
Abstract

It has long been recognised that increased co-operation
amongst the classifiers in a Michigan-style classifier
system may resolve some of the established difficulties
associated with the design. One approach to this was
proposed by Wilson and Goldberg - the “corporate”
classifier system. In this paper we implement the
“corporate” classifier system design, within Wilson’s
ZCS, in such a way that it complies with their
theoretical proposals. In the resultant system , a zeroth-
level corporate classifier system, all classifiers initially
stand alone but during the course of evolution, a
mutation-type operator is used to couple together
classifiers by means of structural links. Linked
classifiers are considered to represent a corporation,
and are treated as a unit by the discovery mechanism of
the system. This is achieved by the use of a macro-level
evolutionary operator called "corporate crossover". In
this design the production system remains oblivious to
corporations and operates as ZCS. A technique referred
to as concept analysis is introduced which is used to
clarify the effects of such rule associations, as
implemented here, within a Michigan-style classifier
system.

1 INTRODUCTION

We have previously presented a corporate classifier system
(Tomlinson and Bull, 1998, 1999) which links individual
rules in the population to form rule-chains or corporations
which represent temporal chains of inference and map as-
pects of multiple time-step tasks. Such rule structures have
been shown to overcome sensory ambiguities by the use of
contextual links formed between rules in consecutive
match sets. Both the discovery component and the per-
formance component were responsive to the presence of
corporations.

Within the performance component, corporations are able
to take “persistent” (Tomlinson and Bull, 1998) control
over a number of time-steps, i.e. once a corporate rule wins

the auction and while each successive rule in the chain
matches each successive stimulus, the currently active rule
in the corporation inherits control and automatically deter-
mines the system action on that time-step (after Smith,
1992).

This mechanism is contrary to the proposals of Wilson and
Goldberg (1989) which state that the performance compo-
nent should not be influenced by corporations. In this paper
we investigate the feasibility of Wilson and Goldberg’s
proposals regarding corporate classifier systems which
have as yet only been considered theoretically.

The concept of rule corporations is derived originally from
the biological phenomenon of symbiosis with the aim of
encouraging stronger co-operation between the rules com-
prising the system and thus to eliminate unwanted parasites
and improve efficiency.

ZCS, a Zeroth Level Classifier System, was presented by
Wilson (1994) as a simplified Michigan style classifier sys-
tem (Holland, Holyoak, Nisbett, & Thagard, 1986). The
aim of this model was to gain a clearer insight into the char-
acteristics of the basic components of the system. ZCS was
tested in two environments, Woods1 and Woods7. ZCS
and the Woods environments are described in section three,
and section four explains what modifications must be made
to ZCS to convert it into a zeroth-level corporate classifier
system (ZCCS). Results are presented which compare the
performance of ZCCS to that of ZCS in the Woods envi-
ronments.

HCS, a hierarchically structured classifier system, (Shu &
Schaeffer,1991) has many similarities with the concept of
a corporate classifier system. Individual classifiers within
the system are for some purposes grouped into family units.
Increased co-operation within the system is encouraged by
the imposed inter-dependencies. HCS was tested on a se-
ries of Boolean functions. Section five describes HCS and
goes on to compare performances of ZCS and ZCCS on
one of the Boolean functions used by Shu and Schaeffer.

The results of testing indicate that ZCCS is able to learn the
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Boolean function faster than ZCS. In section six rulebase
analysis is used to illustrate how ZCCS learns faster than
ZCS. Section seven demonstrates that the improvements
gained by using ZCCS can be obtained with ZCS once sys-
tem parameters are optimised. Results are presented to con-
firm this theory.

2 CORPORATIONS

The corporate classifier system (CCS) was first introduced
by Wilson and Goldberg (1989) as a theoretical approach
to alleviating the co-operator/competitor dilemma in the
Michigan-style classifier system, discussed in the same pa-
per. The Pittsburgh-style classifier system (Smith, 1980)
maintains a population not of rules, but of entire rule-bases.
These are evaluated as a unit and so the rules within the
rule-bases form natural co-dependencies under the genetic
algorithm (GA)(Holland, 1975) , e.g. (Grefenstette, 1987).
It was felt that a similar effect may be achievable in a Mich-
igan style classifier system if rules could link to form co-
operative clusters for the purpose of reproduction.

