

Experiences with HPF for Scientific
Applications *

G. Cabitza, C. Nardone, C. Bagaini, A. Balzano, E. Bonomi, L. Brieger,
M. Ennas, E. Garau **| D. Greco, G.Lecca, E. Pieroni, C. Rossi

CRS4, Center for Advanced Studies, Research and Development in Sardinia,
via N.Sauro 10, 1-09123 Cagliari, Italy
Fmail: cmn@crs4.it

Abstract. The data-parallel programming paradigm emerges as the
natural choice for a large class of scientific applications. One of its most
significant features consists in hiding the details of the communications
and synchronizations among processors, leaving them to the compiler.
The advent of the new standard data-parallel language, High Perfor-
mance Fortran (HPF), promises to bring portability of data-parallel
codes across different parallel architectures.

A wide spectrum of activities around HPF has been carried out and
planned for the future at CRS4, ranging from basic tools to parallel li-
braries, kernel codes and time-consuming real applications. Examples are
the HPParLib++ project (a run-time system for HPF), codes for seismic
migration and modeling, a molecular dynamics code of liquid water and
a shallow water transport code for the simulation of lagoon systems. The
strategy behind this work is to advance both in basic computer science
and in the development of end-user applications in order to benefit from
the synergetic exchange of ideas and solutions.

1 Introduction

The current trend in high-performance computing (HPC) favours distributed
memory (DM) parallel machines, because of their advantage in terms of scala-
bility and cost over traditional vector supercomputers. Moreover, DM machines
are more easily scalable than shared memory (SM) machines when the number
of nodes 1s larger than about ten. Actually, DM machines are more difficult to
program than SM multiprocessors or vector supercomputers. In fact, DM com-
puters (or clusters of workstations) are usually programmed using a sequential
language for the nodes and a message-passing library (proprietary or portable),
using task-parallelism. But they can also be programmed using a high level paral-
lel language such as High Performance Fortran (HPF) [1] using data-parallelism.

The message-passing (MP) programming style is more efficient than the data-
parallel (DP) one for an important class of problems (problems with irregular

* Work carried out with the support of the Sardinian Regional Authorities.
** Supported by a grant from CNR, Gruppo Nazionale per I'Informatica Matematica.

distributions — particle-in-cell codes and unstructured mesh solvers for instance),
but it is error prone because the user must explicitly manage all data and task
distribution and communication between processors. Software maintenance and
re-usability are also more difficult to achieve because a message-passing code
tends to be difficult to read (for example, it has more than one thread) and the
development environment is generally quite poor.

In constrast, a high-level parallel language such as HPF, ensures that the ma-
chine can be viewed by the programmer as a single entity with a single thread of
computation and a global name space, leading to obvious advantages in terms of
“programmability”. Such features also allow an easier design of the development
environment (debugger, profiler, etc...), contributing to the productivity of the
programmer. The user must define the data distribution, but the implementa-
tion, including detailed communications and synchronization among processors,
is left to the compiler. HPF also provides an interface to “local” external routines
which may be written in any language. This feature allows the optimization of
hot spots of the code by using specialized MP routines.

A significant fraction of scientific applications consists of problems that are
intrinsically DP; codes written in a DP language for such applications, will be
efficient on most parallel machines. It is often stated that MP only can squeeze
out the highest efficiency for a code running on a DM architecture, but painstak-
ing hand-tuning of an MP code may not be a cost-effective solution, given the
rapid evolution of compiler technology.

We focus on HPF because it is the recent, emerging standard in DP lan-
guages. Previous experience with CMFortran was invaluable as an introduction
to the DP concept for real applications.

At the present time, there are several providers of HPF products, including
computer vendors, independent software companies and research institutions.
In the following we will present results obtained by using the Portland Group
pghpt (version 1.3) and the GMD public domain Adaptor [2] (version 3.0) com-
pilation system. All the timings reported are obtained on a IBM SP2, equipped
with “thin” Power2 nodes at 66 MHz, high performance switch and POE 1.2.
Compilations were always performed with IBM x1£90 3.2 as target compiler.

2 Basic Data-Parallel Tools

The aim of this effort is to build basic tools for the DP approach and to im-
prove CRS4 know-how on parallel algorithms. In this context we have designed
HPParLib++ [3, 4], a library of C + + classes supporting data-parallel computa-
tion on a distributed memory environment. HPParLib++ provides the user with
classes of multi-dimensional arrays, array sections, and a mechanism to distribute
them across the processors.

The overall design of the HPParLib++, based on the object-oriented style of
programming, achieves portability, modularity and openness. Portability is ob-
tained by isolating the system-dependent part of the library from the rest of
the system (the Physical Processors class), assuming the existence of an MP

library for the system target and by using only simple communication primi-
tives (send, receive, barrier and broadcast). Actually we already support PVM,
MPI and TBM SPx MPL. The library implements all HPF data distribution
model features. Furthermore, modularity and openness, intrinsic features for a
well designed object-oriented software package, allow us to use HPParLib++ as a
“laboratory” for the exploration of new features within the HPF data distribu-
tion model.

