reaches essentially 100% within approximately 2,000 explore trials. System error reached
zero at around the same point, indicating that an accurate payoff map had been constructed. Furthermore,
it does appear that XCS tends to evolve a maximally general classifier for each payoff level (this is not shown
on the graph), although other classifiers remain in the payoff level with it.

Figure 3 shows is an 11 multiplexer version of figure 2. This experiment again replicates Wilson’s findings,
with performance reaching 100% and system error reaching zero around 6,000 explore trials.

6.1.2 Evaluating the GA move and Subsumption Deletion (Wilson 1996a)

The next tests to be replicated were those evaluating the two changes to XCS introduced in (Wilson 1996a).
Figure 4 shows population size for runs of the 6 multiplexer with POP-XCS in four different configurations
produced by running the two GA conditions (in [M] or in [A]) with and without subsumption deletion. (Note
that Wilson did not report curves for GA in [M] with subsumption.) Results show that population size is
clearly smaller when subsumption deletion is used. The choice of GA niche appears to affect population size
only early on, i.e. during the population peak, although this relative lack of effect may be due to symmetries
in the multiplexer problem. (IL.e. less symmetric problem spaces may show more effect of the GA niche move
(see Wilson 1996a).)

Performance for the four configurations was roughly similar, but with a slight advantage for the GA
in [M] without subsumption compared to the GA in [A] without subsumption. Performance appeared not
to differ significantly according to GA niche used when subsumption was used (again possibly because of
symmetries in the multiplexer problem - see (Wilson 1996a)).

6.1.3 Benchmark Experiments (Wilson 1996a)

Figures 5 and 6 show replications of the final 6 and 11 multiplexer experiments in (Wilson 1996a) respectively.
System parameters were the same as in previous experiments, but the niche GA move and subsumption
deletion were incorporated. Population sizes were N = 400 and 800 respectively. Additionally, the payoff
landscape was simplified to the 2 level version commonly used in multiplexer problems, that is, the same
positive reward is given for all correct answers and zero reward is given for all incorrect answers. Results
again agreed with the original experiments, with 100% performance being reached at approximately 2,000
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Figure 3: An 11 multiplexer experiment replicating that of (Wilson 1995). Settings are as in figure 2 except
N = 800. Curves are the average of 10 runs.
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Figure 4: 6 multiplexer experiment showing population size for various system configurations. Reading
from top to bottom at 2,000 cycles the curves are: i) GA in [M] w/out subsumption, ii) GA in [A] w/out
subsumption, iii) GA in [M] w. subsumption, iv) GA in [A] w. subsumption. System settings are otherwise
as in figure 2. Curves are the average of 10 runs.
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Figure 5: A 6 multiplexer experiment replicating that of (Wilson 1996a). Settings are as in section 14 except
N = 400, payoff landscape has 2 levels, GA in [A] and subsumption deletion is on. Curves are the average
of 10 runs.

and 10,000 trials respectively.?!

6.2 Overview of Original Work

This section outlines the original work done with POP-XCS once replication work was finished. This overview
is intended to clarify the course of the work and to emphasise the important points in the extended discussion
which follows it.

The majority of the original experimental work was dedicated to exploring means of reliably evolving
optimal populations. This involved:

e Testing the Optimality Hypothesis. This involved monitoring the evolution of [O] using a problem-
dependent technique to see if a complete [O] really was generated (see section 6.4).

— Investigating problem-independent means of measuring evolution of [O] (see 6.4.1).

¢ Investigating condensation of the classifier population (see 6.5).
— Investigating dynamic condensation.
¢ Investigating auto-termination of learning using F (see 6.6).

— Investigating a better means of auto-termination by scanning for overlaps in the XxA = P
mapping.

In addition the following topics are addressed in the appendices:

e Evaluation of the effects of the use of macroclassifiers. See Appendix A.

e Discussion of suitability of traditional CS, XCS and Q-Learning for learning payoff envi-
ronments with more than one niche. See Appendix D.

21Lack of time prevented formal replication of the 20 multiplexer. Initial work with 37 multiplexers indicates they are very
much harder than the 20 multiplexer. System parameters, and perhaps the system architecture, will have to be carefully
adjusted before the 37 multiplexer can be learnt.
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Figure 6: An 11 multiplexer experiment replicating that of (Wilson 1996a). Settings are as in section 14
except N = 800, payoff landscape has 2 levels, GA in [A] and subsumption deletion is on. Curves are the
average of 10 runs.

