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1 Introduction

Given the problem to study a system we have to find a way to express its
state. Usually we can use a set of variables, like a vector x, so that knowing
this vector we can (in theory) predict the future states of the system. For
example, in mechanics problems, we have to know positions and speeds.

If the system is not in equilibrium, it will change as time flows, and so
hopefully will change the describing vector of variables too.

We may call the initial vector x(t0), to remember us that is related to a
time t0. Now after some time ∆t things have changed and we have another
vector. We may call it x(t0 + ∆t). These vectors are both taken from a
vectorial space X where each element represents a possible configuration, so
x(t0) ∈ X and x(t0 + ∆t) ∈ X. We’d like to find a rule between x(t0) and
x(t0 + ∆t). It comes out that it may be expressed in different ways.

Usually we know how the system is going to change when it is in a certain
state. But the state is expressed by the vector x(t) and its change rate is
just its differential versus time, dx

dt
(t). So we found ourselves managing a

differential equation like the following

dx

dt
(t) = f(x(t)) (1)

Here we use the fact that x(t) contains all the informations about the state of
the systems, so we don’t need to make f depend on time t explicitly, neither
from older states (t′ < t). By this I mean that there are no forces that are
time-dependent, so that if you have two times t1 and t2, t1 6= t2, such that

x(t1) = x(t2) (2)

then for all ∆t > 0 we have1

x(t1 + ∆t) = x(t2 + ∆t) (3)
1This is not true for ∆t < 0.
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If this is not possible, then we can’t describe the system with (1).
Often it’s not possible to analytically solve equation (1), so we can try

a numerical approach, but supposing that we are able to integrate f(x(t))
respct t, and that the indefinite integral is F (t), we have2

∫ t0+∆t

t0

dx

dτ
(τ)dτ =

∫ t0+∆t

t0
f(x(τ))dτ

x(t0 + ∆t)− x(t) = F (t0 + ∆t)− F (t0) (4)

Now we’d like to inveret the function x(t), but it may not be globally invert-
ible, for example if the orbit is periodic or in equilibrium. Discarding the
still state, so that x(t) 6= k, we define a function t(x) such that

t : X 7→ < (5)

t(x) := min{t | x(t) = x} (6)

We have that may be
t(x(t0)) 6= t0 (7)

but this doesn’t change the properties of F as we see from (3) and we find

x(t0 + ∆t)− x(t0) = F (t(x(t0)) + ∆t))− F (t(x(t0))) (8)

We can choose F so that F (t(x(t0))) = 0, and it follows that

x(t0 + ∆t)− x(t0) = F (t(x(t0)) + ∆t)

x(t0 + ∆t) = x(t0) + F (t(x(t0)) + ∆t) (9)

If we choose a fixed ∆t we can define

M : X 7→ X (10)

M(x) := x+ F (t(x) + ∆t) (11)

and write
x(t+ ∆t) = M(x(t)) (12)

Moreover if we call

x0 := x(t0)

x1 := x(t0 + ∆t)

x2 := x(t0 + 2∆t)
...

xn := x(t0 + n∆t) (13)
2This has sense since x(t) is defined by f via (1).
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we can study the trajectory in a countable number of points xn. The evolving
rule is

xn+1 = M(xn) (14)

where M maps a state of the system into its successor after time ∆t. In fact
M is called a map. I have to note that our construction of M is self-recursive,
so may not be applicable in pratice. There are other ways to build a map M
from a trajectory x(t), like the Poincaré section method that we’ll see later.

2 Definition

Let’s try to get some results from what we have done above. If state of a
system can be fitted into a vector x ∈ X, then we have seen that the evolution
of a system can be predicted using different ways:

• a differential equation;

• its continuous solution;

• a map.

We can define a dynamical system as:

• a space of possible configurations;

• a rule to evolve such configurations.

