MURO DI SOSTEGNO IN CEMENTO ARMATO

 

Dimensionamento muro

Armatura parete verticale

Armatura solettone di base

Verifiche di stabilità

Armatura solettone interno

Armatura solettone esterno

Verifica solettone di base

Schema armature

 

 

Il muro di sostegno in cemento armato è maggiormente utilizzato per altezze di terrapieno superiore a 3 m, in quanto le elevate caratteristiche di resistenza del materiale impiegato (conglomerato cementizio armato) permettono di ottenere spessori notevolmente minori di quelli necessari per il muro a gravità.

È formato da una parete verticale e da un solettone di base e proprio quest’ultimo elemento, per effetto del contributo fornito dal peso della terra gravante sulla porzione a monte del solettone, assicura la stabilità al ribaltamento dell’intero manufatto.

La parete verticale risulta incastrata alla base sul solettone e, quindi, soggetta a flessione e taglio; pertanto occorre posizionare armature metalliche nella parte tesa della parete.

Il solettone di base viene scomposto in:

-   solettone interno, incastrato sulla parete verticale, soggetto al peso della terra sovrastante e alla reazione del terreno sottostante, per effetto dell’azione di schiacciamento. Potendo prevalere sia il carico superiore sia la reazione inferiore, il solettone interno è progettato con armatura doppia simmetrica;

-   solettone esterno, anch’esso incastrato sulla parete verticale, soggetto alla sola reazione del terreno sottostante, risulta teso esclusivamente nella zona inferiore.

 

DIMENSIONAMENTO MURO IN C.A.

Mentre i muri di sostegno a gravità sono dimensionati, mediante la formula di verifica a ribaltamento, imponendo che il momento resistente MR sia maggiore del 50% rispetto al momento spingente MS, i muri di sostegno in cemento armato sono dimensionati con criteri empirici.

spessore parete in sommita: a @ 20 cm

spessore parete alla base: bp  @ 1/10 h

lunghezza solettone di base: s @ 1/2 h

lunghezza solettone interno: si @ 1/3 h

lunghezza solettone esterno: se @ s-si-bp

spessore solettone: hs @ bp+5 cm

altezza parete verticale: hp @ h-hs

 

Al dimensionamento di massima fa seguito il procedimento di calcolo delle armature metalliche nella parete verticale, con relative verifiche a flessione e taglio.

 

ARMATURE PARETE VERTICALE

Come detto, la parete verticale viene studiata come una mensola incastrata alla base e soggetta al carico rappresentato dal diagramma delle pressioni del terrapieno.

Per semplicità, gli sforzi di taglio T e di momento flettente M sono calcolati prendendo in esame alcune sezioni caratteristiche (il numero è in relazione all’altezza della parete, comunque almeno tre, compresa la sezione di attacco sul solettone). Sulla parete si individuano le sezioni:

B-B alla base della parete

C-C a circa 1/3 hp dalla base

D-D a circa 2/3 hp dalla base

A-A in sommità della parete

In seguito si calcolano le spinte sulla parete di altezza AB – AC – AD rispettivamente e i relativi punti di applicazione mediante le note formule:

intensità della spinta di un terrapieno con sovraccarico

distanza del punto d’applicazione della spinta dalla base

Ottenendo, così:

 

Spinta S (KN/m)

Distanza y (m)

Taglio T (KN)

Momento flettente M (KNm)

 

Imponendo le caratteristiche dei materiali Rck e FeB, nonché la tipologia di armatura semplice, in queste sezioni si calcolano le armature necessarie a flessione, non prima di aver determinato il coefficiente r ed il relativo coefficiente t tabellati, necessari per applicare le seguenti formule:

Dati

coefficiente r

coefficiente t

Area acciaio teso (cm2)

h  spessore utile parete nella sezione

b  1 m di profondità della parete

M  momento flettente nella sezione

t   (letto in tabella)

 

ricordando di non scendere sotto la quantità minima di acciaio, pari allo 0.15% della sezione di conglomerato.

Lungo la parete deve essere sempre prevista un’armatura trasversale di ripartizione, almeno pari al 20% dell’armatura longitudinale necessaria.

Si procede, quindi, alle usuali operazioni di verifica a flessione e taglio:

 

distanza dell’asse neutro dal lembo compresso

verifica a flessione nel calcestruzzo compresso

verifica a flessione nell’acciaio teso

verifica a taglio nel calcestruzzo compresso

 

VERIFICHE DI STABILITÀ DEL MURO

Prima di procedere al calcolo delle armature nel solettone di base, verifichiamo a ribaltamento, scorrimento e schiacciamento l’intera opera di sostegno. Calcoliamo dapprima la spinta del terrapieno sul paramento verticale fittizio passante per il punto D a monte del solettone interno:

essendo h l’altezza complessiva del muro comprendente l’altezza della parete e del solettone di base.