6.3 Reviewing Measures of Performance
Performance and System Error as Measures of Xz A = P Mapping

In (Wilson 1995, 1996a), performance on the multiplexer problems was measured in terms of the number
of cycles required for 100% correct performance. Wilson reports that system error reaches 0 at approxi-
mately the same point as 100% performance. However, work with POP-XCS suggests that two important
qualifications need to be made to this statement. First, detailed analysis of system error suggests that it
never quite converges on zero (unless the classifier population is optimal or very close to optimal). In other
words, there is always some error due to additional classifiers in the population (those not in [O]), some of
which will at any point have been newly created by the GA and will not have had time to learn accurate
predictions.?2 Second, and perhaps more importantly, performance and system error do not reach asymp-
totic values concurrently for all problems. This is perhaps not surprising as it would seem easier to learn
the payoff landscape well enough to choose actions correctly than to predict payoff levels correctly. The first
only requires that the classifier with the correct answer for an input be assigned a higher prediction than the
classifier with the incorrect answer. However, achieving an accurate payoff map requires that the predictions
be on-target.

Figure 5 demonstrates a problem where the point at which system error becomes asymptotic differs from
that for performance. This would seem to indicate that system error and performance are different measures
of the system’s progress in mapping the environment.

Table 1 shows a near-optimal population during an advanced stage of condensation. It has a full [O], but
has an additional classifier (the first shown) which would eventually be eliminated by condensation (note its
low fitness and numerosity). This classifier alone accounts for the non-zero system error as the others all
have predictions exactly matching the actual rewards they receive. (Notice that performance would already
be perfect for this population as the one overgeneral classifier is unable to change action selection when using
the normal deterministic method.)

22Error due to the additional classifiers is very low, typically in the area of 0.01, and thus is not visible on figures using the
standard scale (i.e. those shown here and in (Wilson 1995, 1996a)).
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Condition Action Prediction Error Fitness Numerosity

0# 14 ## 1 657.8 0.501 0.0 1
01 #0 ## O 1000.0 0.0 1.0 19
01 #0 ## 1 00 00 1.0 27
11 ## #0 0 1000.0 0.0 1.0 22
00 1# ## O 00 00 1.0 29
10 ## 1# 1 1000.0 0.0 1.0 24
10 #4 0# 1 00 00 1.0 30
11 #4# #0 1 00 00 1.0 20
11 #4# #1 1 1000.0 0.0 1.0 24
11 ###1 0 00 00 1.0 28
00 0# ## O 1000.0 0.0 1.0 27
00 0# ## 1 00 00 1.0 26
10 ## 1# 0 00 00 1.0 25
01 #1 ## 1 1000.0 0.0 1.0 25
00 1# ## 1 1000.0 0.0 1.0 21
10 ## 04 0 1000.0 0.0 1.0 24
01 #1 ## 0 00 00 1.0 28

Table 1: A near-optimal population of classifiers from a 2 level 6 multiplexer experiment at an advanced
point in condensation. Only the first classifier shown is not a member of [O], and it alone accounts for the
non-zero system error.

New Measures of Performance: M’ and F

In order to test the optimality hypothesis and work with the new dynamic condensation technique of section
6.5, two additional statistics were added to those Wilson monitored:

e M’ The count of maximally general classifiers in [P], scaled so that the curve reaches 1.0 when all are
present.

e F The mean population fitness.

6.4 Testing the Optimality Hypothesis

The Optimality Hypothesis was tested by running a variety of experiments and monitoring the evolution of
maximally general classifiers. Figure 7 demonstrates that a complete [O] can be evolved within [P]: the M’
curve shows the proportion of [O] which has been evolved, and reached 1.0 by 8,000 cycles on each run. The
curves shown are averages of 10 runs and provide empirical support for the Optimality Hypothesis, although
they do not prove its correctness. Further support for the Optimality Hypothesis is given by experiments
shown in figures 8 and 9 in which 6 and 11 multiplexers invariably evolved complete [O]’s within [P] (non-[O]
members of [P] were then removed using dynamic condensation yielding optimal populations - see section
6.5). Informally, experience with all multiplexer problems tested suggested that if sufficient resources were
allowed (i.e. enough training cycles and enough classifiers), all would eventually evolve [O] within [P] as per
the hypothesis.

6.4.1 Predicting the Evolution of the Set of Maximally General Classifiers [O] within the
General Population [P]

It appears that progress towards evolving a complete [O] cannot be observed directly without a priori
problem-depended knowledge (i.e. the optimal solution to the problem needs to be known in advance -
this is how the M’ curve in figure 7 was generated). A number of system parameters were monitored in
an attempt to find one that would reflect the evolution of [O] and that did not require problem-specific
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Figure 7: A 6 multiplexer experiment showing the evolution of maximally general classifiers M’ in support of
the Optimality Hypothesis. Settings are as in figure 2, except GA is in [A] and subsumption deletion is on.
Curves are the average of 10 runs. The M’ curve reaches 1.0 by 8,000 explore cycles for each run indicating
that a complete [O] has been evolved within [P] as per the Optimality Hypothesis.

knowledge, but none was found. Reasonable heuristic estimates of the completion of [O] could be based on
.23

(see figure 7 for reference):

System Error begins at approximately the random level of 0.5 but drops very rapidly. A very low but
distinct plateau is reached when [O] is completed, but also sometimes when [O] lacks a few members
(this is demonstrated nicely in the case of figure 7).

