
Extending the Representation of Classi�er Conditions
Part II: From Messy Coding to S-Expressions

Pier Luca Lanzi and Alessandro Perrucci

Politecnico di Milano Arti�cial Intelligence and Robotics Project
Dipartimento di Elettronica e Informazione

Politecnico di Milano
lanzi@elet.polimi.it

Abstract

In this paper we present the results of the
second part of our research which is aimed
at the study of alternative representations of
classi�er conditions. In particular we intro-
duce an extension of the XCS classi�er sys-
tem in which bitstring representation is re-
placed by s-expressions. We show that XCS
with LISP s-expressions, XCSL, can reach
optimal performance in di�erent types of ap-
plications with di�erent complexity. The re-
sults we present also suggest that great care
must be taken in choosing the representation
language; in particular we show that in cer-
tain cases the use of \or" clauses may lead
to an unstable performance. Overall, our ini-
tial results show that this is a promising ap-
proach for a future development of a general
purpose representation of classi�er conditions
and that there are still many issues which
need to be investigated.

1 INTRODUCTION

The learning capabilities of an adaptive agent rely, in
one way or another, on its ability to generalize over
the many situations it experiences. An agent can gen-
eralize properly only if it can represent in some way
the regularities of the environment it is learning in.
In learning classi�er systems generalization is achieved
by the evolutions of general condition-action rules (i.e.
the classi�ers) which represents the task the agent is
learning. Accordingly, the generalization capability
of a learning classi�er system implicitly depends on
the representation it employs for classi�er conditions.
These are usually represented by bitstrings of �xed-
length on the ternary alphabet f0,1,#g that test a
condition over a set of binary sensory inputs. When

using a learning classi�er system, multivariate sensory
inputs must be encoded into binary strings. Unfor-
tunately, when sensory inputs are coded as bitstrings
part of the structure of the environment may be lost.
As a consequence the agent may be unable to gen-
eralize properly since the regularities of the environ-
ment have been lost through binary encoding.1 To
exploit the regularities of the environment di�erent
representations of classi�er conditions are necessary.
Wilson [11] suggested that an interesting extension to
the classi�er conditions syntax would consist of us-
ing conjunctions of interval predicates over continuous
sensory inputs, or as more general s-expressions [10].

In this paper we present the results of the second part
of our research aimed at the study of alternative rep-
resentation of classi�er conditions. In the �rst part
[7] we showed how we can use a variable-length messy
coding to represent classi�er conditions instead of the
usual �xed-length bitstrings. In this second part, we
followWilson's idea and introduce an extension of Wil-
son's XCS classi�er system, we call it XCSL, in which
the usual bitstring conditions are replaced by general
s-expressions. We use XCS because it has an accurate
generalization mechanism, and a learning mechanism
which is based on a well-known reinforcement learn-
ing technique, i.e., Q-learning [8]. In fact, XCS has
been shown to evolve optimal solutions which are rep-
resented with near-minimal populations of classi�ers
that are accurate and maximally general [5, 11].

The remainder of this paper is organized as follows. In
Section 2 we show how XCS is extended by introduc-
ing s-expressions to represent classi�er conditions. In
Section 3 we discuss the design of experiments we em-
ploy in the rest of this paper. The new system, XCSL,
is applied to the problem of learning boolean functions

1The limitations of bitstring encoding in learning clas-
si�er systems have been discussed in the literature (see for
example [4]). Recently, Wilson [12] has analyzed such lim-
itations w.r.t. to the generalization issue.

in Section 4 while in Section 5 we apply XCSL to two
types of grid environments. The �rst (Section 5.1)
is the Woods1 we already used to test messy classi-
�er systems; the second (Section 5.2) is an extension
of Woods1 in which the agent can also perceive light.
The paper ends in Section 6 where we draw some con-
clusions and some directions for future works.

2 EXTENDING XCS WITH LISP

S-EXPRESSIONS

Similarly to what we have previously done with messy
classi�er systems [7] we now extend XCS by introduc-
ing s-expressions to represent classi�er conditions. We
do not describe XCS here but we refer the interested
reader to the �rst part of this paper ([7]) for a brief
overview or to [10] for a detailed description.

