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Abstract

We develop and apply a set of hypothesis tests with which to study changes in the angular
distribution of points in delay space. Crack and Ledoit (1996) plotted daily stock returns
against themselves with one day’s lag. (This might be described as a plot in “delay space”).
The graph shows these points collected along several rays from the origin. They correctly
attribute this “compass rose” pattern to discreteness in the data. Asset prices move in discrete
ticks. Our testing procedures allow one to test for changes in Crack and Ledoit's compass
rose pattern. Qur case study gives an example of such a change in distribution being caused
by a change in regime. We plot the number of points along a given ray of the compass rose
against the angle of that ray. This creates a “theta histogram” which describes the angular
distribution of the points in delay space. We compare this distribution to a standard theta
histogram created by a simple bootstrap procedure. The y? test is then performed in order to
estimate quantitatively the consistency of the actual data with the standard theta histogram.
Extensions of this technique are discussed.

We apply our technique to an important episode of Russian monetary history. In the late
nineteenth century, the “credit ruble” was a floating currency unlinked to precious metals.
Generally, the finance ministry actively intervened to influence the ruble exchange rate. The
one exception was during Nicolai Bunge's tenure as finance minister. Bunge's successor, lvan
Vyshnegradsky, was an unusually vigorous interventionist. The shift in regime from Bunge
the non-interventionist to Vyshnegradsky the interventionist produced a marked change in the
behavior of the ruble exchange rate. The angular distribution in delay space of the ruble’s
exchange rate against the German mark shifted dramatically under Vyshnegradsky. Hypothesis
tests support the view that Vyshnegradsky's activism caused a disproportionate number of
points of the compass rose to accumulate on the main diagonals in delay space. The theory
of “Big Players” (Koppl and Yeager 1996) helps to explain why. Our results are consistent
with those of Broussard and Koppl (1996) who use a GARCH(1,1) model.



| Introduction

Crack and Ledoit (1996) plot daily stock returns against themselves with one day’s lag. Doing
so produces the “compass rose” pattern of Figure 1. This pattern “is indisputably present in
every stock”. It “cannot be used for predictive purposes”, however, because “it is an artefact of
market microstructure” (p. 751). The existence of a non-zero tick size produces discreteness
in the data which, in turn, generates the compass rose.

Crack and Ledoit view the compass rose as important for several reasons. First, it suggests
the value of research into “the economic determinants of price discreteness” (p. 762). Their
results also show that, because discreteness in the data produces a pattern, tests for various
forms of autoregressive conditional heterskedasticity (ARCH) are likely to be biased as is the
BDS test for chaos. Some standard tools of time-series analysis may be inapplicable to the
discretized data of most asset markets.

Surprisingly, Crack and Ledoit do not call for new tools of time-series analysis specifically
suited to the existence of ticks and of the compass rose pattern. Perhaps they doubt the
possibility of applying algorithmic logic to the “subjective” compass rose pattern. Their ex-
planation of the compass rose pattern uses “subjective language”, they report, “because the
above statement ‘the compass rose appears clearly’ is itself subjective” (p. 754). We show
by example that new tools specifically suited to the compass rose and discretized data can be
constructed. Our tools include hypothesis tests that are highly algorithmic (and thus “rigorous
and objective”). We apply our techniques to a case study. We believe the results of our case

support the view that our techniques are useful and worthy of further development.

Il Hypothesis Testing and the Compass Rose Pattern

The compass rose was discovered by Crack and Ledoit (1996). They illustrate the compass
rose with daily returns on Weyerhauser stock from December 6, 1963 to December 31, 1993.

(See Figure 1.) Crack and Ledoit list three conditions for the compass rose pattern to emerge:
1. Daily price changes are small relative to the price level;
2. Daily price changes are in discrete jumps of a small number of ticks; and

3. The price varies over a relatively wide range.



The explanation of these three conditions is straightforward. Following their notation, let
P; and R; be the price and return of some stock on day ¢. If price changes are small relative to
price level ((P, — P,_1) < P;), and ignoring dividends and splits, the following approximation

holds:
(Pt+1 _Pt)/Pt N Pt+1 — P _ nt+1h _ Nt (1)
(Pt_Pt—1>/Pt—1 P, — P, nih ny 7

where h is the tick size and n; = (P, — P,_y)/h is the day-t price change calculated in ticks.