Population Size may be a useful indicator of progress in the evolutionary search. If the system has been
implemented with macroclassifiers, the population size (in macroclassifier terms) will shrink as the
system discovers useful rules. However, it does not appear to be of any more use than system error in
predicting the evolution of [O].

Mean Population Fitness F is characterised by a fairly steep rise with a plateau which usually correlates
with the completion of [O], but as with system error does not always.

These statistics all suffer from an inability to distinguish [P] with complete [O] from similar ones with near-
complete [O] that evolve in the generations preceding the completion of [O]. A useful avenue of investigation
might be monitoring GA search progress and resource allocation on a payoff level by payoff level basis to
meet some statistical confidence limits for the evolution of a maximally general classifier.

As threshold levels for the plateaus seen in these statistics may vary from problem to problem, it would
be better to make use of a rate of change statistic rather than using the value directly. For example, (Wilson
1996b) suggests using the rate of system error change to control allocation of explore/exploit cycles.?*

The system performance curve is not considered as suitable as those listed above as it does not appear to
be sensitive to the evolution of [O] and apparently invariably reaches 1.0 before [O] is complete. Nonetheless,
it was found that in the specific multiplexer problems tested the simple heuristic of starting condensation
by waiting for performance to reach optimum, then delaying for a fixed period, was sufficient to consistently
evolve optimal populations. (In 6.5 the same technique is used, but with the system error statistic.)

23Graphs in which multiple runs have been averaged are generally not appropriate for demonstrating the predictive capacity
of the other curves in terms of M’ as averaging tends to obscure subtle changes. Thus the figures shown here may be somewhat
misleading in this respect.

24This form of statistic has the added advantage of being suitable for stochastic environments with fixed probabilities, as the
rate of change will be influenced only by the learning process (see Wilson 1996b).
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6.5 Dynamic Population Condensation

Once a population has evolved a complete set of maximally general classifiers it would be advantageous
to remove all other classifiers from the system, leaving it with an optimal population. Such a population
classifies its inputs using a minimal number of concepts and is therefore simpler, for both human and self-
monitoring analysis, and more efficient.

In support of the Optimality Hypothesis, early experiments indicated that when given enough cycles on
the 6 multiplexer experiment, XCS was able to reliably evolve populations which included all 16 maximally
general classifiers. However, the classifier population invariably contained additional unnecessary classifiers.

The technique of subsumption deletion reduces the number of unnecessary classifiers, but invariably
many still remain.?® (Wilson 1995) reports informally that it is possible to reduce the population size of
an already-trained system using a process called condensation. This consists of simply running the GA
with mutation and crossover turned off. As a result, no new bitstrings are generated, but weaker (less fit)
classifiers are gradually eliminated as a results of classifier selection/deletion dynamics in the GA. Informal
experiments showed that an optimal population could be achieved using condensation, but apparently only
if [O] had evolved within [P] before condensation started.

When condensation was initially experimented with, it was simply started once the learning process was
completed (i.e. at a point chosen by the experimenter). I began experimenting with a technique which I
will refer to as dynamic condensation in an attempt to explore more problem-independent means of evolving
optimal populations. With dynamic condensation, the system uses some form of self-monitoring to trigger
the condensation phase when a criterion is met.?8 During the condensation phase the explore/exploit nature
of each cycle continues to be selected randomly, so the performance of the system (on the exploit cycles)
continues to be monitored.

In the 6 multiplexer experiment shown in figure 8, condensation was triggered by the occurrence of
2,500 consecutive GA cycles during which system error was below 0.01. This experiment was successful in
that all 100 out of 100 runs generated optimal populations, but there are several flaws with this approach.
The number of condensation cycles allocated to the problem, the delay between error minimisation and
condensation, and the error criterion level were chosen by the experimenter and would be inappropriate for
other multiplexer problems, and most other problems generally. Further, although the system was able to
evolve optimal populations each time, it was likely spending far more cycles doing so than it really required
as the system error curve is not always a good indicator of when to start condensation (see 6.4.1).

Nonetheless, the results in figure 8 demonstrate that it is possible to reliably evolve optimal populations
for multiplexer problems, at least under the conditions used here.

The dynamic condensation experiment was then run using 100 trials of an 11 multiplexer with the same
condensation settings. In this case only 83% of the runs evolved optimal populations, although those that
failed were quite close. It was hypothesised that this was due to violation of the criterion of sampling
sufficiency, and that if a greater delay in terms of GA cycles was allowed that more populations would reach
optimum. To test this, the delay in starting condensation was increased from 2,500 to 7,500 consecutive GA
cycles and another 100 trials were run. In this case, 98% of populations evolved optimal populations. A
final increase in the delay to 10,000 cycles yielded 100% optimal populations as shown in figure 9.