 These rule clusters or corporations can only be reproduced
or deleted as a unit, and are formed by a mutation type op-
erator. The performance and reinforcement components of
the system behave as they do in a standard system; it is the
discovery component that is effected by the presence of
corporations.

For reproduction, the fitness of a corporation is dependent
on the strengths of its members (possibly the average
strength). If average strength is used to determine the fit-
ness of a corporation then this may be sufficient to encour-
age corporate linkage as increased stability is generally
advantageous and any bucket brigade transaction within a
corporation would leave its overall fitness unchanged.

3. ZCS: AN OVERVIEW

3.1 DESCRIPTION OF  ZCS
ZCS, like most classifier systems, periodically receives a
binary encoded "message" from the environment via sen-
sory detectors. The system determines a response based on
this input and feeds a message to the system's effectors
which perform the indicated action. A suitable training en-
vironment will reward desired behaviour by providing
some scalar reinforcement. Internally the system cycles
through a sequence of performance, reinforcement and dis-
covery on each time-step of the training period. It is during
the performance phase of the cycle that input is received
and actions are executed.

The ZCS rule-base consists of a population of N condition/
action rules or classifiers. The rule condition is a string of
characters from the ternary alphabet {0,1,#}, where # acts
as a wildcard allowing generalisation. The action is repre-

sented by an integer value and both conditions and actions
are initialised randomly prior to test runs. Also associated
with each classifier is a strength scalar which acts as an in-
dication of the perceived utility of that rule within the sys-
tem. This strength of each rule is initialised to a
predetermined value termed S0.

On receipt of a message, the rule-base is scanned and any
rule whose condition matches the message at each non-#
position is tagged as a member of the current match set
[M]. An action is selected from those advocated by the
rules comprising [M]. In ZCS this is performed by a simple
roulette wheel selection policy. Once an action has been se-
lected, all rules in [M] that advocate this action are tagged
as members of the action set [A] and the system effectors
execute the action.

Reinforcement in ZCS consists of redistributing strength
between subsequent action sets during training. A fixed
fraction β of the strength of each member of [A] at each
time-step is placed in a common bucket. A record is kept of
the previous action set [A]-1 and if this is not empty then
the members of this action set each receive an equal share
of the contents of the current bucket, once this has been re-
duced by a pre-determined discount factor. If a reward is
received from the environment then a fixed fractionβ of
this value is distributed evenly amongst the members of
[A]. Finally a tax is imposed on the members of [M] that do
not belong to [A] on each time-step in order to encourage
exploitation of the stronger classifiers.

ZCS employs two discovery mechanisms, a panmictic GA
and a covering operator. On each time-step there is a prob-
ability p of GA invocation. When called, the GA uses rou-
lette wheel selection to determine two parent rules based on
strength. These rules are copied with mutation (with prob-
ability µ) and crossover (single point, with probability χ).
In this implementation of ZCS the GA produces only a sin-
gle offspring rule on each invocation, the rule replacement
rate p however remains consistent with Wilson’s original
experiments (i.e.p = 0.25). The parents donate a third of
their strengths to the offspring if crossover is employed, or
half if not. The new rule replaces an existing member of the
population which is chosen using roulette wheel selection
based on the reciprocals of rule strengths.

If on some time-step, [M] is empty or has a combined
strength of less than half of the population average, then a
covering operator is invoked. A new rule is created with a
condition which matches the environmental message and a
randomly selected action. The rule is then made less specif-
ic by the inclusion of #'s with a probability per allele gov-
erned by the current specificity of the population. The new
rule is given a strength equal to the population average and
inserted into the population overwriting a rule selected for
deletion as before.



Full details of ZCS can be found in (Wilson, 1994).