The new system, XCSL, works basically like XCS while
it di�ers from it (i) in covering, (ii) in how conditions
are matched, and (iii) in the genetic operators it em-
ploys. In the following we discuss each of these di�er-
ences in detail.

Representation. When considering s-expressions
to represent classi�er conditions we may think of using
very general s-expressions capable of representing any
functions over sensor values. However, since the prob-
lems we are considering here are quite simple we re-
strict classi�er conditions to the set of possible boolean
functions that can be generated by composition of log-
ical operators (and, or, and not) with elementary con-
ditions over sensory inputs. These atomic conditions
depends on the problem: for boolean functions (Sec-
tion 4) they are simple boolean variables; for woods
environments (Section 5) they are predicates that test
sensors values.

Matching. The matching with s-expressions is
straightforward. Given a certain con�guration of sen-
sory inputs, the condition is evaluated as a LISP s-
expression except for the or clause which is evaluated
as follows. Suppose XCSL has to match the condition
\(or S1 S2)", initially the system randomly selects
the order in which the two s-expressions are evaluated
(S1-S2 or S2-S1), then it evaluates the or clause as
usual. Elementary conditions which test single sen-
sors values are evaluated as speci�ed by the problem
de�nition. As in messy classi�er systems [7] a classi�er
condition can be underspeci�ed (i.e. not all the sensors
appear in the condition), or overspeci�ed (i.e. some
sensors are tested with di�erent conditions). How-
ever, when using s-expressions the policy for dealing
with underspeci�cation and overspeci�cation is implic-

itly de�ned by the evaluation mechanism of LISP s-
expressions and has not to be de�ned at design time
as it happens in messy classi�er systems.

Covering. Covering creates a classi�er with a ran-
dom condition that matches the current sensors and a
random action. The work with messy classi�er system
[7] has shown that to limit overgeneralization due to
underspeci�cation it is important to introduce most of
the sensors in newly created classi�ers. Accordingly,
in XCSL covering creates a random condition which
is a conjunction of three expressions each one match-
ing the current sensory inputs. One of these is built
as an and of elementary clauses of each current sensor
input; for instance, when learning boolean functions
this is the minterm which matches the current sen-
sory con�guration. The remaining two expressions are
still and expressions which match a random number
of current sensory inputs. This covering policy guar-
antees that the current sensor con�guration is exactly
matched by the �rst expression while introducing gen-
eralization by underspeci�cations in the remaining two
expressions and by the two or clauses.2

Genetic Algorithm. As in XCS and in XCSm [7],
in XCSL the genetic algorithm selects two classi�ers
from the action set with probability proportional to
their �tnesses, copies them, with probability � per-
forms crossover, and with probability � mutates them.
In XCSL crossover and mutation works as in tradi-
tional Genetic Programming [6]. Crossover selects two
cutting point in the trees that represent classi�er con-
ditions, then it exchange the two subtrees that are
individuated by the cutting points. Mutation �rst se-
lects a random mutation point in the classi�er condi-
tion; then it deletes the subtree rooted by the mutation
point; �nally it inserts a randomly generated subtree
at that point. Mutation on classi�er action works like
in XCS.

3 EXPERIMENTAL DESIGN

Each experiment consists of a number of problems that
the systemmust solve. The system can solve a problem
exploring possibly new solutions; otherwise, the system
can solve a problem exploiting the knowledge it has
acquired. In the former case we say that the system
solves the problem in exploration, in the latter we say
that the system solves the problem in exploitation. At
the beginning of a new problem the agent decides with

2The number of three conjunctive expressions to be used
in covering was found through a series of experiments in
the di�erent environments.

<cond> := "(" NOT <cond> ")" |

"(" AND <cond> <cond> ")" |

"(" OR <cond> <cond> ")" |

<var>

<var> := "X0" | "X1" | "X2"

Figure 1: The BNF grammar that generates all the
possible classi�er conditions for the boolean functions
with three variables. Non-terminal symbols are in
square brackets. Terminal symbols are in quotation
marks.

