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Abstract

Classical Molecular Dynamics of polyatomic liquids involves a special treatment
of the intramolecular bonds, which is not very well suited for massively parallel
computers programmed in data-parallel style. An alternative approach, based on
a ‘Multiple Time Scales’ algorithm, is presented, which is fully data-parallel and
energy-conserving with the same order in At as standard Verlet integration scheme.
Results are given for codes written in CMFortran and tailored for the CM-200 si-
mulating SPC water either with the Ewald sum method (all-pairs interactions) or
with reaction field treatment of the long-range potential, allowing the usage of a
coarse-grained cell method for the parallelization of the force calculations.

1 Introduction

Molecular Dynamics (MD) is a well-established simulation technique to infer the statistical
and dynamical properties of an ensemble of molecules, given an appropriate form of the
interaction potential [1]. In the framework of classical mechanics, a polyatomic molecule
can be modeled by a set of point particles (atoms and massless ‘virtual sites’). Molecules
interact via a site-site pairwise potential, including for example electrostatic and Van der
Waals terms (‘non-bonded’ terms).

The intramolecular potential is chosen so as to constrain covalent bond lengths and an-
gles to oscillate quickly, although for a proper treatment a quantum mechanical approach
should be followed (‘bonded’ terms). Usually the time scale of intramolecular motion is
much smaller than intermolecular motion. Apparently, this would entail using too small a
time step compared to the phenomena normally of interest in this type of simulation. This
fact motivated the freezing of the ‘hard’ degrees of freedom by considering the molecule
to be rigid.
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2 Standard Bond Treatment

The two methods commonly used to simulate rigid polyatomic molecules are the rigid
body equations of motion and the so-called method of constraints [2].

The first method is based on writing Euler equation for a rigid body. Aside from the
need of special treatment in order to avoid spurious singularities, this method rapidly
becomes very cumbersome to manage if one wants to retain some internal degrees of
freedom (d.o.f.) in a complex molecule. This is generally needed at least for some of the
‘softer’ internal d.o.f., typically torsional angles or even bond angles.

The second method consists in adding Lagrange multipliers to the forces written in
the atomic Cartesian coordinates. Taking for example a bond length constraint between
atoms k and [, written as o = (ri(t)—r;(¢))?—d2; = 0, the constraint force to add is Gy =
— > A Vigog. This formulation allows naturally the introduction of intramolecular terms
as wanted, therefore it is the standard method of choice. The constraints oy; are fulfilled
ezactly at each time step (to obtain better numerical stability), which results in a set
of nonlinear equations for the Lagrange multipliers Ag;. They can be solved either by
Newton-Raphston iterative method, which needs a matrix-inversion for each molecule for
each time step and therefore too computationally expensive for large molecules, or by a
more convenient iterative procedure exploiting the sparseness of the constraints among
atoms. This procedure is called SHAKE if the Verlet integration scheme is used [3], similar
procedures exist for other integration schemes.

SHAKE solves each constraint in succession, looping iteratively over all constraints
until convergence to a desired tolerance is reached. Therefore it is clearly a sequential
algorithm on each molecule. Also, it is known that SHAKE may have problems of con-
vergence in some cases, requiring specific recasting of the constraints [4].

3 The MTS Algorithm

An alternative approach is based on reconsidering the argument about the time step
needed to model the fast intramolecular motion, using a Multiple Time Scales (MTS) al-
gorithm. With MTS technique the evolution is split into two components: only one ‘slow’
force calculation is required every n ‘fast’ force calculations. The fast dynamics com-
prises the intramolecular oscillations and the slow dynamics comprises the intermolecular
interactions. The advantage of adopting this approach stems from the fact that while
there are O(N?) long-range binary intermolecular interactions, there are only O( M N) in-
tramolecular potential terms (where N is the number of molecules and M is the number
of constraints to be fulfilled per molecule). Therefore one can fix a ‘fast’ time step to
model correctly the intramolecular vibrations while retaining a ‘slow’ time step as typical
in the standard approach described in the previous paragraph.