3.2 THE WOODS ENVIRONMENT
Woods 1 is a two dimensional rectilinear grid of dimen-
sions 5 x 5. 16 cells are blank, 8 contain rocks and one con-
tains food. The system is viewed as an animat (Wilson
1985) traversing this map in search of food. It is positioned
randomly in one of the blank cells and can move into any
one of the surrounding 8 cells on each time-step, unless
they are occupied by rocks. The environment is toroidal so
if the animat moves off one edge it appears on the opposite
edge of the map. If the animat moves into a "food cell" then
the system receives a reward from the environment in the
form of credit, and the animat is relocated as before.

On each time-step the animat receives a message from the
environment which describes the surrounding 8 cells. The
message is encoded as a 16-bit binary string with two bits
representing each of the 8 cells. A blank cell is represented
by 00, food (F) by 11 and rocks(O) by 10 (01 has no mean-
ing). The message is ordered with the cell directly above
the animat represented by the first bit-pair, and then pro-
ceeding clockwise around the animat.

The trial is repeated 10,000 times and a record is kept of a
moving average (over the previous 50 trials) of how many
steps it takes for the animat to move into a food cell on each
trial. If the animat moved randomly then its performance
would balance out to about 27 steps per trial. Optimum per-
formance in Woods 1 is 1.7 steps. Wilson's animat im-
proved from random performance to about 3 steps/trial
over 10,000 trials with 400 rules.

Woods 7 is a similar yet somewhat more demanding envi-
ronment than Woods 1. Like Woods 1, it is a toroidal grid
but of  size 58 x18 cells. 57 cells evenly scattered around
the map are occupied by food. Each of these cells has rocks
positioned randomly in two of the 8 surrounding cells. The
rest of the map is blank. Unlike Woods 1, this is a non-
Markovian environment. In fact, given the animat's sensory
abilities there is only so much that the system can learn in
Woods 7. Wilson (1994) claims that a system with arbitrary
memory could reach food in an average of 2.2 steps. A ZCS
type system equipped with a (reasonable) "perfect" rule set
(consisting of about 20 rules) can obtain food in 4 steps on
average. Random search in Woods 7 reaches food in 41
steps on average. Wilson's animat reaches food in about 5,
after about 4,000 trials in Woods 7.

4. CORPORATE CLASSIFIER SYSTEMS

4.1 HOW ARE CORPORATIONS IMPLEMENTED ?
Corporations are formed using rules already present in the

rule base and there can be any number of corporations in
the population at any time, up to a maximum of half the size
of the rule base. (This extreme instance can occur if each
rule pairs up with one other rule.)

If corporations are viewed as chains of rules, it is reasona-
ble to assume that a rule can at most be directly linked to
only two other rules. If this approach is taken then each rule
will require two link parameters ("link forward" and "link
back") that when active reference other rules within a cor-
poration. These links will be initialised as inactive but
when two rules are selected for joining, then one of each
rules links ("link forward" for one rule, "link back" for the
other) will be set to reference the other rule. This linkage is
used to encourage associations between rules through the
formation of inter-dependent rule chains.

 In addition to this each rule also contains a "corporate size"
parameter and a "corporate I.D." parameter included to fa-
cilitate subsequent processing. Initially size is set to 1 and
corporate I.D. is left inactive. Within corporations, all rules
will hold the same values for size and corporate I.D, and
these are set during the formation of the corporation, either
through "corporate joining" or through the action of cross-
over by the GA.

Here "coupling" occurs panmicticly with random probabil-
ity on each time-step, in the same manner as the GA. An in-
itial coupling probability of 0.1 (once every ten time-steps
on average) was decided on. The optimum rate is likely to
be dependent on such factors as population size, GA activ-
ity and the nature of the task to be learned.

Rules are selected for coupling randomly from the popula-
tion. If the forward link of the first rule selected, or the back
link of the second is already activated then that rule is al-
ready corporate and the corporation is scanned for the ap-
propriate end rule (i.e. the rule in that corporation with an
inactive "forward link" or "back link" respectively), and
this becomes the selected rule. Furthermore if the first rule
is corporate, say belonging to corporation X, then the sec-
ond rule is selected from the set: [P] -[X], where P repre-
sents the population.