500

550

600

650

700

750

800

850

900

950

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
E

R
F

O
R

M
A

N
C

E

NUMBER OF PROBLEMS

Figure 2: Performance of XCSL for learning the
boolean function EQ(:). Curve is an average over ten
experiments.

probability 0.5 whether it will solve the problem in
exploration or in exploitation. When in exploration
XCSL selects actions randomly among the ones in the
current match set (i.e. the action selection procedure
is probabilistic). When in exploitation XCSL always
selects the action that predicts the highest payo� (i.e.
the action selection procedure is deterministic).

4 BOOLEAN FUNCTIONS

To study XCSL learning capabilities we start by apply-
ing XCSL to solve single steps problems in which the
reward is not delayed. In particular we apply XCSL to
the problem of learning boolean functions3 which has
been already tackled in Genetic Programming [6], in
genetic algorithms [1, 3], as well as in learning classi-
�er systems [5, 9, 11]. During each experiment input
strings representing assignments of the function vari-
ables are randomly presented to XCSL. For example,

3We remind the reader that a boolean function f with
n variables, x0. . .xn, is de�ned as a function f : f0; 1gn !
f0; 1g.

if the function has two variables the input string \((x0
1) (x1 0))" assigns 1 to variable x0 and 0 to variable
x1. XCSL returns an action which is the predicted
value of the boolean function. If XCSL' prediction is
correct the system receives a constant reward equal to
1000, otherwise it receives 0. In exploration problems
actions are selected randomly, the genetic algorithm
operates, and classi�er parameters are updated. In
exploitation problems the action with the highest pay-
o� is always selected, the genetic algorithm is turned
o�, and classi�er parameters are not updated.

The classi�er conditions that we use in these experi-
ments are s-expressions representing boolean expres-
sions generated by composing the logical and, or, and
not functions, and the set of the possible input vari-
ables (x0, x1,. . .). Formally, admissible classi�er con-
ditions (with three input variables) are described by
the BNF ([2]) depicted in Figure 1.

4.1 SIMPLE FUNCTIONS

Initially we apply XCSL to two simple boolean func-
tions in which only three variables are used. The �rst
function we use is EQ(x0; x1; x2) which returns 1 if
x0 = x2, 0 otherwise. We use XCSL with 50 classi-
�ers to learn this function. XCSL parameters are set
as follows: 4 �=0.2, �= 25, "0=.01, �=0.01, �=0.5.
The performance of XCSL, calculated as the reward re-
ceived in the last 50 exploitation problems, is reported
in Figure 2. The curve is an average over ten experi-
ments. As the results show XCSL can easily learn this
simple function optimally, in fact, after the �rst 1000
problems XCSL prediction is always correct.

The second boolean function we use to test XCSL is
the 3-multiplexer. Boolean multiplexer functions are
de�ned for binary strings of length l = k+2k bits: the
�rst k bits represent an address that indexes into the
remaining 2k bits. The boolean multiplexer function
returns as the result the indexed bit. For instance in
the 3-multiplexer (l = 3 and k = 1) the value of the in-
put string ((x0 1)(x1 0)(x2 1)) is 1: x0 in fact address
the second bit (x2) which is 1. We apply XCSL to
the 3-multiplexer with a population of 50 classi�ers;
XCSL parameters are set as in the previous experi-
ment. XCSL performance depicted in Figure 3 shows
that the system can easily reach the optimum also in
this small problem.

4Note that XCSL has the same parameter as XCS. Some
of these parameters have not been presented but are re-
ported here for sake of completeness. We refer the inter-
ested reader to Wilson's original paper [10] for a complete
discussion of XCS parameters.

500

550

600

650

700

750

800

850

900

950

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
E

R
F

O
R

M
A

N
C

E

NUMBER OF PROBLEMS

Figure 3: Performance of XCSL for learning the 3-
multiplexer. Curve is an average over ten experiments.