Analysis of Experiments to Evolve Optimal Populations

A requirement of 2,500 consecutive GA cycles with a system error below 0.01 appears to be about right for
the 6 multiplexer as tested. If condensation occurred at a shorter delay the system occasionally did not have
enough time to evolve a complete set of maximally general classifiers. If no delay was used, this was the
most common result. If the system was left for less than 20,000 explore cycles in all, it occasionally did not
have enough time to condense all populations into the optimal population.

If condensation occurred as soon as system error dropped below 0.01, the system failed to find the optimal
population. Consideration of the evolution of [O] indicates that there is a lag between the point where system

25For the 16 level 6 multiplexer, in the long run the population size typically fluctuates around 50 when subsumption deletion
is used, and about 100 without it. See figure 4.

26 As implemented, if the monitored parameter subsequently falls out of the criterion range, condensation stops and normal
GA operation resumes. Thus the system should in principle be able to respond to changes in the environment or unfortunate
deletions from its population by resuming normal operation and creating new classifiers. However, in practice this does not
occur as condensation is timed to start after the full [O] evolves and appears to eliminate only non-[O] classifiers.
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Figure 8: A 6 multiplexer experiment showing condensation (c) commencing at approximately 7,000 cycles
and optimal populations (0) being achieved for all runs by approximately 17,500 cycles. M’ is the number
of maximally general classifiers, other curves are as described in preceding figures. Settings are as in section
14 except N = 400, payoff landscape has 16 levels, GA in [A] and subsumption deletion is on. Condensation
was triggered by 2,500 consecutive GA cycles of system error below 0.01. Curves are the average of 100 runs.
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was triggered by 10,000 consecutive GA cycles of system error below 0.01. Curves are the average of 100
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error drops below 0.01 and the point where [O] is complete. If condensation begins during this period, it
will prevent the system from generating the missing optimally general classifiers. Furthermore, condensation
will not typically result in enough increase in system error for the GA to restart and generate the missing
optimally general classifiers. It appears that the best course is to let the system evolve using a full population
for some period in order to complete [O] before attempting to condense the population.

The number of cycles required to evolve a full [O] appears to vary considerably from run to run. As a
results, although the constant values used in the experiments in figures 8 and 9 appear to work reliably for
these cases, the delays used are considerably more than required on most runs.

Ideally the system would monitor the number of maximally general classifier found and commence con-
densation once the full set existed, but this presupposes a knowledge of the optimal population on the part
of the system. A problem-independent solution must make use of the other parameters to estimate the
sufficiency of evolutionary development and commence condensation. Other statistics not yet evaluated,
such as mean fitness weighted generality, may be more reliable predictors of the completion of [O].

6.6 Auto-termination of Learning

By monitoring the action sets the system can determine when the population contains a single classifier
for each input category (payoff level). This is detectable because at this point the action set will only ever
contain a single classifier. This indicates the presence of an optimal population, and thus the point at
which further learning (as long as the environment does not change) is fruitless. Using such a technique,
the system can be left to run for as many cycles as necessary, rather than some preset limit. The system
ceases running trials when it has achieved an optimal population and can then report this. This could be
very useful for problems for which the solution is not known to the experimenter, for example, an XCS
system could perhaps learn the optimal categorisation of a feature space derived from a training set of
digitised handwritten character samples. Giving XCS the ability to handle stochastic environments would
significantly increase the usefulness of such systems for practical applications.

Monitoring F

One statistic which could be used to monitor the convergence of [P] on [0] is F, the mean population fitness.
F converges towards 1.0 as the number of macroclassifiers in [A] drops to 1. However, because the delta
rule used to update the fitness parameter minimises the difference between the current estimate and the
next sample, F; + F; + B(x}; — Fj), an F of 1.0 is never quite achieved. Rather than attempt to determine
when F is close enough, a different approach involving the analysis of the XzA = P mappings to detect
overlapping classifier conditions was adopted. It has the added advantage of scanning the entire population
at once, rather than relying on the environment to provide adequate samples for each payoff level during
dynamic condensation.

Scanning [P] for Overlapping Xz A = P Mappings

By comparing the conditions of each pair of classifiers which can be formed from [P], the system can detect
overlapping mappings. Two classifiers overlap if their conditions match the same input string and they have
the same action. An overlap indicates that there is some input for which an [A] of size > 1 will be formed
and thus that an optimal population cannot have been achieved. The lack of overlaps does not guarantee
that an optimal population has been achieved, except (as proposed under the Optimality Hypothesis) under
conditions which satisfy the criterion of sampling sufficiency. In other words, if insufficient trials have been
run and condensation has begun too soon, a non-overlapping yet non-optimal population may form. No
problem-independent means of detecting this state has been discovered. If this state was detectable, rule
discovery might be restarted in an attempt to rectify the problem (see section 6.8).