Rt+1/Rt =

Equation (1) shows that the ordered pairs (R, Ri+1) will be close to the rays through the
origin that pass through (n¢,n.1). If prices usually change by a small number of ticks, then
most points will accumulate along the major directions of the compass rose.

Finally, Crack and Ledoit explain, if the price varied only slightly around the value P;, a
grid pattern would result, not the compass rose. “On any given ray (m,n) data points would
cluster at discrete distances from the origin: (mh/P;,nh/P;), (2mh/P;,2nh/P;), and so on”
(754). Price variations produce “centrifugal smudging” which, in turn, produces the compass
rose pattern.

Crack and Ledoit describe the compass rose pattern as “subjective”. It is possible, however,
to transform the data of the compass rose and apply analytically rigorous techniques to the
transformed data. The transformation we propose might best be thought of as the result of
a two step procedure. In the first step one expresses the points of the compass rose in polar

coordinates. The point (R;, R;y1) is expressed as (ry, ;) where

re =y R} + Rt2+1

arctan(R11/ Ry) if B, >0
0 = arctan(Rep1/Ry) + 7 if Ry <0, R0 >0 (2)
arctan(Rey1/Ry) — 1 if Ry, Ripq <0

(arctan conventionally range from —x /2 to 7/2).

The second step is to associate each 6;, not with any of the corresponding r; values, but
with the number of such values corresponding to a narrow interval § 6. We finally normalize
by 7 in order to plot histograms in the interval [—1,1]. The result may be called a “theta
histogram”. A theta histogram represents the angular distribution of asset returns in delay
space. Figure 2 illustrates.

The theta histogram just described might be called the “empirical theta histogram”. Be-

fore we can engage in hypothesis testing, we need a benchmark with which to compare it. We



propose a simple bootstrapping procedure to create such a benchmark. To construct a boot-
strapped theta histogram, one takes the observed relative frequency of each return in the data
under study. Assume each period’s return was draw from this distribution, and assume every
period’s return is independent of every other period. Repeated sampling from the empirical
distribution of asset returns allows one to generate a bootstrapped theta histogram. Figure 3
gives an example. !

Hypothesis tests can be conducted by comparing the empirical and bootstrapped theta
histograms. In the proposed tests described below, we test Hj, the null hypothesis that the
R(t) are independent. If the R(¢)/R(t — 1) ratios are distributed in a sufficiently improbable
manner (given Hy), then we infer some sort of dependence exists. We can say things such as
“this theta has too many points” or “those thetas have too few points”. The dependence we
may infer is statistical dependence. |t may be in the first moment, the second moment, or the
83" moment. It may be linear or nonlinear.

Let us consider just one narrow interval of theta, §/7 = w £ dw. Let n be the number of
observations. That is, n is the number of R(t)/R(t — 1) ratios in our original data. Let p,
be the fraction of points that should be on angle w £ dw. If the R(¢) are independent, the
average theta histogram will have the fraction p,, of its point at w 4 dw. Thus with a sample
of size n, the expected value for the number of points in the interval w £ dw is np,. Denote

the observed value k.. We are now ready to build the quantity

(2, = 3 e — ) 3)

w npy
where Yk, = n. In the limit of a large number v of w partitions, such quantity has
P(x?|v), the incomplete gamma function, as cumulative distribution (Press 1992). Selecting

an arbitrary confidence level, say 0.05, as with any hypothesis test, one is able to reject Hy if

1 oo 2
PO > vh,) = Q) = 1 — P(3w) = ﬁ/ eT0h dL < 005, (4)
Xobs v

where I'(z) is the gamma function.
The previous y? test is meant to probe the empirical distribution as a whole. If some specific

theta value is of interest because “has too many points”, one can consider the interval w + dw

It is clear that we can also construct empirical and bootstrapped versions of an “extensional histogram”
analogous to the theta histogram. This graph would show the number of points at each distance from the
origin. Studying in this way the “extensional distribution” of asset returns in delay space may enable us to

address the issues of “fat tails” and extreme values.



and ask “What is the relative frequency of theta-histograms of size n in which &, > k,,;"? We
have a sequence of Bernoulli trials in each of which the probability of a hit is p,,. For every £,
with 0 < k < n, there are C(k,n) = n!/[k!(n — k)!] ways in which you could get k hits. The
probability of exactly & hits is C'(k,n)pf (1 — p,)"=%). Thus, the probability P(k, > k.) is

Plhy > ko) = Qhi) = S Clkum)ph(1 — p,)=) | (5)

kzk’obs

Again, Hy is rejected if P(k, > kys) > 0.05.