4.2 THE 6-MULTIPLEXER FUNCTION

We now extend the results for boolean functions by
applying XCSL to the 6-multiplexer problem a com-
mon testbed for learning classi�er systems [5, 9, 10].
In the 6-multiplexer there are two address bits (k=2),
thus the function has six variables. We use XCSL to
learn the 6-multiplexer function with a population of
800 classi�ers; parameters are set as in the previous ex-
periments. Figure 4 reports XCSL best performance
over ten experiments (solid line) and a typical XCSL
performance for this problem. The best XCSL per-
formance for the 6-multiplexer (solid line in Figure 4)
show that the system can reach the optimum for small
periods. However, the typical performance is quite
unstable as the plot shows (dashed line). In particu-
lar, we note that XCSL performance widely oscillates
near to the optimum but it never reaches it in a sta-
ble way. This behavior is similar to what we observed
with messy classi�er systems [7]. In that case the oscil-
lating behavior was due to the presence of overgeneral
genes that remained \hidden" in classi�er conditions
because they were not checked during the matching
phase. This phenomenon in XCSL may be produced
by the or function. In fact, when matching an or clause
XCSL selects randomly in which order the two condi-
tions shall be tested. Therefore, it may happen that
some part of a classi�er condition is not matched for a
certain period; like in messy classi�er systems [7] that
portion of condition is \hidden" until it is evaluated
because it is selected for matching. It is worth not-
ing that this phenomenon is likely to increase as the
complexity of the condition grows because of possibly
increasing number of nested or functions.

To test whether our intuition is correct, we apply two
versions of XCSL to the the 6-multiplexer problem.

500

550

600

650

700

750

800

850

900

950

1000

0 1000 2000 3000 4000 5000 6000 7000

P
E

R
F

O
R

M
A

N
C

E

NUMBER OF PROBLEMS

BEST PERFORMANCE
TYPICAL PERFORMANCE

Figure 4: Best performance of XCSL over ten experi-
ments for learning the 6-multiplexer boolean function
(solid line) and a typical performance of an XCSL run
for the same problem (dashed line).

The former does not insert any or in classi�er con-
ditions during covering but let mutation introduce or
clauses. The latter does not employ or functions in
classi�er conditions. Figure 5 compares three typical
performances of the three versions of XCSL we dis-
cussed so far. As can be noticed XCSL performance
improves as we move from the �rst version of XCSL,
in which or are used both in covering and mutation
(lower dashed line in Figure 5), to the basic XCSL
which does not employ or (solid line). This results
supports our intuitions and also what we noticed with
messy classi�er conditions.

4.3 OR CLAUSES IN CLASSIFIER

CONDITIONS

Before we proceed any further we wish to discuss some
general issues concerning the use of logical or in clas-
si�er conditions. A classi�er represents a rule like:

if C then action A predicts P

which states that if condition C is satis�ed by current
sensory inputs, the action A promises a payo� P. A
classi�er is accurate and maximally general if its con-
dition, C, matches many situations and if its payo�
prediction, P, is correct in each situation the classi�er
matches. In learning classi�er systems the disjunction
of two conditions, C1 and C2, can be represented by
two distinct classi�ers:

(a) if C1 then action A predicts P

(b) if C2 then action A predicts P

When we introduce the or operator in classi�ers con-
dition we try to represent these two classi�ers, (a) and

500

550

600

650

700

750

800

850

900

950

1000

0 1000 2000 3000 4000 5000 6000 7000

P
E

R
F

O
R

M
A

N
C

E

NUMBER OF PROBLEMS

ONLY AND
OR INTRODUCED BY MUTATION

WITH OR

Figure 5: Three performances of XCSL for the 6-
multiplexer problem: XCSL performance when only
and and not operators are used (solid line); XCSL
performance when or are not inserted during cover-
ing but only by mutation (dashed line); best XCSL
performance when or is used both in covering and mu-
tation.

(b), as one classi�er:

(c) if C1 or C2 then action A predicts P

This classi�er applies in the same situations as (a) and
(b), predicting in each situation the same payo� pre-
dicted by (a) and (b). Thus we can say that classi�er
(c) is equivalent to the twin classi�ers (a) and (b).
The or clause increases the system capabilities of rep-
resenting general conditions because it makes possible
the merging of two classi�ers, (a) and (b), into a sin-
gle classi�er (c) that is more general than the previous
ones. However, there is a subtle di�erence between the
form of generalization introduced by the or function in
classi�er (c) and the pair of classi�ers (a) and (b). Let
us illustrate this di�erence with an example.