6.7 Detecting Incomplete Xz A = P Mappings

There are some environments where some input categories are rarely if ever generated. As an example, an
animat world might include a state lottery which rewarded the animat once on average for every 100,000
tickets it bought. At this rate, if the animat only bought about 100 tickets per simulation, it would rarely
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encounter the input string indicating it had won the lottery. Its map of the input space would therefore
be incomplete. However, this deficiency is detectable if the system enters a phase where it systematically
generates fantasy input strings to ensure that all input possibilities are covered by a classifier, or builds some
form of input region contiguity map. For abstract single step problems this may well be pointless, but it
might be useful for animats actively attempting to explore their environment (see section 5.7.2).

6.8 Restarting Rule Discovery

In a changing environment the system might find that its optimal population was suddenly no longer optimal.
In this case it could restart the GA search (e.g. in response to changes in some measure of performance),
evolve classifiers until it estimated [O] was again complete and then restart condensation.

When the GA needs to be restarted to find missing maximally general classifiers it may be possible to
restrict the search to those parts of the environment not already optimally covered (those whose input strings
produce action sets with size other than 1). This would greatly restrict the search area and should thus
speed up the process considerably.

An interesting question is whether having an optimal population may be an advantage to the system if
the environment changes and it must start generating new classifiers again. One scenario where this might
occur is in an animat problem where a new element is introduced after the system has been allowed to
adapt to the environment. For example, a new type of food or predator might be introduced, changing
the Xz A = P mapping - this sort of change confronts real creatures continuously. Even at a population
level environmental niches move continuously as species co-evolve. If an animat has an optimal classifier
population there may be some respects in which it finds it easier to discover new rules to deal with a changed
environment. It may also find it easier to monitor and analyse its own reasoning. However, this has yet to
be established.

The more complete mapping of XxA = P generated by XCS would surely give it an advantage over
traditional classifier systems in situations where the payoff level structure does not change, but relative
values do. For example, a particular type of food might suddenly become poisonous to the animat and
change from giving a reward of 1000 to a reward of -1000. In other words the P values in XxA = P would
suddenly change. A traditional CS would have to discard the classifiers dealing with the now-poisonous
food and discover new ones to maximise environmental payoff. In contrast, XCS would retain its more
complete conceptual mapping of the input space (i.e. its classifier population) and adjust the predictions of
the classifiers involved.

7 Conclusion

(Wilson 1995) introduced XCS and demonstrated its superiority in several respects to the traditional CS (see

section 5). The most important respect for the current work is that XCS tends to evolve classifiers which are

maximally general within the limits of an accuracy criterion, in contrast to traditional CS which lack adaptive

pressure towards accurate generalization. The present work continued Wilson’s by demonstrating the ability

of XCS (with the additional mechanisms of dynamic condensation and auto-termination) to reliably evolve

optimal populations for the 6 and 11 multiplexer problems, and by presenting analysis of these results.
Contributions of the present work include:

e Proposal of the XCS Optimality Hypothesis.
o Investigation of means of estimating the evolution of [O].

¢ Investigation of techniques to dynamically control condensation and terminate testing with the aim of
reliably evolving optimal solutions in as few cycles as possible.

e The suggestion that performance and system error are indicators of different degrees of learning in the
system (section 6.3).

e Replication of multiplexer results published in (Wilson 1995, 1996a).
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e The implementation of a configurable general-purpose XCS system in Pop-11 which will be made
available at the University of Birmingham.

e Investigation of the effect of the use of macroclassifiers. (See Appendix A)

o Investigation and analysis of payoff landscapes with more than one niche. (See Appendix D for more
on this.)

In section 6.4.1 it was proposed that the point at which a complete [O] had evolved within [P] could only
be estimated in the problem-independent case. This hypothesis is subject to refutation and, given the utility
of determining this point in evolving optimal populations, may be the subject of future research. Several
related means of estimating the evolution of [O] were suggested (6.4.1).

Building a Better Animat

Self monitoring is a form of feedback with many applications in adaptive systems. XCS uses self monitoring
of the accuracy of its concepts (i.e. its classifiers) as a means of evaluating their utility, which gives it
fundamental advantages over the traditional CS (see section 5). As a classifier system XCS improves on
existing designs and advances classifier systems technology. The broader theoretical implications of the
development of XCS are twofold:

e CS are now more suitable as animat control systems (e.g. they can now support more sophisticated
planning systems thanks to the more complete world model).

e It has been demonstrated that a reinforcement learning system can evaluate concepts on the basis of
their accuracy and that this is a useful way of building models of the world.

Accuracy information is useful in high level cognitive processes (e.g. planning) and yet (in XCS at least)
can be derived from local computations on scalar values. This suggests that it may be useful as form of
currency in an economy of mind (see Minsky 1987; Wright 1995, 1996).

