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Echo-reconstruction techniques for non-intrusive imaging have wide ap-
plication, from subsurface and underwater imaging to medical and industrial
diagnostics. The techniques are based on experiments in which a collection of
short acoustic or electromagnetic impulses, emitted at the surface, illuminate
a certain volume and are backscattered by inhomogeneities of the medium.
The inhomogeneities act as reflecting surfaces or interfaces which cause signal
echoing; the echoes are then recorded at the surface and processed through
a "computational lens” defined by a propagation model to yield an image of
the same inhomogeneities. The most sophisticated of these processing tech-
niques involve simple acoustic imaging in seismic exploration, for which the
huge data sets and stringent performance requirements make high perfor-
mance computing essential.

Migration, based on the scalar wave equation, is the standard imaging
technique for seismic applications [1]. In the migration process, the recorded
pressure waves are used as initial conditions for a wave field governed by the
scalar wave equation in an inhomogeneous medium. Any migration tech-
nique begins with an a priori estimate of the velocity field obtained from
well logs and an empirical analysis of seismic traces. By interpreting mi-
grated data, comparing the imaged interfaces with the discontinuities of the
estimated velocity model, insufficiencies of the velocity field can be detected
and the estimate improved [2], allowing the next migration step to image
more accurately. The iterative process (turnaround) of correcting to a ve-

locity model consistent with the migrated data can last several computing



weeks, and is particularly crucial for imaging complex geological structures,
including those which are interesting for hydrocarbon prospecting.
Subsurface depth imaging, being as it is the outcome of repeated steps of
3D seismic data migration, requires Gbytes of data which must be reduced,
transformed, visualized and interpreted to obtain meaningful information.
Severe performance requirements have led in the direction of high perfor-
mance computing hardware and techniques. In addition, an enormous effort
has historically gone into simplifying the migration model so as to reduce the
cost of the operation while retaining the essential features of the wave prop-
agation. The phase-shift-plus-interpolation (PSPI) algorithm can be an ef-
fective method for seismic migration using the "one-way” scalar wave equa-
tion; it is particularly well suited to data parallelism because of, among other

things, its decoupling of the problem in the frequency domain.

The Exploding Reflector Model

The PSPI method will be discussed in the context of coincident source-receiver
experiments. With the seismic data compression technique known as stack-
ing, signals corresponding to all source-receiver pairs having the common
midpoint (z,y,0) are collected into a single zero-offset trace which simulates
a coincident source-receiver experiment. In such an experiment, the down-
ward raypath and traveltime ¢/2 from the source to a point of reflection (re-

flector) is identical to the upward raypath and traveltime from the reflector to



the receiver (see Fig.1). As a consequence, an equivalent trace would result
from a source of appropriate intensity R initiated at the reflector and travers-
ing the medium at half the original velocity. This is the so called exploding
reflector model [3]. The field R(z,y, z) of signal intensity which reproduces
the ensemble of seismic traces (the seismic section) gives an acoustic image
of the volume: large values of R correspond to sharp contrasts in the ve-
locity field. Using the zero-offset seismic section P(z,y,0,¢) as a boundary
condition and solving the scalar wave equation
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in reverse time with zero initial conditions, the exploding reflector model
allows us to interpret the migrated section P(z,y,z,t = 0) as a map of the
local reflectivity, yielding an acoustic “picture” of the reflectors: R(z,y,z) =

P<:U7y7z7t = 0)'

The Phase Shift Formula

The original phase shift migration method was formulated by J. Gazdag [4] as
a fast and simple implementation of zero-offset data migration. Assume for
the moment that v, the halved velocity of the medium, is constant. A way of
solving Eq.(1) and thus arriving at our acoustic image R(z,y,z) = P(z,y,z,0)
is to use the depth z as the advancing variable along which to propagate the
seismic section P(z,y,0,t); this is known as depth extrapolation or continu-

ation.



Eq.(1) written in the wavenumber-frequency domain (., k,,w) is the second-

order ordinary differential equation

PP (ky, by, 2,w)

= = — k2P (kg by, 2,0) (2)

in which
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Eq.(2) has two characterisic solutions of the form
P(kx,ky,z+Az,w) = p(kx,ky,z,w)eiiszz , (4)

relating the field at level = with that at level = + Az by a phase shift. Since
agreement in sign between phase and frequency corresponds to a positive
displacement of a wave in reverse time, and since by convention the z-axis
points downward, for depth extrapolation we are interested only in the char-

acteristic solution
p(kx,ky,z—l—Az,w) = p(kx,ky,z,w)eiszz , (5)

which back-propagates in time. Remark that this is also a solution of

Ek‘r,k‘,z,w = ik, P(ky, , ky, 2, w) | 6
dZ Yy Yy

the paraxial or one-way wave equation, which provides a a hierarchy of mi-
gration methods [5] based on approximations of the one-way propagation

in the space-frequency domain (z,y,w).