Suppose that XCSL is learning a certain task and that
for a relatively long period of time its sensory inputs
match condition C1 but not condition C2;5 suppose
also that XCSL uses classi�er (c) for deciding how to
act. Note that, as long as only condition C1 is matched
XCSL performance does not change even if condition
C2 is corrupted by the genetic algorithm (we can sup-
pose that C2 becomes overgeneral). Classi�er (c) can
be corrupted (for example by crossover or mutation
over condition C2) but XCSL cannot be aware of what
is happening because not all the condition is used dur-
ing matching. We can say that condition C2 is \hid-
den" by the or clause.

5This example works also if both conditions match the
sensory inputs but only C1 is used for matching.

This does not happen when we use the twin classi-
�ers (a) and (b) in place of (c) because when match-
ing condition C1 (but not C2) the genetic algorithm
only applies to classi�er (a). We can summarize this
as follows:

When we use the or clause in classi�er condi-
tion we can change part of the condition with-
out having any evidence whether this change
improves or corrupt the classi�ers until we
can check all the elements of the condition.

5 MULTISTEP PROBLEMS

The problem of learning boolean function we used
in the previous experiments are single step problems
since each system action can be rewarded. We now
extend previous results applying XCSL to more chal-
lenging sequential problems in which reward is received
only after a sequence of actions is performed.

5.1 WOODS ENVIRONMENTS

In this second set of experiments we apply XCSL in
woods environments. These are grids in which each cell
can contain an obstacle (a \T" symbol), a goal (an \F"
symbol), otherwise it can be empty. An agent placed
in the environment must learn to reach goal positions.
The agent has eight sensors, one for each adjacent cell,
and can move in any of the adjacent cells. If the desti-
nation cell contains an obstacle the move does not take
place; if the destination cell is blank then the move
takes place; �nally, if the cell contains a goal the agent
moves receiving a constant reward, and the problem
ends. For each problem the agent is randomly placed
in an empty cell of the environment. Then the agent
moves under the control of XCSL until it reaches a goal
position receiving a constant reward, and the problem
ends. System performance is computed as the running
average of the number of steps to a goal position in
the last 50 testing problems. Every statistic is aver-
aged over ten experiments. We employ the usual ex-
ploration/exploitation strategy (see Section 3). When
solving a problem in exploration the agent selects ac-
tions randomly, the genetic algorithm operates, and
the classi�er parameters are updated. When solving a
problem in exploitation, the agent always selects the
action which predict the highest payo�, the genetic al-
gorithm is not operating, and classi�er parameters are
updated.

Classi�er conditions for this environment are s-
expressions representing the set all the possible
boolean functions generated composing elementary

<cond> := "(" NOT <cond> ")" |

"(" AND <cond> <cond> ")" |

"(" OR <cond> <cond> ")" |

<sensor>

<sensor> := "(" <tag> "," <value> ")"

<tag> := "N" | "W" | "S" | "E" |

"NW" | "SW" | "SE" | "NE"

<value> := "." | "F" | "T"

Figure 6: The BNF grammar that generates all the
possible classi�er conditions for woods environments.
Non-terminal symbols are in square brackets. Termi-
nal symbols are in quotation marks.

T T F
T T T
T T T

Figure 7: The Woods1 environment.

conditions that test sensory inputs by the usual logical
operators (and, or, and not). The notation for atomic
conditions is similar to the one we used for messy genes
in [7]. An elementary condition consists of a tag which
represents one sensor of the possible eight agent's sen-
sors (N, W, S, E, NW, SW, SE, and NE) and a value
that represents the sensor reading (\T", \F", or \.").
For instance the condition \(N,.)" tests whether in
the position at north is empty. Admissible classi�er
conditions for woods environments are represented by
the BNF in Figure 6.

We apply XCSL in Woods1 environment (Figure 7)
with a population of 800 classi�ers. XCSL parame-
ters are set as follows: �=0.2,
=0.71, �= 25, "0=.01,
�=0.8, �=0.01, �=0.5. The experimental results de-
picted in Figure 8 show that XCSL learns an optimal
policy for Woods1.