11l An Application of our Technique

We apply our technique to an important episode in nineteenth-century Russian monetary
history. ? From the Crimean War of 1853-56 to 1897, Russian had a paper currency which
floated against other currencies, including the Germany mark, a gold-standard currency. This
was the period of the “credit ruble”. During most of this period, the Russian finance ministry
actively intervened in the foreign exchange market, hoping to influence the ruble’s exchange
rate. A notable exception was the period of Nicolai Bunge's tenure as finance minister. Bunge
served from May 18, 1881 to January 13, 1887. He was a convinced and principled non-
interventionist. Bunge's successor, Ilvan Vyshnegradsky, was very different. He served from
January 14, 1887 to September 11, 1892. (His stroke of April 7, 1892, however, put him
largely out of the action). Vyshnegradsky was a highly active interventionist who meddled
frequently in the Berlin market. Vyshnegradsky seemed to derive great pleasure from getting
the better of the Berlin speculators in the ruble.

The contrast between Bunge and Vyshnegradsky is an unusually clear case of a change
in regime from a simple policy rule of non-intervention to an activist, discretionary policy. It
is thus a test case for the “Big Player” theory developed by Butos and Koppl 1993, Koppl
1996, Koppl and Langlois 1994, and Koppl and Yeager 1996. (See also Ahmed et al. n.d.,
Butos 1994, and Butos and Koppl 1995). According to this theory, the presence of a big,
discretionary actor who is relatively insensitive to the discipline of profit and loss will induce

herding in asset markets. Nicolai Bunge was not a Big Player because he maintained a

?The story we tell is related in Koppl and Yeager 1996, which we follow closely. They provide evidence
for claims we make without support. The data we analyze was gathered by Yeager. It has been studied by

Broussard and Koppl 1996, Koppl and Yeager 1996, and Yeager 1969 and 1984.



principled non-interventionist stance; he did not exercise his discretion. Vyshnegradsky did use
his discretion and was thus a Big Player.

The root cause of the increased herding under Big Players is ignorance. By scrambling
market signals, Big Players reduce the value of the market information little players use to make
their choices. In this reduced state of knowledge, little players are more likely to study past price
changes as a clue to the future course of prices. But that may create bandwagon effects. (See
Figure 4.) Broussard and Koppl (1996) extend the point. They argue that GARCH effects are
likely to be stronger under Big Players. “By reducing the value of all information”, they explain,
“Big Players increase the relative value of information about an asset’s recent price behavior”.
An unusually large price change becomes the object of competing interpretations. “Some will
see a trend, others will expect reversal. Whichever view happens to gain more adherents, the
exaggerated attention paid to the price movement encourages another large movement” to
follow. They fit a modified GARCH(1,1) model to the data and find an increase in GARCH
effects under Vyshnegradsky. (See Figure 5). We use the same data to find a complementary
pattern. Under Vyshnegradsky, a larger fraction of the points of the compass rose accumulated
around the two main diagonals. Big price changes today produce big price changes tomorrow,
though not always in the same direction.

Our data is constructed from a series created by Leland Yeager. Yeager used two contem-
porary German newspapers to find the ruble exchange rate in German marks per 100 rubles of
bank notes. His data cover the period from January 02, 1883 to March 31, 1892. We created
a return series from this data by taking the forward first differences of prices and normalising
by the price (i.e. R, = (P, — P,_1)/P,—1). From this return series we calculated empirical
and bootstrapped theta histograms as described above. The total number of samples in the
bootstrapped histograms was 1000 times the length of the original series. The data points
have been binned into 201 partitions with a resolution of #/7 = 0.01. The probability asso-
ciated with each bin is estimated to be p, = k£/N with an error given by the corresponding
bernoullian standard deviation o, = \/m

Figures 6 and 8 show the empirical theta histograms from the Bunge and Vyshnegrad-
sky periods. Figures 7 and 9 show their corresponding bootstrapped theta histograms. For
the Bunge period, the empirical and bootstrapped histograms are almost identical. For the

Vyshnegradsky period, they differ. The asymmetry in the Vyshnegradsky period is evident.



Especially evident is the large number of points accumulated at /7 = —0.5. Days in which
the ruble’s exchange rate did not change tended to be followed by days in which its value fell.
We don't know why this would be true.

For each period, we tested the hypothesis that the probability of a point at /7 = —0.5 is
equal to the relative frequency of such points when returns are independent. The results are
reported in Table 1.