Another important aspect is that the library is totally dynamic. Namely,
all the information about the actual array distribution is collected during the
distribution and alignment phases and is stored in the mapping descriptor giving
a complete representation of the array distribution onto the grid of abstract
processors. Therefore, once we have built this descriptor, we need no further
information about the template or the processor grid related to the array. For
instance, all operations involving array or section movements between processors
are managed exclusively using the information of the mapping descriptor.

We have also provided the package with a complete Fortran interface and we
have integrated HPParLib++ as the run-time system for the portable compilation
system Adaptor [2], resulting in a source-to-source translator which converts an
HPF code into a SPMD (Single Program Multiple Data) program, composed of
a Fortran 77 source with calls to HPParLib++.

3 Applications

3.1 Geophysical Computing

The characterization of the subsurface structure for oil prospecting is the most
important industrial application of geophysical exploration methods today. A key
role in such a task is the migration of seismic data. It consists in the imaging
of the earth subsurface structure from the data gathered at the surface after a
pressure field has been generated.

We developed a self-contained HPF code (cnv3d) [5], performing post-stack
migration in a 3D non-homogeneous medium. This code extrapolates the pres-
sure field P(x,y) in depth convolving the initial data with a carefully designed
symmetric finite length filter (~ 402 lattice units). Following McClellan ap-
proach, this is obtained by iteratively (~ 20 times) convolving the data with a
smaller (7?) operator.

We also implemented a pure spectral method, known as PSPI (Phase Shift
Plus Interpolation), for post-stack migration [6]. The advantage of computing
in the Fourier domain is the unconditional stability of the extrapolation and,
in contrast with usual finite difference approximations, the exactness of the dis-
persion relation implemented by the phase shift formula. The full wavefield is
computed by interpolating different extrapolated fields, each one with a reference
velocity.

For both algorithms the extrapolation phase is completely concurrent over
the N, time-frequency components, distributed among nodes. This corresponds

to the directive (*,%,BLOCK) for P(x,y,w). Only the imaging phase, obtained by
summing the pressure field over all frequencies, requires a global communication.
The results obtained are excellent, giving rise to an approximately linear relative
speed-up in the number of processors, as shown in Fig.1. The figure refers to a
benchmark performed by using a constant velocity. Since the computational time
for pspi depends on the complexity of the velocity model, cnv3d may become
more competitive than shown in the figure for real seismic data in complex
geological structures.

[y

speed [step/s]

Fig. 1. pspi and cnv3d speed performances on IBM SP2 in a constant velocity medium
with computational grid sizes N; = 672, N, =4, N, = 180.

Another aspect of the geophysics project is the modeling phase, i.e. the sim-
ulation of the acoustic wave propagation in the non-homogeneous earth subsur-
face. This provides accurate synthetic data for the validation of migration codes
as well as being of intrinsic interest. Indeed, we want to explore the use of the
full wave equation for migration purposes. At the moment, we have a simple
modeler in 2D (mod2d), in both spectral- and finite-differences version.

3.2 Molecular Dynamics

The N-body problem, i.e. the interaction of N particles through a suitable po-
tential, can be cast naturally in a DP form. Indeed, the kernel of Molecular
Dynamics (MD) [7], a simulation technique widely used in the physics of liquids,
solid-state physics, bio-chemistry, etc. is a N-body problem.

When long-range interactions are involved, the simpler algorithm combines
every molecule with each of the other N-1 (all-pairs interaction). Such combi-
nations are achieved in parallel by using a regular loop communication pattern
among processors, obtained by the Fortran 90 cshift intrinsic repeated (N-1)
times [8§].

This approach is embodied in our HPF MD code for the simulation of SPC
water with the Ewald sum method. Timings with pghpf on the IBM SP2 and a

reasonable fit for them (indicated by the continuous lines) are shown in Fig.2.
The speed diagram in log-log scale demonstrates the N2 scaling. The scalability
is acceptable with a sizeable number of molecules (which depends mostly on the
computational load — latency ratio).

[
e e e e e
i e Wi

speed [steps/s]

procs

Fig. 2. Speed of MD water code vs number of IBM SP2 processors for various problem
sizes. Continuous lines indicate the fit described in text.

The management of the irregular structures arising from short-range inter-
action models is more problematic in HPF. Implementations using indirect ad-
dressing can be quite inefficient depending on the quality of the compiler. We
expect an improvement with the advent of HPF-2, the next phase of the HPF
Forum, which will address this kind of problems.

3.3 Transport Modeling in Lagoons

Ecosystem modeling typically requires long-term simulations of advection-diffusion
of several chemically reactive species, calling for HPC implementations. In the
framework of the MMARIE project (a Concerted Action in the field of numerical
modeling of marine ecosystems funded by EU) we are developing codes for the
simulation of lagoon ecosystems [9]. Water circulation and solute transport due
to tide and wind forcing is modeled by the shallow water equations, which we
solve by 2D finite difference (FD) schemes.