 

scomponendo la sezione del muro, otteniamo i pesi:

P1  peso della parte rettangolare della parete

P2  peso della parte triangolare della parete

P3  peso dell’intero solettone di base

P4  peso della terra gravante sul solettone interno

P5  peso dell’eventuale sovraccarico sul solettone interno

 

la distanza di ciascun peso dal punto R di ribaltamento sono:

d1  distanza di P1

d2  distanza di P2

d3  distanza di P3

d4  distanza di P4

d5  distanza di P5

 

Possiamo, ora, calcolare il momento spingente MS e il momento resistente MR

Momento resistente

Momento spingente

Sommatoria dei pesi

Controlliamo se risulta:

verifica a ribaltamento del muro di sostegno

 

Nel caso in cui non fosse verificato il ribaltamento, occorre far crescere il momento resistente MR aumentando la lunghezza del solettone esterno oppure, se ciò non fosse possibile, aumentando la lunghezza del solettone interno, per avere una maggiore collaborazione dal peso della terra sovrastante.

Nel caso opposto in cui il ribaltamento fosse troppo verificato, con rapporto MR/MS>>2, occorre diminuire la lunghezza del solettone interno in modo da far diminuire il peso della terra collaborante, permettendo l’insorgenza del congruo cedimento in avanti, eliminando così il rischio della spinta iniziale di quiete, come dimostrato dalla teoria di Coulomb.

 

Passiamo, ora, al controllo dello scorrimento che deve risultare

verifica a scorrimento del muro di sostegno

 

Se la condizione è soddisfatta, si passa direttamente alla verifica a schiacciamento, altrimenti occorre intervenire realizzando un dente nella parte interna del solettone di base. Ma prima di procedere in questo senso, è consigliabile verificare a schiacciamento.

La stabilità a schiacciamento è accettabile quando

verifica a schiacciamento del muro di sostegno

 

Occorre innanzitutto determinare la posizione del centro di pressione, ricavando la sua distanza u dal punto a valle del solettone, e confrontare se la posizione di C è esterna o interna al nocciolo centrale d’inerzia della sezione di base.

 

 

 

relazione

posizione del punto C

formula di verifica

centro di pressione esterno al terzo medio

centro di pressione interno al terzo medio

 

Nel caso non fosse verificato lo schiacciamento, occorre aumentare la lunghezza del solettone soprattutto nella parte esterna.

 

Prendiamo ora in esame la realizzazione del dente nel solettone

l’altezza del dente è fissata dal progettista in funzione del risultato della verifica a scorrimento:

-   l’altezza hd sarà tanto maggiore quanto minore risulta il rapporto fSP/S rispetto al valore 1.30;

-   la larghezza do deve essere almeno 1.5*hd

Lo scorrimento avviene lungo un piano in parte orizzontale (do) e in larga parte inclinata (di). Dividiamo, in parte percentuale a queste lunghezze, la sommatoria dei pesi SP e la spinta S del terrapieno

 

percentuale della sommatoria dei pesi che compete alla parte orizzontale

percentuale della sommatoria dei pesi che compete alla parte inclinata

percentuale della spinta che compete alla parte orizzontale

percentuale della spinta che compete alla parte inclinata

 

angolo d’inclinazione i del piano di scorrimento

peso della terra racchiusa tra il piano inclinato e la base del solettone

Lungo il piano inclinato il coefficiente d’attrito ft è dato dal valore della tangente dell’angolo d’attrito j, essendo terra – terra i due materiali a contatto

coefficiente d’attrito lungo il piano inclinato

 

Occorre, ora, scomporre le azioni SPI e SI lungo le direzioni perpendicolari e parallele al piano inclinato dell’angolo i.

scomposizione della sommatoria SPI lungo la retta perpendicolare e parallela al piano inclinato dell’angolo i

scomposizione della spinta SI lungo la retta perpendicolare e parallela al piano inclinato dell’angolo i

 

La formula di verifica a scorrimento diventa

 

formula di verifica a scorrimento nel solettone con dente di fondazione

 

ARMATURE METALLICHE SOLETTONE DI BASE

La verifica a schiacciamento fornisce la tensione massima sR in corrispondenza del punto R a valle ma, nel caso di centro di pressione C esterno al terzo medio della sezione di base, non abbiamo né il valore della tensione sD nel punto D a monte né la posizione dell’asse neutro.