Based on the proposals of Wilson & Goldberg (1989) cor-
porate activity influences the discovery mechanisms but
does not directly influence the activity of the production
system. For this reason it was decided to give each rule one
further parameter, fitness. For single rules this is the same
as the strength value, but for corporate rules the strength
and fitness values may be different. The strength parameter
is used as before by the production system, however GA
activity is now guided by rule fitnesses. Within a corpora-
tion all rules are given a fitness value equal to the average
strength of member rules. The rules' strengths however are
left unaltered.



For previous work on genetic linkage mechanisms see for
example Ikegami and Kaneko (1990),  Kargupta (1996).

4.2 DISCOVERY COMPONENT MODIFICATIONS
Rule replacement is based on the reciprocal of rule fitness-
es, not strengths. If a corporate rule is selected for deletion
then the corporation is first disbanded, then the rule is
tagged for deletion. These are the only modifications re-
quired by the covering operator, however the GA altera-
tions require further attention.

The crossover site is selected as usual and a single off-
spring rule is created from the two parent rules. This differs
from the original ZCS (which produces two children from
crossover) but the rate of genetic input (rule replacement
rate) is consistent with ZCS as the GA rate is set to 0.25
(once every four time-steps on average).The new rule in-
herits 1/3 of the strength of each parent if crossover is em-
ployed (or 1/2 of the parent's strength if it is not).

The offspring rule inherits "equivalent" links to the "link
back" of the first parent and the "link forward" of the sec-
ond parent. These links however will have to be set not to
refer to rules in the original corporations but to the equiva-
lent rules in the new corporation.

For example, corporation X consists of rules 1, 2 and 3;
corporation Y consists of rules 4, 5, 6 and 7 (figure 1); and
rules 2 and 5 are selected for reproduction. The new off-
spring from crossing rules 2 and 5 is termed rule 8, howev-
er rule 2 linked back to rule 1 so the new corporation (Z)
will also require a copy of rule 1 from corporation X, and
likewise copies of rules 6 and 7 from corporation Y. The
copy of rule 1 is called rule 1', and those of rules 6 and 7 are
called rules 6' and 7' respectively. Corporation Z produced
by this corporate crossover operation contains the follow-
ing rules: [r1', r8, r6', r7']. In this way the offspring rule,
rule 8 is linked back to the facsimile of rule 1 (rule 1') and
linked forward to the facsimile of rule 6 (rule 6').

Each additional rule that is reproduced by crossover do-
nates half of its strength to its offspring as above for repro-
duction without crossover. The final modification is to the
mutation operator. Mutation is now extended to all mem-
bers of the new corporation rather than just the new rule de-
rived from crossover (i.e. rule 8 in the example).

4.3 ZCS AS A ZEROTH LEVEL CORPORATE
CLASSIFIER SYSTEM

The basic ZCS model was modified to act as a ZCCS. Mod-
ifications were implemented as described in the last section
and all other system parameters were maintained as in Wil-
son's original experiments, that is:
Population size, Ps = 400

Initial rule strength, S0=  20.0
Learning rate,β = 0.2
Discount factor for BBA = 0.71
Proportion of rule's strength deducted as tax = 0.1
Average No. of new rules from  GA per time step,p = 0.25
Probability of crossover,χ = 0.5
Probability of mutation,µ = 0.002
Reward from environment, R = 1000

The ZCCS was tested in the same environments as Wil-
son's original experiments, Woods 1 and Woods 7. A
record was kept of system performance for each trial and
also the mean number of corporations active during each
trial. The ZCCS results are presented below for comparison
with the ZCS results.

4.4 RESULTS WITH ZCCS
Standard performance/trials plots comparing ZCS and
ZCCS in the Woods environments do not clearly illustrate
performance differences so plots of "on-line" performance
have been included instead. On-line performance is here
defined as:

whereStepst = Steps taken at timet and T = Current gener-
ation. The resultant plot is representative of the system's
learning rate.