In the past there have been doubts about the quality of the energy conservation in
this kind of time integration schemes. This is not a difficulty if one adopts an explici-
tly time reversible and area preserving scheme. Such an algorithm has been described
independently in [5] and [6]. It is based on an approximation of the evolution operator
exp[tL(H)]|, where H(p,q) is the Hamiltonian, ¢ and p are the sets of coordinates and
momenta and L£(f)g = Y,[(0f/0p:)(0g/0¢:)—(0f/0¢:)(0g/0p:)] is the Liouville operator.
For any observable ®(¢) = ®[p(¢), ¢(t)] the evolution operator solves formally the time
evolution governed by the Hamiltonian d®(¢)/dt = L(H)®, by means of the expression



®(¢t) = exp[tL(H)]P(0).

The approximation is the following:
ezp[AtL(H)] = exp[AtL(hy)] X - - -
x exp[AtL(h1)|exp[AtL(ho)|exp[AtL(h1)] X - - X exp[AtL(hy)], (1)

valid for a decomposition of the form H = ho + 2h; + ... + 2h,, and within an accuracy
o(At?) [5].

When one chooses hy = 1/23;p?/m; and h; = 1/2V(q) the well-known leapfrog
update in the ‘velocity Verlet’ [1] form is recovered. If we split the Hamiltonian in the
‘fast’ and ‘slow’ contributions, i.e. hy = 1/2V}(q) and hy = --- = h,, = 1/2V,(q), we get
the approximation
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which is the core of the proposed MTS algorithm.

This formulation of MTS has the advantage of being inherently time reversible (by the
symmetry of the expansion 2) and area-preserving (in the sense of Liouville’s theorem),
therefore the energy drift is negligible. Furthermore the energy is conserved with an
accuracy o( At?), i.e. equivalent to the standard Verlet or leap-frog integration scheme.
Higher-order schemes can easily be formulated using the same formalism.

The algorithm in pseudo-code is the following:

initialize ( q(i), p(i) )
f_s(i) <- forces_slow( q(i) )
f_f(i) <- forces_fast( q(i) )
# main loop
do iter = 1,max_iter
p(i) <- p(i) + dt / 2 * f_s(i)
do count = 1,n
p(i) <= p(i) + dt / (2*n) * f£_f(i)
q(i) <- q(i) + dt / n *p (i)
f_f(i) <- forces_fast( q(i) )
p(i) <- p(i) + dt / (2*n) * f_f(i)
end do
f_s(i) <- forces_slow( q(i) )
p(i) <- p(i) + dt / 2 * f_s(i)
end do

where f_s is equal to —0V,(q)/0q; and £_f is equal to —0V}(q)/0¢;. Note that one ‘slow’
forces calculation and n ‘fast’ are required per time step.



4 Parallel Implementation

4.1 Data-parallel strategies

Molecular Dynamics is a typical example of N-body problem. When the interactions are
long-range (which is the case in charged systems such as water), the calculation of the
forces acting on each particle requires considering all the N(N — 1)/2 pairs of particles
(when multiple interactions are negligible, which is generally true for non-bonded inter-
actions). Leaving aside known methods to handle the O(N?) interactions indirectly, such
as multipole expansion and particle-mesh, we are left with a particle-particle treatment.
This class of problems displays an intrinsic data-parallelism [7] that can be exploited
in different ways on distributed-memory, massively parallel processors (MPP) machines,
according to the ratio between the number of particles N and the number of (virtual)
processors p available:

1. p ~ O(N?) = one processor per binary interaction;
2. p ~ O(N) = one processor per particle;
3. p < N = one processor per spatial cell.

In the Fortran 90 environment the solution for case 1 is to use a spread of the status
array of the N particles in order to calculate all forces concurrently, but for the number
of particles of interest this approach is unfeasible. Case 2 requires ordering of the particle
status in a ring which is cshifted N — 1 times in order to pass the status to every
other particle, accumulating the forces acting onto each particle (the last cshift would
correspond to self-interaction, therefore it is skipped); this technique is also called ‘digital
orrery’ in the Thinking Machine parlance [8]. Case 3 corresponds to a coarse-grained
parallelism with fewer processors, exploiting a spatial decomposition of the simulation
box. It is feasible only for short-range forces, otherwise the efficiency is severely limited by
the communications. The scheme have been described elsewhere, a detailed explanation
of its implementation on the CM-200 is in [9]. In both cases 2 and 3 it is possible to
exploit Newton’s third law cutting the force calculations by half, keeping track of the
accumulated forces on an auxiliary array.

The remaining tasks of a MD code, i.e. the time integration scheme for updating the
particle status and the global sums necessary to get macroscopic quantities are trivially
parallelized by the CMFortran syntax and intrinsics.