Examples of uses of self-monitoring in classifier systems given in this work illustrate principles which
are hopefully broadly applicable, not only to machine learning systems but to natural ones as well. Neural
networks (both artificial and natural) may be thought of as classes of statistical engines and may well be
suited to calculating the more abstract sort of statistic discussed herein, such as the rate of change of system
error.

Much work remains to be done investigating the design space of adaptive self-monitoring mechanisms in
classifiers systems and adaptive systems more generally.
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Figure 10: Comparison of XCS with and without macroclassifiers on a 2 level 6 multiplexer problem. Curves
are the average of 30 runs. System error is slightly lower when macroclassifiers are used on 2 level problems,
but unchanged when used on more densely layered problems. Performance is very similar for the two cases.

9 Appendix A - Evaluation of Macroclassifiers

In order to evaluate the effect of the use of macroclassifiers on a typical problem, two series of tests were run
using the 6 multiplexer problem. In the first series of tests, macroclassifiers were used as normal, but in the
second they were disabled by omitting the test for matching classifiers upon insertion of the new classifier
into [P]. Thus in the second case all classifiers had a numerosity of 1, and classifiers with identical conditions
and actions were permitted to coexist. In neither case was subsumption deletion used, as this only makes
sense when macroclassifiers are available.

Figure 10 shows the results of these runs. System parameters were set as in section 14, except N = 400.
A 2 level payoff landscape was used. Although performance is highly similar, there is a difference in the
system error for the two cases: the system with macroclassifiers generally had a slightly lower system error.
This experiment was repeated using payoff landscapes with 16 and 32 levels and in neither case was there
any observed difference between the use of macroclassifiers and their lack.

When macroclassifiers are used, new duplicate classifiers are dropped and instead the numerosity of an
existing macroclassifier is increased. As a result, an existing better-evaluated classifier becomes stronger,
and the new one, which would have some form of initial value for prediction and prediction error, is not
introduced into the population. This may account for the observed difference in system error. In the more
heavily layered landscapes the actual reward may tend to be closer to the new-classifier-influenced system
prediction because the reward levels have less space between them. This could account for the lack of effect
outside the 2 level landscape. In any case reducing the level of system error is a beneficial if slight side-effect
of the use of macroclassifiers.

The use of macroclassifiers has important implications for subsumption deletion and condensation. Recall
that subsumption deletion involves incrementing the numerosity of a macroclassifier rather than inserting a
new duplicate microclassifier, so is not possible to implement without macroclassifiers.

With macroclassifiers, condensation can actually reduce the population to the optimal size. Without
macroclassifiers, the population would tend to fill up with duplicate microclassifiers which would have to be
eliminated using some other technique. Trials run with condensation but without macroclassifiers indicate
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that this does actually happen. In addition these trials suggest that condensation is not as effective at
eliminating superfluous classifiers (it seems to take longer) when macroclassifiers are absent. However, it is
difficult to compare systems in this respect due to the lack of subsumption deletion in the microclassifier-only
version.

In summary, experience with POP-XCS strongly supports the use of macroclassifiers; all comparisons
indicate that, if they have any effect, they improve the system. They appear to perform essentially as equiv-
alent microclassifier populations, allow the use of subsumption deletion and the elegant form of condensation
reported here, and increase run time speed.
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10 Appendix B - Notation

I
¢

Miscellaneous Notation
p A classifier’s prediction parameter.
€ A classifier’s prediction error parameter.
F A classifier’s fitness parameter.

P The payoff (reward) derived from the environment. The calculation differs for single and multi step
problems (see 5.5.4).

M The population size in macroclassifiers.
[M] The match set.

[A
[A

] The action set.

]-1 The action set from the previous cycle.

P] The general classifier population (the classifier list).
g

[O] The set of classifiers forming an optimal population (this is the set of classifiers which are maximally
general for their payoff level). [O] is sometimes referred to as a subset of some [P].

F Mean population fitness. This can in principle be used to estimate convergence on the optimal
population during condensation.

M' The count of maximally general classifiers in [P].

X2xA = P The mapping of inputs X to actions A to predictions P constructed by a reinforcement
learning system.

+ The update or reassignment operator.
System Parameters

Population size limit in microclassifiers (i.e. the sum of the numerosities of all classifiers on the classifier
list cannot exceed this value).

Learning rate used with the Delta rule.

Discount factor applied to reward from the previous time step in calculating P (payoff) for multi step
problems.

Do a GA in this [A] if the average number of time steps since the last GA is greater than 6.
Accuracy criterion. Classifiers with error ; > €, have sharply lower fitness.

Accuracy falloff rate. This controls the slope of the falloff in the accuracy calculation function.
Probability of crossover per invocation of the GA.

Probability of mutation per allele in an offspring classifier in the GA.