In Woods1 ZCCS exhibits a slightly improved learning rate
compared to ZCS (Figure 2) but in the more demanding
Woods 7 environment ZCCS learns at a reduced rate (Fig-
ure 3). In Woods 1 the number of corporations rose to 40 in
100 trials and then climbed slowly to 80 by the end of the
run. In Woods 7 there were 50 corporations after 100 trials
but this value dropped to 40 after 500 trials and remained
at this level for the duration of the run.

These findings indicate that although corporations do not
appear to offer any benefit in Woods 7 they do provide
some benefit in Woods 1 (discussed later). ZCCS has also
been investigated using a previously presented Boolean
logic function.
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Figure 1: Corporate Crossover
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5. HCS AND BOOLEAN FUNCTIONS

5.1 HCS: A HIERARCHICALLY STRUCTURED
CLASSIFIER SYSTEM
In the closely related work of Shu and Schaeffer (1991) a
hierarchically structured classifier system (HCS) in which
classifiers are grouped into families by means of structural
ties was presented. The aim was to encourage co-adapta-
tion among classifiers. The production system works at the
classifier level but most genetic operations are performed
at the family level. Within the system, family size is con-
stant and tests were performed to determine the effect of
structuring 1, 2, 3 and 4 member families. The system was
proposed as a first step towards a hybrid Pitt/Michigan-
style system.

The system employs two forms of crossover. In the first,
two families are selected and each member of the first fam-
ily is crossed with the corresponding member of the second
in the conventional MCS manner. In the second, two fami-
lies are again selected but this time crossover swaps family
members over between the two. Mutation is not employed
in this model and the system exhibits a static structure with
family units being established when the rule-base is creat-
ed.

The bid in HCS is as follows:

where:

k = constant,uc = utility of classifier,uf = utility of family,
sp = specificity andl = message length.

5.2 ZCS, ZCCS AND HCS: A COMPARISON
The system was tested on Boolean functions, such as the 5-
bit function F2:
(x0, x1, x2, x3, x4)=(x0 & x1) OR (x2 & x3 & x4).
Performances of HCS with families of 1, 2, 3 and 4 classi-
fiers were compared using the following measure of on-
line performance:

where:
Ct = No. correct responses at generation t,It = No. incorrect
responses at generation t andT= Current generation.

Results showed that HCS on-line performance was im-
proved by the use of family sizes greater than one which
suggests that the presence of hierarchies leads to better sys-
tem organisation.

ZCS and ZCCS were tested on F2 and results are presented
below, in the same format as Shu and Schaeffer's results
(Figure 4).

On F2 the number of corporations climbed to 35 in the first
500 trials but dropped to 22 after 1000 trials. This figure
continued to drop and at the end of the run there were under
10 corporations present on average. This suggests that the
benefits of forming corporations are more apparent in the
early part of the run but once the task has been learnt their
usefulness declines.

Figure 4 indicates that ZCCS learns faster than ZCS how-
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Figure 2: ZCS v ZCCS in Woods 1
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Figure 4: ZCS v ZCCS on-line performance on F2



ever standard performance plots (not included) indicate
that in the long run performance on F2 is the same. Similar
results were found for the other Boolean functions of Shu
and Schaeffer.

5.3 DISCUSSION
When comparing these results with those of Shu and
Schaeffer ( Table 1) it is apparent that ZCS outperforms
HCS acting as a standard classifier system (i.e. when fam-
ily size is set to 1). There may be a number of explanations
for this. First, HCS does not employ a mutation operator
and this will compromise the discovery abilities of the sys-
tem. Also, HCS uses a different bid mechanism to ZCS.
When ZCS and ZCCS were tested using the HCS bid
mechanism there was a noticable degradation in perform-
ance (graph not included). One explanation for this is that
by incorporating family utilities into the bid, it is possible
that the relative range of bids ([strongest bid - weakest bid]/
average bid value) is reduced. This could result in a reduc-
tion in discrimination by the production system and this in
turn leads to increased uncertainty in decision making. Fur-
thermore specificity is included in the bid and the merits of
this approach are uncertain (e.g. Wilson, 1995). Finally, the
second of the two crossover mechanisms will have no ef-
fect on the population at all if family size is set to 1 and so,
in this case GA activity is down to a minimum and this will
reduce the system's rate of learning further.