For the Bunge period, the number of points n in the sample was 1224. If returns were
independent, the probability of a point at —0.5(40.005) would be p, = 0.0307 and the
expected value of the number of points would be k, = np, = 37.6. The actual number was
kops = 37, well within the standard deviation for a bernoullian (o = VPw = 6.1). We are
therefore unwilling to reject the hypothesis of independence. In other words, for the Bunge
period, under the assumption of independence, we do not have so improbably large or small
number of points accumulating at -0.5 that we wish to reject the null hypothesis that returns
are independent.

For the Vyshnegradsky period, the number of points in the sample was n = 1581. If
returns were independent, the probability of a point at —0.5(40.005) would be p, = 0.0244
and the expected value of the number of points would be £k, = 38.5. The actual number
was k,ps = 50. From equation (5) we calculate the probability to get such k or higher. This
probability is Q(k.s) = 0.041. Since Q(keps) is less than 0.05, our confidence level, we
reject the hypothesis of independence. For the Vyshnegradsky period, under the assumption
of independence, we have an improbably large number of points accumulating at -0.5. Our
hypothesis test supports the conclusion one is likely to draw from looking at Figure 8: days
in which the ruble’s exchange rate did not change tended to be followed by days in which its
value fell. (Unfortunately, it gives us no economic intuition about why).

The Big Players theory suggests we should find another difference between the Bunge and
Vyshnegradsky periods. Under Vyshnegradsky, there should be a greater tendency for points
to accumulate at /7 = £0.25 and /7 = +0.75. These are the values corresponding to
the two main diagonals of the compass rose pattern. We expect the Big Player influence of
Vyshnegradsky to encourage traders to pay more attention to price history, because all sources
of information have been degraded by the Big Player’s discretionary interventions. A large

price change today will become the subject of interpretation in which some see a trend and



other expect “correction”. Whichever theory becomes more popular, a large-magnitude return
today is likely to be followed by a return of similar magnitude, though not necessarily in the
same direction.

Our confidence in this result is strengthened by an inspection of Figures 10 and 11. These
figures show the compass rose pattern for the absolute value of returns. Since absolute values
are non-negative, all points appear in the positive quadrant. Under Bunge, no ray is obviously
accumulating too many or too few points. Note that the graph shows something close to a
grid, with little centrifugal smudging. This is because the ruble exchange rate did not vary
widely during Bunge's tenure as finance minister. (This is exactly the result predicted by
Crack and Ledoit.) Under Vyshnegradsky, the 45-degree line seems to have collected more
points than it would have if returns were independent. This difference between the Bunge and
Vyshnegradsky periods is confirmed by hypothesis tests reported in Table 2.

In this case, in the Bunge period the compound probability for /7 being within the
intervals 6/7 = £0.25(£0.005) and 6/7 = £0.75(40.005) is p, = 0.0610, if returns were
independent. Accordingly, the expected number of points is k, = 74.6, while we observe
kops = 88. From equation (5) we calculate the probability to get such & or higher. This
probability is Q(k.ss) = 0.065. Since Q (ko) is more than 0.05, we are unwilling to reject the
hypothesis of independence. For the Bunge period, under the assumption of independence, we
do not have so improbably large or small number of points along the 45-degree line of Figure
10.

For the Vyshnegradsky period, p, = 0.0312 and k, = 49.4, while we observe k., = 73.
Again from (5) we obtain @ (k) = 0.0008, a value much smaller than our level of confidence.
We can therefore reject the hypothesis of independence. For the Vyshnegradsky period, under
the assumption of independence, we have an improbably large number of points accumulating
at +0.25 and £0.75. Our hypothesis test supports the conclusion one is likely to draw from
looking at Figure 11: large changes in the exchange rate on one day tend to be followed
by similarly large changes the next day, though not necessarily in the same direction. This
tendency is consistent with the theory of Big Players.

Finally, for each period, we tested the hypothesis of independence among returns using the
x? test. In order to avoid effects related to the number of points in the sample, we choose

n = 998 for each series. A “mixed” series has been studied, taking the end of the Bunge



period and the beginning of the Vyshnegradsky period of tenure, in equal proportions. The
number of degrees of freedom v coincides in our case with the number of bins, i.e. 201.
Since v is so large, we were able to use an asymptotic result to calculate the probability
P(x? > x%,) = Q(x3,[v) (4). In fact, Q(x%,]v) ~ Q(x) where = = \/2x2, — v2r =T is a
reduced variable normally distributed and Q(z) = 1/v/27 [ exp(—12/2) dt (Abramovitz and
Stegun, 1972, formula 26.4.13).