4.2 Spatial decomposition strategies

We decided to implement both strategies 2 and 3, trying to keep the different codes
as much compatible as possible. Therefore we have two basic data structures for the
molecules: an array with a single parallel axis (with :NEWS layout) which is used every-
where apart from the force module for strategy 3, and an array with three parallel axes
(again with :NEWS layout) spanning a coarse-grained 3D grid. Mapping to the latter struc-
ture and back to the original one is done using library calls particulary efficient on CM-200
(CMF_SCAN_ADD, CMF DEPOSIT_GRID_COORDINATE, CMF_SEND_OVERWRITE, CMRT_ge‘t), there-
fore it is possible to perform this procedure for each time step. Typically, the mapping
takes a mere 1% of the CPU time.



In the coarse-grained algorithm, usually only the nearest neigbor cells are considered
(3%), visited by means of a succession of cshift along a raster. But if the computation vs
communication ratio is large (as in the case of molecules), next-nearest neigbor cells can be
considered as well (5%). In fact, in the hypothesis of perfect load-balancing among cells and
neglecting communication cost, the efficiency of any such scheme is given by n = (actual
number of interactions within cutoff r.,:) / (effective number of interactions considered
for a cell length L). In the 3* case, L = rey, therefore n3 = (4/37L3)/[(3L)*] = 0.155
(quite low!), while in the 5% case 2L = 7y, then 75 = [4/37(2L)3]/[(5L)°] = 0.268 =
1.73n3. Clearly this could be carried over for more and more neigbors, eventually hitting
the load-balancing or the communications limit. It is interesting to note here that the
‘particle-coloring’ algorithm devised by [9] to save further interactions, have efficiencies

ny = 0.226 = 1.467m3 and 75 = 0.398 = 2.57n;.

4.3 Bonded terms strategies

Some more considerations are necessary to apply case 3 to polyatomic molecules. If the
molecule is small (R < 7yt ) it is feasible to map the entire molecule in the coarse-grained
grid as if it were a point particle, provided that L = 7 + 2R (R being the size of the
molecule). In this case there are no interprocessor communications either for SHAKE or
for the ‘fast’ time steps in MTS (they both do not change the molecule center of mass).
Also, both SHAKE and MTS computation time scale as O(N) (with a much smaller
factor than the non-bonded terms), but since the number of iterations necessary to get a
given accuracy is dominated by the worst case, there is the potential danger of poor load
balancing if one distributes different molecules onto different processors.

The situation is more complicated when the molecule is large. A scheme must be
devised in order to distribute the sites of the molecule among different processors and
minimizing the interprocessor dependencies caused by the bonded terms [10, 11]. This is
true for both SHAKE and MTS, but the real advantage of the latter is again its intrinsic
parallelism on the bonded terms, while the former is bounded to consider one constraint
after the other.

4.4 Timing results

As an example of actual CPU time scaling, we show in Fig.1 this time (measured by
CM timer library calls) per time step per molecule, referring to an all-pairs code for
the water model described in the next paragraph. While the serial code CPU time per
molecule scales as N, the parallel code reaches an optimum dependent on the number of
physical processors, then starts to scale as N, with a much smaller factor compared to
the workstation. The minimum corresponds to N equal to the number of floating-point
processors per pipeline length in the specific CM-200 used.

In the case of the coarse-grained code, the CPU time scales as O(N), the factor is
dominated by the non-bonded terms and depends on r.,; as well as on the maximum
allowed number of molecules per cell NW (which must be tailored on the local fluctuations,
which in turn depend on the physical parameters of any specific run). In the case of
the water model, for N=16384, r.,: = 40 (see next paragraph) and NW = 15 we have
roughly 40 s per time step on the CM-200/8k, corresponding to about 20us per effective
molecule-molecule interaction. The communication time due to the raster account for
only 5% of the CPU time. The fact that the coulombic interactions account for about



75% of calculations could justify the effort to write a specialized kernel in microcode;
encouraging experiments have been performed with DPEAC on the CM-5 (overall gain
of a factor of two).