If we use an inverse transform to map Eq.(5) to the space-frequency do-
main, we can then evaluate the field R and do the imaging of migrated data

at level z + Az by noting that
P(:c,y,z—l—Az,t:O)=Zp(;v,y,z+Az,w). (7)

Egs.(3), (5) and (7) form the basis for the phase shift migration algorithm.
They allow the exact inverse extrapolation of seismic data inside a homoge-
neous layer |z, z + Az] with constant velocity.

Since the power spectrum of the seismic source is band limited with a cut-
off frequency far below the temporal Nyquist, mapping data into the space-
frequency domain allows significant data compression. It is perhaps worth
mentioning that to avoid data aliasing and thus improve the accuracy of the
extrapolated wave, it is often preferable to substitute the ideal exponential
operator with a “designed” one, to provide a highest attenuation between
the passband region and the spatial Nyquist frequencies.

The phase shift formulation of migration leads to an elegant parallel im-
plementation. In a pre-processing phase, the seismic traces P(z,y,t) are
transformed to the space-frequency domain (z,y,w) by concurrent 1D-FFTs.
ﬁ(:c, y,w) is loaded from disk and distributed among processors by block of
frequencies. All blocks are then concurrently transformed to the (%, k,, w) do-
main by 2D-FFTs. In addition, during downward continuation, three highly

parallel steps are repeated for eack value of z: (1) for each complex array, a

parallel operator masks all spurious frequencies and shifts the phase of each



entry, (2) partial sums over w are concurrently performed, followed by the
concurrent execution of 2-D FFTs, one per processor, (3) the imaging of the
reflectors is done by summing over the transformed fields and then discharg-

ing onto disk the resulting migrated section R(z,y,z) = P(z,y,z + Az,t = 0).

PSPI: Phase Shift Plus Interpolation

Whereas seismic imaging in a stratified medium can be done with Eqgs.(3),
(5) and (7), the case with lateral velocity variations requires more attention.
In this context the Fourier representation (2) of the scalar wave equation is
meaningless and no straightforward representation of the solution as with
the phase shift formula is possible. To overcome this difficulty and yet keep
the computational complexity of the migration to a minimum, the wave prop-
agation model is modified in order to construct a pure spectral method for
downward continuation in an inhomogeneous medium.

The starting point is the phase shift formula (5), split into vertical and
horizontal components and then modified to handle wave propagation inside
the layer |z, z + Az] which has a laterally variable velocity field. The resulting

first term governs vertically-travelling waves through the layer:

A

Po(z,y,z,w) = ﬁ(m,y,z,w)ei%Az , o v(zy,z) =v(z,y) . (8)

The second term governs the horizontal correction for a reference velocity



v, one of vV < v® < ... < ")

PO (ke by, 2 + Az,w) = Po(ka, ky, z,w) exp (i(k@ . )Az) , (9)

with k", n =1,2,---,n., given by Eq.(3) with velocity v{".

The fields P(”)(x, y,z+ Az,w) serve as reference data from which the final
result is obtained by interpolation. With linear interpolation, the depth-
continued wave field is given by

. p{ntl)

P(:c,y,z—}—Az,w) = p(n)($7y72+AZ,w) z —vz(x,y)

vgn+l) _ Ugn)
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+ ]5(”"'1)(.7:, Y,z + Az, w) (10)

for all points (z,y,z) with v(? < v, (z,y) < "1 Finally, imaging of the
reflectors at z + Az is obtained by the usual condition, Eq.(7). This is the
essence of the PSPI method, as introduced by J. Gazdag and P. Sguazzero in
[6] and outlined in the flowchart of Fig.(2).

The PSPI algorithm defined by Eqgs.(8), (9) and (10) gives correct depth
continuation for vertically-travelling plane waves and maintains high accu-
racy for small dips characterized by \/m < |w|/v{™ . Although the intro-
duction of laterally-variable velocities and the use of interpolating reference
solutions do not have a well established mathematical basis, computer ex-
periments show that this approach is in fact very reliable. PSPI is a practical
alternative to other forms of migration — as long as the set of reference ve-

locities is well-chosen (see below). Its implementational advantage is that

each reference solution comes from a constant velocity extrapolation whose



implementation inherits the parallel structure of the phase shift algorithm

[7].

Optimal Reference Velocities

The velocities »{™ play a crucial role in PSP1 migration of seismic data, but
optimizing the choice of representative velocities has not been considered
before. Now our group has used statistical arguments to optimally choose
representative velocities for a given velocity field; the task is to highlight a
minimal set of velocity values that predominate statistically in the propa-
gation process. This can significantly diminish the computing cost of PSPI
migration.