The y? test results are reported in Table 3. The test is in agreement with the previous
tests on specific /7 values. For the Bunge period y?,, = 203.7, very close to the expected
value (x?) = v = 201. Therefore Q(z) is quite large and well within the confidence level. For
the Vyshnegradsky period x2,. = 251.5 and Q(z) = 0.008 < 0.05, therefore we can reject the
hypothesis that Vyshnegradsky's empirical theta histogram is distributed as the corresponding

ii.d. returns histogram. This conclusion is even more probable for the “mixed” series, with

X2s = 291.1 and Q(z) = 0.00002.

IV Discussion

Building on Crack and Ledoit 1996, we have described and applied some new techniques of
time-series analysis. We believe several considerations suggest that our techniques and others
like them may be of fairly general interest in economics and finance.

Our techniques give us another way to look at GARCH phenomena. In the case studied in
this paper, for example, we found evidence that GARCH effects may be due mostly to points
accumulating along the two main diagonals of the compass rose. This gives us information
on the dependence among returns that is not reflected in GARCH coefficients. Crack and
Ledoit suggest that GARCH estimates may be biased by the same discreteness in time series
data that produces the compass rose pattern. If this is true, then it may be desirable to
have another technique of analysis capable of getting at volatility dynamics. We might even
hope that pursuit of our techniques may eventually lead to progress in developing theoretical
explanations for volatility dynamics.

Our techniques provide another engine for the discovery of new facts. In our case study,
for example, we found that the Big Player influence of Vyshnegradsky produced a tendency for

zero-return days to be followed by negative-return days. This discovery did not come from any



statistical test, but from a graph, Figure 8. This method of discovery is the ancient technique
of graphically based interocular trauma (GBIT). GBIT is often disparaged in econometrics
classrooms, but it is useful for the discovery of facts. Mandebrot finds the distain of GBIT to
have “become destructive” (p. 21). In his view, “the search for new concepts and conjectures
are both helped by fine graphics. ... A formula can relate to only a small aspect of the
relationship between model and reality, while the eye has enormous powers of integration and
discrimination” (pp. 21-22). Of course, as Mandelbrot reminds us, “the eye sometimes sees
spurious relationships” (p. 22). For this reason, we have attempted to devise hypothesis tests
to complement GBIT. 3

Our techniques are non-parametric. They require fewer maintained hypotheses. They
allow us to avoid several assumptions that may sometimes be inappropriate. At least four
questionable assumptions frequently made in the time-series analysis of economic data. These
are (i.) the assumption of unbounded symmetric distributions, (ii.) the assumption of smooth
price changes, (iii.) the assumption of ergodicity and (iv.) the assumption of linearity in
intertemporal dependence. We discuss each in turn. We do not mean to deny that these
assumptions are ever appropriate, only that they are always or necessarily so.

(i.) The assumption of unbounded symmetric distributions. An asset’s price cannot fall
below zero. It's return is bounded from below by -1. It is also bounded from above. The return
cannot be so high, for instance that twice the total money stock would be required to pay it.
Strickly speaking, returns cannot have normal or Levy-stable marginal distributions. Moreover,
if the greatest lower bound to returns exceeds the least upper bound, the distribution will not
be symmetric.

(ii.) The assumption of smooth price changes. Mandelbrot speaks against the assumption

of continous price movements (1983, pp. 324-336). His comments, however, do not reveal

3Hayek's theory of mind (1952) provides an explanation for the fact that “we sometimes perceive patterns
which we are unable to specify” (Hayek 1967, p.53). In this theory, all conscious thought presupposes “a
system of rules which operate us but which we can neither state not form an image of and which we can
merely evoke in others in so far as they already possess them” (Hayek 1967, p.62). (See Butos and Koppl 1993
and 1996 for expositions.) Hayek suggests a scale of complexity of patterns. Sufficiently complex patterns
can be seen but not described. Somewhat less complex patterns, we may infer, can be described, but only
after being seen. Sufficiently simple patterns may be discovered and described with fully articulated scientific
methods. If all of this isabout right, then it would seem reasonable to encourage, not discourage, the use of

graphical techniques.



an appreciation of the discretization imposed by a non-zero tick size. To assume a normal
distribution of returns, a Levy-stable distribution, or any other continous distribution, is to
assume that prices may move in any increment rather than by an integer number of ticks.
Strickly speaking, this is a false assumption.