This result apparently contradicts what we observed
in the experiments with boolean functions. In fact,
in Woods1 the use of the or clause does not introduce
any instability in XCSL performance. However, we ob-
serve that in Woods1 sensory inputs change frequently
because it is very easy for the agent to change posi-
tion. Accordingly, the phenomenon we discussed pre-
viously is limited. Moreover, in the boolean function
representation it is very easy to produce overgeneral

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L

S
T

A
T

E

NUMBER OF PROBLEMS

OPTIMUM

Figure 8: Performance of XCSL in Woods1. Population
size is 800 classi�ers. The curve is an average over ten
runs. Horizontal line represents optimal performance.

condition because all the search space is considered.
On the contrary, in Woods1 only a limited number of
input con�gurations are presented to the agent.

5.2 ENVIRONMENTS WITH LIGHT

Up to now we have indeed used s-expressions to rep-
resent classi�er conditions but the problem we tack-
led and the sensors models we used are more or less
the same employed in previous experiments with XCS.
Now, we extend the representation of classi�er condi-
tions by adding di�erent types of sensors to the ones
we used in the previous experiment. For this purpose
we use a variation of the woods environments in which
the goal (represented by the \F" symbol) glows. The
agent has sixteen sensors, two for each adjacent cell:
one is the usual \proximity" sensor which indicates the
content of the cell; one is a light sensor which tells the
agent how intense is the the light in the correspond-
ing cell. Light intensity is represented by a positive
integers. Light is intense near the goal position and
decreases by one for each cell that separates the agent
from the goal. In our example, the goal is perceived as
a light intensity equal to 3; a light intensity of 1 means
that the agent is at two positions from the goal; ob-
stacles (\T" symbols) are perceived as a light intensity
of 0.

Elementary conditions consists of the proximity con-
ditions we employed in the previous experiment and
of light conditions which are used to test the presence
of light. For instance the condition \(GT S 1)" tests
whether the sensor at south senses a light with an
intensity greater than 1; the condition \(GT N NE)"
compares the light perceived by the sensor at north
with the light perceived by the sensor at north-east.

<cond> := "(" NOT <cond> ")" |

"(" AND <cond> <cond> ")" |

"(" OR <cond> <cond> ")" |

<proximity> |

<light>

<proximity>

:= "(" <tag> "," <type> ")"

<light> := "(" <cmp> <tag> <value> ")" |

"(" <cmp> <tag> <tag> ")"

<tag> := "N" | "E" | "S" | "W" |

"NE" | "SE" | "SW" | "NW"

<type> := "T" | "F" | "."

<cmp> := "LT" | "EQ" | "GT"

<value> := "0" | "1" | "2" | "3"

Figure 9: The BNF grammar that generates all the
possible classi�er conditions for woods environment
with light. Non-terminal symbols are in square brack-
ets. Terminal symbols are in quotation marks.

The set of the admissible classi�er conditions are de-
scribed by the BNF in Figure 9.

We apply XCSL to this extended version of the Woods1
environment with a population of 800 classi�ers and
the same parameter settings employed in the previous
experiments. Figure 10 shows XCSL performance in
Woods1 when light sensors are used (solid line). As can
be noticed the system converges rapidly to an optimal
performance. If we analyze each single experiment, we
note that sometimes the system rapidly converges to
the optimum (lower dashed line in Figure 10). Other
times XCSL converges very slowly to the optimal per-
formance (upper dashed line).

6 CONCLUSIONS

We have presented an extension of the XCS classi�er
system, called XCSL, in which s-expressions are used
to represent classi�er conditions in place of bitstrings.
In XCSL, classi�er conditions have been de�ned as any
boolean expression that can be generated by compos-
ing logical operators (and, or, and not) with elemen-
tary predicates over sensors values. XCSL was used
to learn booleans functions of increasing complexity.
The results of these experiments showed that in gen-
eral XCSL can reach optimal performance, but also

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L

S
T

A
T

E

NUMBER OF PROBLEMS

AVERAGE
SLOW CONVERGENCE
FAST CONVERGENCE

OPTIMUM

Figure 10: Performances of XCSL in Woods1 when the
goal glows: average XCSL performance over ten exper-
iments (solid line); XCSL performance when conver-
gence is fast (lower dashed line); XCSL performance
when convergence is slow. Population size is 800 classi-
�ers. Horizontal line represents optimal performance.

that the use of or clauses can cause instability in XCSL
performance. We analyze this phenomenon and devel-
oped an explanation of it. Brie
y, we suggest that
when using or clauses the system may not be aware
that evolution has corrupted part of the condition (for
example making it overgeneral) since that part is not
tested during the matching procedure because of an
or clause. Finally, we applied XCSL to two sequential
problems involving proximity sensors and light sensors.
The results we present show that in both cases XCSL
can evolve an optimal policy for the two problems.