 

Determiniamo la posizione dell’asse neutro N attraverso la sua distanza x dal baricentro G della sezione di base; applicando la relazione esistente tra eccentricità del centro di pressione C e distanza dell’asse neutro, scriviamo

in cui

pertanto

 

distanza dell’asse neutro dal baricentro della sezione

 

Dopo aver ricavato la distanza GN=x, ricaviamo la distanza NZ=z

La tensione nel punto D, a monte del solettone, si ottiene applicando le proprietà di similitudine tra i due triangoli STN e VZN

in cui

e quindi

 

tensione nel punto D a monte del solettone

 

SOLETTONE INTERNO

Il solettone interno risulta incastrato, nella sezione B, alla parete verticale e caricato, dall’alto, dal peso della terra e dell’eventuale sovraccarico e, dal basso, dalla reazione del terreno .

Le tensioni agenti dall’alto sul solettone interno valgono:

 

 

Le tensioni agenti dal basso sul solettone interno dipendono dalla porzione di diagramma di reazione del terreno st; pertanto ricaviamo la tensione nel punto B d’incastro mediante la similitudine dei triangoli:

Il diagramma risultante si ricava sommando algebricamente le tensioni nel punto D e nel punto B:

Il taglio TB e il momento flettente MB nel punto d’incastro B del solettone interno valgono:

 

essendo

R1  risultante delle tensioni nel prisma triangolare ABE

R2  risultante delle tensioni nel prisma triangolare CDE

d1   distanza di R1 dalla sezione d’incastro

d2   distanza di R2 dalla sezione d’incastro

 

Occorre, ora, determinare il punto in cui il diagramma risultante di carico passa per zero. Dalla similitudine tra i triangoli ABE e CDE, otteniamo

poniamo

e sostituiamo

 

 

 

applicando la proprietà del comporre

 

Quindi, possiamo scrivere:

Si richiama l’attenzione sull’utilizzo delle unità di misura!

 

Determinato il momento MB nel punto d’incastro, possiamo ricavare l’armatura in questa sezione, avendo anche stabilito di utilizzare armatura doppia simmetrica, con le usuali procedere di calcolo

 

Dati

coefficiente r’

coefficiente t’

Area acciaio teso e compresso (cm2)

h  spessore utile solettone

b  1 m di profondità solettone

M  momento flettente

(letto in tabella)

 

L’armatura di ripartizione, da disporre sia nel lembo superiore sia in quello inferiore, si ricava calcolando il 20% della sezione d’acciaio longitudinale:

armatura di ripartizione trasversale

 

SOLETTONE ESTERNO

Anche il solettone esterno risulta incastrato, nella sezione E, alla parete verticale e caricato dal basso dal diagramma di reazione del terreno

determiniamo la tensione nel punto E d’incastro scrivendo la relazione tra i triangoli simili STN e PQN:

  

e sostituendo

otteniamo

Il diagramma di carico trapezoidale si scompone in due parti:

parte rettangolare la cui risultante vale

 

 

parte triangolare la cui risultante vale

 

Le due risultanti R1 e R2 distano dall’incastro E

 

Per cui il taglio e il momento flettente nell’incastro E valgono:

 

Nel solettone esterno possiamo utilizzare la tipologia ad armatura semplice, essendo certi che la zona tesa è la zona inferiore della soletta, e scriviamo le usuali formule di progetto:

Dati

coefficiente r

coefficiente t

Area acciaio teso  (cm2)

h  spessore utile solettone

b  1 m di profondità solettone

M  momento flettente

(letto in tabella)

 

L’armatura di ripartizione, pari al 20% di quella longitudinale, è disposta sul lembo inferiore del solettone.

 

VERIFICHE SOLETTONE DI BASE

Il solettone interno, essendo stato progettato ad armatura doppia simmetrica, è verificato con le seguenti formule

 

Formule di verifica a flessione e taglio nel solettone interno

distanza dell’asse neutro dal lembo compresso

verifica a flessione nel calcestruzzo compresso

verifica a flessione nell’acciaio teso

verifica a flessione nell’acciaio compresso

verifica al taglio nel calcestruzzo compresso

in cui

 

Il solettone esterno, progettato a semplice armatura, si verifica con le formule

 

Formule di verifica a flessione e taglio nel solettone esterno

distanza dell’asse neutro dal lembo compresso

verifica a flessione nel calcestruzzo compresso

verifica a flessione nell’acciaio teso

verifica al taglio nel calcestruzzo compresso

dove  b = 1 m

 

SCHEMA ARMATURE METALLICHE

 

Sulla parete verticale disponiamo l’armatura solamente in zona tesa, rispettando la sezione minima d’acciaio, pari allo 0.15% della sezione di calcestruzzo, e piegando a 45° i tondini non più necessari.

Sul solettone di base disponiamo armatura doppia simmetrica nella zona della mensola interna, mentre è sufficiente posizionare armatura semplice in corrispondenza della mensola esterna.

Lungo la parete verticale e lungo il solettone di base posizioniamo l’armatura trasversale di ripartizione in misura pari al 20% della sezione dei ferri longitudinali.