(iii.) The assumption of ergodicity. This assumption grows less common. Nevertheless,
it is still commonly invoked. But much evidence points to persistence in the first and second
moments of return series. (See Koppl and Yeager 1996 and Diebold and Lopez 1995). Our
techniques look only for short-term dependence. But because they are nonparametric, they
are not biased by the undetected presence of long memory.

(iv.) The assumption of linearity in intertemporal dependence. Typically the only kind
of dependence considered among asset returns is linear dependence in the first and second
moments. Qur technique lets us test for statistical dependence without regard to the linear or
nonlinear character of that dependence.

The use of the sort of non-parametric techniques we discuss in this paper allows us to
aviod some of these potentially inappropriate assumptions. The use of such techniques also
allows us to take advantage of falling costs of calculation. We can substitute computation for
assumptions and derivations. (See Leijonhufvud 1993.)

Finally, techniques of the sort we have discussed are moments independent. By using tools
such as the compass rose and theta histogram, we can examine our data without employing
the potentially constraining categories of “first moment”, “second moment”, and so on. In
our case study, this seems to have been a useful option. The accumulation of an improbably
large number of points at §/x = —0.5 would be hard to describe in terms of moments.

We believe the techniques of time-series analysis we have discussed are likely to be useful
in economics and finance. They may be developed in several directions and adapted to the
special needs of different applications. It is our hope that other researchers will seek out and

find innovative extensions and applications.
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Table captions

1: Hypothesis tests for /7 = —0.5(10.005). In this and the following table, n is
the number of points in the empirical distribution, p, is the probability that §/7 belongs
to the interval considered according to the bootstrapped histogram, k, = np,, ks is the
observed number of points in the interval considered, Ak/o = |k.s — ko |/o i1s the normalized
fluctuation observed, and finally Q(k.5s) = >j_;, Pr (where P is the Bernoulli probability
of k observation in the bin) is the probability P(k > k).

2: Hypothesis tests for /7 = +0.25 (£0.005) and £0.75 (£0.005).

3: x? hypothesis tests. The empirical series include n = 998 observations histogrammed
in v = 201 bins. = = \/%— V2v — 1 is the reduced variable which is asymptotically
distributed normally, Q(z) is the corresponding probability P(z" > z). The reduced variable
x* corresponding to the 0.05 confidence level, i.e. Q(z*) = 0.05, is 1.645.

Figure captions

1: Crack and Ledoit's “compass rose” graph (scatter plot in delay space) for IBM daily
stock returns, January 1, 1980 to October 8, 1992.

2: “Theta histogram” (angular distribution in delay space) of percent changes in the
Russian Ruble’'s exchange rate against the German mark. The data used are daily prices from
January 2, 1883 to March 31, 1892.

3: Bootstrapped theta histogram created using the same data used to construct the
empirical theta histogram of Figure 2.

4: From Koppl and Yeager 1996 (ruble’s exchange rates in German marks per 100 rubles).
From Broussard and Koppl 1996 (ruble’s price percent changes).

Empirical theta histogram, Bunge period.
Bootstrapped theta histogram, Bunge period.

Empirical theta histogram, Vyshnegradsky period.

° % N o

Bootstrapped theta histogram, Vyshnegradsky period.
10: Compass rose in absolute values, Bunge period.

11: Compass rose in absolute values, Vyshnegradsky period.
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series n Pu k., kops | Ak/o | Q(kops)
Bunge 1224 | 0.03072 (£0.00016) | 37.60 (£0.20) | 37 | 0.10 | > 0.5
Vyshnegradsky || 1581 | 0.02436 (+0.00012) | 38.51 (+0.19) | 50 | 1.85 | 0.041
Table 1
series n Do k. kops | Ak/o | Q(kops)
Bunge 1224 | 0.06099 (£0.00022) | 74.66 (+0.27) | 88 | 1.54 | 0.065
Vyshnegradsky || 1581 | 0.03123 (+0.00014) | 49.38 (+0.22) | 73 | 1.85 | 0.0008
Table 2
series Y2 T Q(x)
Bunge 203.696 | 0.159 | 0.436
Vyshnegradsky || 251.501 | 2.403 | 0.0082
mixed 291.102 | 4.104 | 0.00002
Table 3
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Ruble returns i.i.d.
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