The work we present in this paper is just at the be-
ginning. There are a number of topics that we have
not discussed here which we are currently studying
while writing. Maybe the most interesting concerns
the concepts of \general classi�er" that the use of s-
expressions introduces. In bitstring representation is
quite simple to state that a classi�er is more general
than another one (conditions can be compared bit by
bit) and the cost of this operation is linear in the num-
ber of condition bits. Unfortunately, when using s-
expressions testing whether a condition is more general
than another one is far more complex (at least NP).
As a consequence the subsumption operator (which
has proved e�ective in increasing XCS generalization
capability) cannot be employed anymore and di�erent
heuristics must be developed. In particular our initial
results suggest that the use of condensation techniques
[11, 5] are particularly e�ective in reducing the popu-
lation size.

Another problem we have noticed in these initial ex-

periments concerns the complexity of classi�er condi-
tions which tends to grow as learning proceeds. Also in
this case exact methods based on the simpli�cation of
boolean conditions are infeasible because they would
require too much computation time. Accordingly some
heuristic methods should be developed in order to limit
condition complexity and to increase XCSL tendency
to evolve short conditions preferentially.

Acknowledgments

This work was partially supported by the Politec-
nico di Milano Research Grant \Development of Au-
tonomous Agents Through Machine Learning," and by
the project \CERTAMEN" co-funded by the Italian
Ministry of University and Scienti�c Research.

Pier Luca wish to thank Andrea Bonarini and Pino
Contini who helped him in making this submission
possible after that �re devastated part of his depart-
ment. Many thanks go also Stewart W. Wilson for
his invaluable advices and to Tim Kovacs for his com-
ments and corrections. Alessandro wish to thank his
parents for their invaluable support.

References

[1] Lashon B. Booker. Triggered rule discovery in
classi�er systems. In Proceedings Third Interna-

tional Conference on Genetic Algorithms, pages
265{274. Morgan Kaufmann, 1989.

[2] Mehdi Jazayeri Carlo Ghezzi. Programming Lan-

guage Concepts 3rd ed. John Wiley and Sons,
1997.

[3] D. E. Goldberg. Genetic Algorithms in Search,

Optimization & Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[4] David E. Goldberg, Je�rey Horn, and Kalyanmoy
Deb. What makes a problem hard for a classi�er
system? Technical Report IlliGAL Report No
92007, University of Illinois, 1992.

[5] Tim Kovacs. XCS Classi�er System Reliably
Evolves Accurate, Complete, and Minimal Rep-
resentations for Boolean Functions. In Chawdhry
Roy and Pant, editors, Soft Computing in Engin-
erring Design and Manufacturing, pages 59{68.
Springer-Verlag London, 1997.

[6] John Koza. Genetic Programming. MIT Press,
1992.

[7] Pier Luca Lanzi. Extending the representation of
classi�er conditions, part I: From binary to messy

coding. In W Banzhaf et al., editor, GECCO-99:
Proc. of the Gen. and Evol. Comp. Conf. Morgan
Kaufmann, 1999.

[8] C.J.C.H. Watkins. Learning from delayed reward.
PhD Thesis, Cambridge University, Cambridge,
England, 1989.

[9] Stewart W. Wilson. Classi�er systems and the an-
imat problem. Machine Learning, 2(3):199{228,
November 1987.

[10] Stewart W. Wilson. Classi�er �tness based on
accuracy. Evolutionary Computation, 3(2):149{
175, 1995.

[11] Stewart W. Wilson. Generalization in the XCS
classi�er system. In J. Koza et al, editor, Pro-
ceedings of the Third Annual Genetic Program-

ming Conference, pages 665{674, Madison (WI),
1998. Morgan Kaufmann San Francisco (CA).

[12] Stewart W. Wilson. State of XCS classi�er system
research. Technical Report 99.1.1, 1999. Available
at http://prediction-dynamics.