When considering ZCCS performance compared to HCS
(Table 1) it can be seen that ZCCS reaches almost the same
level of performance as the 4-member family version of
HCS (its best configuration). HCS seems to learn faster
than ZCCS at the beginning of the run. This could be attrib-
uted to the fact that HCS is seeded with families at the out-
set whilst in the current version of ZCCS the initial
population consists solely of single rules and corporations
are introduced during the course of evolution.

When considering ZCCS performance compared to ZCS, it
is reasonable to assume that in the case of a classifier sys-
tem, an increased learning rate may be indicative of an ac-
celerated ability to organise the existing rule-base, or
organise knowledge gained so far. This appears to be the
main benefit offered by the corporate classifier system. The

question is, how does it achieve this? The most significant
difference between ZCS and ZCCS is the nature of the
crossover operation. In ZCCS, when a corporate classifier
is selected for reproduction, it is possible that more than
one rule will be reproduced since fellow corporate mem-
bers may also be copied (section 4.2). Due to the nature of
selection, corporations formed of high utility classifiers
will be reproduced more frequently. This suggests that
more high utility single classifiers will on average be repro-
duced per time-step in ZCCS than in ZCS.

6. CONCEPT ANALYSIS

To test this theory an analysis was performed on the sys-
tem's rule-base. When considering a function of the nature
of F2 we can assume that it can be mapped by 20 good rule
templates or concepts (for F2 the minimal number of cov-
ering concepts is actually 8). During testing, the best 20 dif-
ferent rules in the rule-base at the end of each of ten trials
are stored and from these, a "good concept set" is created
containing the 20 best overall concepts for that problem as
depicted by the system (Table 2).

On ten subsequent trials on the same problem, the rule-base
is regularly monitored and the strength of each rule match-
ing a good concept is summed and this value is then divided
by the total population strength to give an indication of
"good concept set relative utility" (GCS-RU) within the
rule-base at that time. When this data is plotted over time it
illustrates the growth of GCS-RU over the course of evolu-
tion. The idea of concept analysis is derived from the use
of macro-classifiers in XCS (Wilson, 1995).

With rules comprised of a 5-bit condition from a ternary al-
phabet and a 1-bit action from a binary alphabet there are
486 possible concepts. The population size is set to 240 (as
Shu and Schaeffer, 1991) so if good concepts are present in
the initial population it is unlikely that they will be dupli-
cated as the rule-base can at best contain only half of all

Generation (x32)

60

120

ZCS ZCCS HCS [1] HCS [4]

212

227

222

234

194

196

238

239

240 235 238 - -

Table 1: Comparison of ZCS, ZCCS and HCS on F2.
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11### 1
10#10 0
##111 1
01#0# 0
#010# 0
0#### 0
100## 0
100#1 0
0###0 0
1010# 0

111#0 1
0#01# 0
#01#0 0
10#0# 0
110## 1
0#0#1 0
0#1#0 0
#00## 0
011#0 0
1110# 1

No. Cond. No. Cond. Act.Act.

Table 2: Good concept set for F2.



possible concepts.

The average initial relative utility of a concept can be cal-
culated as: 50% chance of 1/240 = 0.004, and 50% chance
of 0, (i.e. the concept is not present in the initial popula-
tion). For 20 concepts then, the initial relative utility of the
set is on average: (10 x 0.004) + (10 x 0) = 0.04.