CPU time scaling

all-pairs cshift code for water

3.0 ; ;
@ 8k CM-200
ORISC 560
% L
E 20 1
z | o
Ko}
£ ®
S © °
o
S ° .
8 1.0 - o O [ ] n
g ° o
= 0 oo o0
o
OO n n n n Il n n n n Il n n n n Il n n n n Il n n n n
0.0 1.0 2.0 3.0 4.0 5.0
log10(N)

Figure 1: Log-log plot of CPU time per step per molecule (ms) vs number of molecules
N for SPC-flezible model of water (all-pairs, Ewald sum code) running on a workstation

IBM RISC/6000 560 (open circles) and on a CM-200/8k (full circles).

5 Application to water

We choose to consider water as a test of the MTS algorithm because it is both a simple,
non-trivial polyatomic molecule and because of its outstanding scientific interest. Also,
flexible water model results using different MTS schemes have been published [12]. The
SPC water model [13] is a 3-sites model where the sites coincide with the O and H nuclei
and are assigned respectively -0.82e and 0.41e electric charge. Furthermore, the Oxygen
atoms interact each other through a Lennard-Jones potential V(r) = 4¢[(o/r)'? — (o /7)"].
with interaction length o = 3.166 A and potential well € = 0.6502 kJ/mole. We tested
as intramolecular potential an harmonic one, with the parameters used in reference [12].
The intramolecular potential is written

2
V(g) = gk 308 —rO) 4 Lk 36 — 600 (3
i j=1 B
where rld) = |OH(;)| and § = HOH, with r© = 1.0 A and 6(® = 109.47° are the
SPC equilibrium values. The constants k, and kg have been chosen equal respectively to
4.637 - 10° kJ /molenm? and 383 kJ/mole rad’.

The coulombic, long-range terms imply that an all-pair algorithm is to be used (aug-
mented by the so-called Ewald sum to account for the infinite replica of the simulation
box). Nevertheless, for many purposes it is possible to introduce a cutoff, and therefore
a coarse-grained algorithm, provided that a correction for the average polarization of the
cutoff sphere is included (reaction field method).



Clearly the accuracy of the energy conservation is crucial for the present MTS al-
gorithm. We have calculated a relative drift (1/Ei:)(dEso/dt) of (2.3 +£0.1) - 10~6ps~*
(which means 0.2 K only over 100 ps) over a period of 70000 time steps, for a simulation
of 512 molecules including 178 Ewald terms, at 297 + 5 K.

This is to be compared with previous MTS schemes which can have drifts many hun-
dred times higher [12]. The time steps used were At = 1 fs for the ‘slow’ and Aty = 0.1
fs for the ‘fast’ forces, which gives a fluctuation of the total energy of approximately 1%
of the fluctuation in the total potential energy, as commonly required. Fig.2 shows the
total energy fluctuation observed in our system of 512 molecules at 300 K as a function of
At in log-log plot. The data is fitted reasonably well by the predicted o(At?) accuracy.
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Figure 2: MTS energy conservation. Log-log plot of the total energy fluctuations in J/mole
vs ‘slow’ time step At in fs (stars). The line shows the best fit which has slope 2.3 + 0.2

An apparent difficulty inherent in flexible models of polyatomic molecules is that
‘hard’ d.o.f. are difficult to thermalise [2]. In particular, the vibrational kinetic energy is
transfered relatively quickly to the translational d.o.f. (few tenths of ps for a periodic box
of 512 water molecules), whereas the exchange in the opposite direction is much slower
(several tens of ps). We have found that the Maxwellian shuffle technique thermalise
each degree of freedom at room temperature within 2 ps only. This technique consists
in updating the velocities of all atoms with a Maxwell-Boltzmann distribution at the
desired temperature every few time steps [14] (in our case, every 100 time steps of 1 fs).
This corresponds to put each particle instantaneously in contact with a heat bath, forcing
ergodicity of the N-body system.

6 Conclusions

In this paper, we have shown that one can exploit the presence of separate time-scales to
simulate flexible polyatomic molecules in a straightforward and efficient way, by using a
Multiple Time Scale algorithm. We have demonstrated good energy conservation for a
real, important system, i.e. water, spending the same CPU time as for conventional rigid



models. MTS allows a reduction of the computation time over STS by exploiting the
different numerical complexity of the intra- and inter- molecular interactions.

In conclusion, we have shown that a proper MTS approach is an effective method
in the Molecular Dynamics simulation of polyatomic liquids, allowing a natural move to
parallel, efficient code for running on MPP machines.
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