We planned to assess both the relative performances and the costs of code
development in MP and DP styles for running on DM machines. We started with
the HPF implementation of the multispecies transport kernel of our codes be-
cause a suitable practical approach consists in assuming a representative periodic
hydrodynamic pattern as the input for the continuous simulation of transport

(even though the optimal strategy should be to simultaneously simulate both
hydrodynamics and transport).

An explicit QUICKEST-type FD scheme has been implemented, taking ad-
vantage of its favorable performance with respect to standard implicit schemes
as well as its natural extension to a parallel algorithm.

The initial porting of the original code (TransExp), written in Fortran 77, was
quite straightforward and achieved good relative parallel efficiency. However, the
absolute performance in comparison with the sequential version was not satis-
factory, also because of the peculiar structure of the FD stencil (varying locally
depending on the sign of the velocity components). Much better performance
was obtained by a careful redesign of the core portion of the code.

A key optimizing feature of HPF compilers is the ability to recognize over-
lapping areas in the array distribution, so that most stencil computations on the
grid do not necessarily involve communications. With Adaptor we were able to
switch this feature explicitly on or off, obtaining striking results (Fig.3).

1.2 - |[A—Aseq
O---Qno ovrl
@ - -@overlap
1.0
)
g 08
9,
o
3 06 -
o
7
04 r A -
0.2 + /‘/O
[J o
00 o"‘ L L L
0 4 8 12 16

Fig. 3. Speed of TransExp kernel routine on a 2562 grid running on the IBM SP2, with
and without overlapping arrays. The speed of the sequential version of the code is also
indicated.

4 Conclusions and Outlook

The most attractive HPF features are two: programmability (HPF is a high level
language) and portability (HPF is a standard). One more advantage of HPF is
that it is semantically just Fortran 90 augmented by compiler directives, which
are skipped for sequential execution. Unfortunately, since the current versions of
HPF compilers do not directly support irregular data distributions, HPF alone
is hardly effective for problems involv ing such distributions.

However, the HPF support for interfacing with external routines, written in
any sequential language and running locally on each processor, can be exploited
to integrate DP modules and optimized MP procedures into a parallel library.
This feature can be used to build a sort of mixed DP-SPMD programming
style that is particularly important for irregular computations where data-access
patterns and workload are usually known only at run-time.

Thus, we intend to reuse the considerable experience acquired at CRS4 on
the numerical solution of large sparse linear systems of equations (in both DP
[10] and MP [11] paradigms) by exploiting HPF interfacing. Currently, there is
an effort to integrate most of the parallel software for linear algebra developed
at CRS4 or acquired elsewhere, such as the public domain library Scalapack.

In conclusion, even though the current status of the compilers does not permit
performances as high as with MP coding, the use of HPF can be attractive,
especially for new projects. On the basis of our experience at CRS4, we believe
that adopting HPF is a good medium-to long-term investment.

References

1. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion Version 1.0. Scientific Programming 2 (1993) 1-170.

2. Brandes, T.: ADAPTOR - A Transformation Tool for HPF Programs. In Decker,
K.M., Rehmann, R.M. (eds.): Programming Environments for Massively Parallel
Distributed Systems. Birkhauser Verlag, 1994, p. 91-96.

3. Greco, D.: Parlib4++4: A C+ + library for data-parallel programming. AICA Rivista
di Informatica 24 (1995).

4. Greco, D., Cabitza, G.: HPParLib++: A run-time system for HPF. Proc. Annual
Conf. AICA (Chia, Sardinia, Sept. 1995). Vol. I, p. 153.

5. Bagaini, C., Bonomi, E., Pieroni, E.: Split Convolutional Approach to 3D Depth

Extrapolation. Proc. 65th Annual Meeting SEG (Houston, Oct. 1995), p. 195.
6. Bagaini, C., Bonomi, E., Pieroni, E.: Data parallel implementation of 3-D PSPI.

Proc. 651 Annual Meeting SEG (Houston, Oct. 1995), p. 195.

7. Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids. Clarendon Press,
1987.

8. Nardone, C., Rossi, P., Valentini, M.: Data-parallel Molecular Dynamics of Complex
Molecules by a Flexible, Multiple Time Scales Approach. In Alimi, J.-M., Serna, A.,
Scholl, H. (eds.): Science on the Connection Machine System. Proc. 2nd European
Connection Machine Users Meeting (Paris Oct. 1993), p. 325.

9. Balzano, A., Nardone, C., Rossi, C.: HPF parallelization strategies for explicit shal-
low water transport models on distributed memory machines. Proc. MMARIE An-
nual Meeting (Cagliari, Jan. 1996).

10. Brieger, L., Lecca, G.: Data parallelism in finite element computation. In Peters,
A. et al (eds.): Proc. of the X Int. Conf. on Computational Methods in Water
Resources. Kluwer Academic, 1994.

11. Brieger, L., Lecca, G.: Parallel multigrid preconditioning for finite element mod-
els of groundwater flow. In Alvaro, A. et al (eds.): Proc. of the XI Int. Conf. on
Computational Methods in Water Resources. Kluwer Academic, to appear, 1996.

This article was processed using the I'TEX macro package with LLNCS style