Consider a layer |z, z + Az] and the associated velocity field v = v.(z,y),
discretized into N +1 equidistant values: V") = v,, < V{2 < ... < VIVt = oy,
with v,, and v,, representing, respectively, the smallest and the largest values

of the entire velocity field. Define as P(*) the probability that a given velocity

present in layer z is contained in the kth velocity interval, £k =1,..., N + 1:
P*) = prob {Vz(k) <wv< Vz(k“)} : S PP =1, (11)
k=1

The resulting distribution represents a form of information about the struc-
ture of the velocity field. At each layer we would like to characterize the
minimal number of velocities necessary to represent this information and

then determine which velocities are most representative. The statistical dis-



persion of the distribution is measured by
N
S.[Pl= =3 PWlog P 0<S,[P]<logN . (12)
k=1

This is nothing but the definition of the “statistical entropy” of the probability
density distribution P(*). When there is no dispersion, namely when all ve-
locities v.(z,y) for a given depth z are contained in a single velocity interval,
then S, [P] = 0; when the dispersion is maximal, namely all velocity intervals
have the same statistical weight 1/N, then S, [P] = log N.

For a given distribution over N intervals it is possible to condense the
velocity intervals into N, < N new ones which have uniform statistical weight
1/N. (maximal dispersion) and yet conserve S. [P]; this is the minimal number
of intervals necessary to represent the distribution. From the definition of
the statistical dispersion, the number N, of such intervals, rounded to the

nearest integer, must be
N. = |exp (S.[P]) + =] , 1<N,<N. (13)

Now, in order to preserve S, [P], the reference velocities v/, 5 = 1,..., N.+

1, which define the intervals of equal statistical weight must be such that

- 'U(zj+1)

%:/ P(o)dv,  j=1,....N., (14)
where P.(v) = P® for V® < » < V**; P, (v) is the probability density
distribution defined by 11. By defining

k)
y ) :/ P.(0)dv , E=2 ... N, yM=0 yNV=1, (15

m



the computation of each reference velocity can be written as

. : (k1) _ ()
Gy vy o [ w] Y =VEY 1) _ o
Ut = VI +[N yz] RO vy =V, j=1,...,N,,
z Yz Yz
(16)

where index k is such that: y*) < j/N, < yk+1),

Note that the constant velocity case, v = v,, does not fit into the algorithm
described, but also that the constant velocity case does not require the special
treatment furnished by the algorithm.

We recognize in the above approach, Egs.(13)-(16), a form of adaptive al-

(n:) pn, = N,+1, has the

z

gorithm. The induced velocity grid v{") < v < ... < v
intrinsic property of being fine around the maxima of P,(v) and coarse around
the minima that we have identified. In geological situations where v.(z,y) is
almost constant, only two or three reference velocities should be necessary
to represent the information; in the presence of strong lateral fluctuations,
more reference velocities are necessary. With this adaptive mechanism, accu-
racy must increase on average because of the statistical importance conferred
to those velocities that contribute massively to the downward propagation

of the wave field.

Reconstruction of a Complex Subsurface Model

We study a synthetic example, for which we know the velocity field to be
correct, in order to examine the effect of PSPI simplifications in imaging a

complex model.
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Fig.3 illustrates the example velocity field for a vertical slice of a subsur-
face model: Az = Ay = Az = 11.25 m. The first layer represents the ocean,
v = 1500 m/s, and the subsequent stratification represents a typical com-
plex structure of the earth’s crust; inside this region the velocity varies from
2500 to 5650 m/s. The nested structure is characterized by a strong lateral
variation of the velocity field.

Fig.4 shows the resulting synthetic zero-offset seismic section (zero-offset
traces simulated with A¢ = 4 ms) obtained in two computational phases. In
the first, many numerical seismic experiments are carried out, with different
positions of simulated surface sources producing different illuminations of
the subsurface model shown in Fig.3. Simulated back-propagating echoes
are detected at z = 0. In the second phase, all simulated data are finally
collected and stacked in the zero-offset representation.

For the seismic data extrapolation, the velocity field of Fig.3 was originally
discretized into 30 levels for each value of z. Fig.5 displays the optimal num-
ber ., of reference velocities as a function of = and the corresponding relative
empiric frequency of »,. The number of reference velocities required for the
different layers in this example fluctuates from 1 to 13; on average only three
velocities were necessary. Such an economy in the number of reference ve-
locities required translates into an important reduction in computation time
for depth extrapolation and PSPI migration.

The resulting migrated section, Fig.6, was computed using the PSPI al-

gorithm. The complex structure of the subsurface model is largely recon-

11



structed; information missing from the migrated section is also absent in the
zero-offset seismic section and is not due to the approximations of PSPI.
The arcs of hyperbola appearing at the bottom of Fig.6 are mostly due to
scattering points present in the zero-offset section. Globally, the agreement
between reflecting interfaces picked up by the PSPI migration and disconti-

nuities of the velocity field is very good.
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Figure Captions

1. Common MidPoint stacking as an approximation of the zero-offset, ex-

ploding reflector model.
2. Flowchart of the PSPI algorithm.
3. 2D slice of a subsurface velocity model.

4. Simulated zero-offset time section relative to Fig.3. Polarity is mapped
onto color, amplitude is mapped to saturation (i.e. white means no

signal).

5. Velocity analysis for the model of Fig.3. Number of reference velocities

n. vs depth z and histogram of the frequency of n..

6. Depth-migrated seismic data relative to Figs.3 and 4.
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