If the total prediction of [M] is less than ¢ times the mean prediction of [P], covering occurs.

Py Probability of a # at each allele position in the condition of a classifier created through covering or in

the initial population.

pr,e1, Fr  The prediction, prediction error and fitness assigned to each classifier in the initial population.?”

27No initial population was used in any of the experiments reported here or in (Wilson 1995, 1996a).

38



11 Appendix C - Potential Sources of Confusion

The reader should be aware of several particular potential sources of confusion in understanding the material
presented in this document:

e One measure of the system’s performance is the fraction of the last 50 inputs to which it has responded
correctly. This is simply referred to as the system’s performance, despite the fact that other measures,
such as system error, are also measures of the system’s performance.

e The reader should bear in mind that macroclassifiers are invariably used with XCS (except as noted
in the macroclassifier evaluation in Appendix A), but that system parameters are always treated
in terms of microclassifiers (i.e. the equivalent number of microclassifiers obtained by summing the
numerosities of the macroclassifiers in question). However, population size curves do reflect the number
of macroclassifiers. (The number of microclassifiers quickly reaches the allowed limit and remains there,
$0 it is not very interesting to graph.)

e Traditional classifier systems use a parameter called strength as a measure of the classifier’s value for
both action selection and rule discovery. In XCS, strength is replaced by prediction, which takes the
place of strength in action selection, and accuracy, which takes the place of strength in rule discovery.
Strength and prediction are both measures of predicted reward (payoff) to be received if the classifier
is used (although the calculation differs between traditional CS and XCS).
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12 Appendix D - Comparison of Ability to Form XzA = P Map-
pings

Traditional classifier system are able to form “implicitly complete” mappings of 2 level payoff environments:
the payoff maximising GA tends to locate classifiers describing the payoff level of “correct” answers (i.e.
those with the higher of the two payoff levels), and alternative actions for these classifier are considered
implicitly incorrect (and are not represented within the system). Due to the representational capacity of
the ternary alphabet used in classifier conditions (see 5.3), a minimum of 8 classifier conditions are required
to completely map the 2 level 6 multiplexer. (As noted earlier (in 5.3), a traditional CS can use multiple
conditions in a single classifier and could in principle represent the 6 multiplexer with a single classifier.
However, there is no evolutionary pressure towards this unlikely occurrence.)

In contrast, XCS explicitly maps each payoff level because classifier fitness is based on the accuracy of
the prediction and not the quantity predicted. Thus, XCS requires a minimum of 16 classifiers to completely
map the 2 level 6 multiplexer.

Q-Learning, as it does not use any means of generalization, needs 128 estimates of P, one for each
input/action pair.

In terms of the completeness of the world model, all three systems are thus essentially equivalent for
this problem (although they differ in terms of the size of their minimal representation). However, when one
increases the number of payoff levels involved in the problem, the traditional CS, while still representationally
able to map the payoff environment, does not in practice learn to do so. This is because the payoff maximising
GA will prefer classifiers which map payoff levels with higher reward at the expense of those with lower
reward. (In the extreme case this would lead to a mapping of only the highest payoff level.) Because all
unrepresented regions of XxA = P are implicitly grouped together as the “wrong answer”, the system
cannot be said to form an accurate and complete map of the environment. Further, “correct” classifiers
(i.e. those with higher payoff predictions than their counterparts in the niche) with low payoff predictions
will tend to be overlooked by the GA and not be maintained in the population. This leads to an inability
to select payoff maximising actions in low payoff niches as the relevant classifiers have not been maintained
(even if they are evolved).

However, XCS can deal with more heavily layered problems; it simply maps each payoff level as in the
2 level problems. A minimum of 32 classifiers are required for XCS to form a complete map of a 32 level 6
multiplexer.?® Q-Learning is also able to form a complete map of this problem, and, as the size of X2 A4 = P
has not changed, does not need any additional estimates of P. The advantage of generalization in XCS over
Q-Learning becomes apparent when one moves to the 11 multiplexer problem where Q-Learning requires a
table of 4,096 entries (regardless of the number of payoff levels) while XCS requires only 32 classifiers for
the 2 level case.??

The number of classifiers required by XCS to describe the payoff environment is thus dependent on the
number of levels it contains. The fewer levels, the more XCS is able to make generalizations about the
landscape and the fewer classifiers it needs to describe it. For the 6 multiplexer, the minimum number
of classifiers required to describe the environment ranges between 16 and 128 depending on the amount of
regularity present. A minimum of 16 classifiers is required due to limitations on the representational capacity
of the ternary alphabet used in classifier conditions. This is more a limitation of the representational scheme
currently used in XCS than of XCS itself; alternative forms of representation (e.g. lisp S-expressions) could
be used instead.