The GCS-RU should initially equal this value and if the set
is reasonable then its strength should grow during evolu-
tion. The plot of GCS-RU for ZCS and ZCCS on F2 illus-
trates these predictions (Figure 5). Further it can be seen
that ZCCS establishes these good concepts far more effi-
ciently than ZCS. ZCS improves GCS-RU from 0.04 to
0.11 (a utility growth of 0.07 above average) and ZCCS
reaches a GCS-RU of 0.17 (a utility growth of 0.13).
Viewed in this way, ZCCS seems to have converged on the
ideal concept set almost twice as efficiently as ZCS, how-
ever this analysis technique only provides an estimate of
rate of convergence or organisation. It can be further shown
that the increased rate of convergence is achieved by cor-
porate crossover.

All corporate rules that are reproduced by the GA but
which have not actually been selected as parents are tagged
as "carried through". When concept analysis is performed,
a sub-total is maintained of the strengths of good concepts
which have been tagged as carried through. This is also
plotted on the GCS-RU graph.

On the same graph it can be seen that the plot of the sum-
mation of the ZCS GCS-RU data and the ZCCS "carried
through" GCS-RU data correlates quite closely with the
GCS-RU plot of ZCCS, suggesting quite strongly that the
accelerated convergence originates from the corporate re-
production.

7. OPTIMIZING SYSTEM PARAMETERS

If the conclusions drawn from the concept analysis are cor-
rect then it seems that in the basic ZCCS model, improve-
ments gained are due simply to increased GA activity. If
this is so, then it should be possible to achieve similar im-
provements by simply increasing the GA activity.

Further tests of ZCS and ZCCS were performed on F2 with
the GA rate increased from 0.25, first to 0.5 and then to 1.
Plots of on-line performance of ZCS and ZCCS with GA
rate = 1 are presented below (Figure 6), along with plots of
GCS-RU for ZCS and ZCCS with GA rate = 0.25, 0.5 and
1. (Figure 7).

As the GA rate is increased, so the difference between ZCS
and ZCCS results decreases. When the GA rate is set opti-
mally (i.e. a rate of 1 for the F2 task) the use of corporations
can degrade performance. This may explain the results of
ZCCS in Woods 7. The GA rate of ZCS is already opti-
mised/maximised for Woods 7 and increased GA activity
(in the form of corporate crossover) simply leads to prema-
ture convergence of the systems rule-base on a subset of the
necessary solution set. Woods 1 can be tackled more forth-
rightly and tolerate increased genetic search. This explains
why marginal improvement is observed in learning rate
when corporations are used with ZCS in Woods 1. (Al-
though the number of possible stimulus remains constant
for Woods  environments, the number of presented stimu-
lus is greatly reduced in Woods 1 compared to Woods 7.)

When ZCS (GA rate =1) performance is compared to HCS
best performance (family size = 4) on F2, it can be seen that
ZCS is able to match the best configuration of HCS, while
the single rule version of HCS simply exhibits poor per-
formance in comparison. It now seems most likely that the
presented improvements in HCS performance due to the
family structures are only possible due to the fact that the
basic system has not been thoroughly optimised for the task
of solving Boolean functions. More specifically if basic
GA activity is increased then system performance would
improve, but less, if any gain would be acquired from the
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inclusion of family structures.

8. Conclusions

These experiments have shown  that it is possible to imple-
ment a corporate classifier system as proposed by Wilson
and Goldberg (1989). The system used for these experi-
ments can be considered merely a template design kept as
minimal as possible, in keeping with the ZCS philosophy.

It is apparent that misleading conclusions may be reached
due to a failure to appreciate variations between systems
under test, in the rate that the genetic algorithm injects new
rules into the population. When these variations are nulli-
fied a more insightful comparison can be made between the
relative merits of different test models.

Results presented here indicate that no benefit is gained by
the presented linkage mechanisms if the system GA rate
has been appropriately optimized. There are many ways in
which the discussed rule-linkage mechanisms can be en-
hanced to achieve more directed gains (e.g. Smith's leader/
follower corporation (1992)). A design based on such an
approach has been implemented and shown to offer signif-
icant benefits in certain classes of problems (Tomlinson
and Bull, 1998, 1999).
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