To summarise, traditional CS, XCS and Q-Learning are all able to form complete and accurate maps
XzA = P of payoff landscapes with only 1 niche (i.e. 2 levels). Traditional CS are not suitable for more
complex payoff landscapes®® but XCS and Q-Learning are. In terms of the number of concepts required to
map a payoff landscape, in the worst case XCS is equivalent to Q-Learning. However, XCS can take advantage
of many (but not all, because of the limitations of the ternary alphabet) potential generalizations in the

28We assume for the sake of simplicity in this discussion that the more heavily layered payoff environments are constructed
by simply subdividing the regions defined by each maximally general classifier into equal halves as many times as desired.
Otherwise, the limitations on the descriptive power of single conditions discussed in 5.3 may complicate matters.

291t should be noted that various means of introducing generalizations into Q-Learning based systems have been investigated
(see the survey of Kaelbling, Littman & Moore 1995).

30 Although modified versions, as mentioned in 5.1, may be.
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payoff landscape and reduce the number of concepts (classifiers) it employs. According to the Optimality
Hypothesis of section 5.7, XCS will take advantage of these generalizations.
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13 Appendix E - Implementation of POP-XCS

POP-XCS is conceptually implemented in three layers, each of which consists of multiple source code files.

Layer 1 - Startup Files

The only way to run POP-XCS is by compiling a startup file. Many startup files are currently used, and
more can be created as needed. These files define various macros, constants and variables which control
compilation and parameters of the rest of the system. (Conditional compilation is used extensively to
optimise run time performance.) To configure the system for a particular type of test, an existing startup
file should be modified or a new one created. There is a standard format for startup files which is exemplified
by start.pop.xcs.example.p (A complete set of configuration options needs to be included in the startup file
or the system will refuse to compile.)

Layer 2 - Problem Files

There are two forms of problem which can be used with POP-XCS: single-step and multi-step. Each requires
the inclusion (by the startup file) of a different problem file which defines code to run the problem environment
the classifier works in. (Note: at this point the multi-step configuration has not been completed. Results
have only been reported with the single step system.) Because only one type of single step problem (the
multiplexer problems) and one type of multi step problem (the “woods” environments (see (Wilson 1995))
have been implemented for POP-XCS, the problem layer is split across two files. (One for multiplexers and
one for woods problems. Ideally these files would be slightly generalised into generic single and multi step
files, and the truly problem-specific code put into a new sublayer.)

Layer 3 - POP-XCS Core

This layer implements XCS itself. The core is not problem-independent at runtime, but provides alternative
compilation and run-time configurations which are controlled by the other two layers (e.g. the system can
be compiled to run in either normal or debug mode depending on the settings in the startup file). The core
resembles a library of classifier system functions. Most functions are written so as to pass an XCS object,
or its components (e.g. lists), to each other and could in principle interleave the execution of multiple
XCS systems. (The point here is that the dependence on global variables has been minimised as most
of the information needed to run a particular system is encapsulated by an XCS object. However, this
encapsulation could be taken further. It was limited by experimentation with various additional mechanisms
which have not yet been encapsulated by the XCS object type.)

Running POP-XCS

POP-XCS writes statistics out to various files when it has completed the preset number of trials. These
datafiles are in ASCII format and also contain information about system settings for the experiment. They
are in gnuplot-readable format. (gnuplot is a widely available interactive plotting program.)
POP-XCS will be made available for use in the school of computer science at the University of Birming-
ham.
For an example of system execution, compile this startup file:
~tyk/project /start.pop.xcs.example.p
the results files (which show the same curves as figure 9) can be viewed with the following command:
gnuplot plot.example

This example startup file is in the standard format of all POP-XCS startup files. It runs a typical 6
multiplexer experiment and writes the results to various files (all beginning with the prefix ‘example’). If a
datafile already exists when the system tries to write it out, it appends as many ‘-’ to the end of the filename
as necessary to produce an unused name.

Additional information is also written to the standard output during the run, including system settings
and a milestone for every 100 cycles completed.
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14 Appendix F - Standard System Settings

Unless otherwise noted, the following system parameter settings were used in all experiments reported in
this work. These settings are largely the same as those in (Wilson 1995) Figure 3: 8 =0.2, v =0.71, § =
25, €, =0.01, a =0.1, x =08, p=0.04, ¢ = 0.5, Px = 0.33. In all experiments reported in this work,
the initial population size was 0 and initial classifiers were generated as needed by covering. (Wilson 1995)
discussed two deletion techniques, but only the first has been used with POP-XCS. The second employs a
parameter, d, which is not used in POP-XCS. Subsumption deletion was used unless otherwise noted.

Additional standard system parameters were as follows (please refer to system documentation for discus-
sion):

¢ PREDICTION COVERING LEVEL = 0.5
¢ ADVOCACY THRESHOLD = 20

e GA THRESHOLD = 25

¢ SUBSUMPTION THRESHOLD = 20

The conservative update order was used, and classifier initialisation was optimised for rapid learning.
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