As an example we can look at one of the physicians’ classic: the harmonic
oscillator. Being r the position, the differential equation is

r̈ = −ω2r (15)

The analytical solution for this equation is known to be

r = A cos(ωt+ φ) (16)

where A, the amplitude, and φ, the phase, can be chosen freely. The state of
the system, indicated by position r and speed v, can be fitted into the vector

x =
(
r
v

)
(17)

The differential equation, put into a first-order form (ODE), is now

ṙ = v (18)

v̇ = −ω2r (19)
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and in vectorial notation

d

dt

(
r
v

)
=
(

0 1
−ω2 0

)(
r
v

)
(20)

We can integrate this in respect to the time in an interval (t0, t0 + ∆t) and
obtain

∆r(∆t) =
∫ t0+∆t

t0
v(τ)dτ (21)

∆v(∆t) = −ω2
∫ t0+∆t

t0
r(τ)dτ (22)

We can remove explicit dependences from time t0, but not from the initial
conditions r(t0) and v(t0)

∆r(∆t) =
∫ t0+∆t

t0
[v(t0) + ∆v(τ − t0)]dτ (23)

= v(t0)∆t+
∫ ∆t

0
∆v(τ)dτ (24)

and the same with ∆v

∆v(∆t) = −ω2
∫ t0+∆t

t0
[r(t0) + ∆r(τ − t0)]dτ (25)

= −ω2{r(t0)∆t+
∫ ∆t

0
∆r(τ)dτ} (26)

so that

r(t0 + ∆t) = r(t0) + ∆r(∆t) (27)

v(t0 + ∆t) = v(t0) + ∆v(∆t) (28)

but, as you can expect, this definition is self-recursive, being the result of our
method, and so not applicable in pratice.

We can avoid this problem using numerical approximations to resolve the
integrals, since they are computed on an interval of amplitude ∆t which we
can choose to be enough small to considerate r and v constants during the
interval. This technique used to solve an ODE is known as explicit euler. Or
we can use other finer techniques, but that’s another story. . .

3 Studing

When studing a dynamical system the first thing that we can think is to take
an initial condition, x(t0) or x0, and concentrate on a single trajectory, being
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it continuous or discrete. But another interesting possibility is to concentrate
on the evolution of a set of initial conditions, i.e. a subset Y ⊂ X, and look
at its behavour under the evolving rule. Subsets of X evolve and go into
other subsets of X. So we can write, using a map M and a the set of initial
conditions Y0,

Y1 = M(Y0)
...

Yn+1 = M(Yn) (29)

This is conceptually a great change of view.
Let’s go on with the example of the harminc oscillator. As we have seen

the space X of the possible configurations is formed, in this case, by couples
of position and speed (r, v), so X = <× <.

In a 2-d plan where r is on the X axis and v is on the Y axis each point
can be tought as an initial condition for the system. This plan is called phase
space and can be built for every dinamical system. Clearly it has always the
same dimension of the vectorial space X.

If we choose to begin with time t0 = 0, then the initial condition (r(0), v(0))
gives the values of A and φ

r(0) = A cos(φ) (30)

v(0) = Aω sin(φ) (31)

so that

A =
√

(r(0))2 + (v(0)/ω)2 (32)

φ = arctan
v(0)/ω

r(0)
(33)

and the evolution is given by

r(t) = A cos(ωt+ φ) (34)

v(t) = Aω sin(ωt+ φ) (35)

It’s clear that a set of initial conditions Y ⊂ X on the phase space rotates
and eventually stretches along the Y axis with time, the latter depending on
the value of ω. In we choose ω = 1 this is a perfect rotaion.

We can ask if there are sets which are invariant under the evolution. A
set with this property is called a manifold

Y ⊆M(Y ) (36)

5



For the harmonic oscillator these manifolds are ellipses, or circles if ω = 1.
But thinking twice we see that this sets are also the periodic orbits of this
system. In fact (36) tells us that if a point is in a manifold, it will remain
there forever, and that is true for all periodic orbits.

Here I used a map, but we can always pass from a countinous trajectory
to a map. Let’s call the trajectory

T := {x(t)} (37)

we have
T ⊂ X (38)

and we can imagine this subset in the phase space.
Now let’s loose some time on what we call a surface. In our 3-d space it

is a 2-d subset. Now if X has a dimension dim(X) ≥ 1, S is a surface of X if

S ⊂ X (39)

and
dim(S) = dim(X)− 1 (40)

If we choose S so that the intersection between S and T is not empty and
numerable, we may call

t1 := min{t | x(t) ∈ S}
t2 := min{t > t1 | x(t) ∈ S}
t3 := min{t > t2 | x(t) ∈ S}
...

tn := min{t > tn−1 | x(t) ∈ S} (41)

Defining

x1 := x(t1)

x2 := x(t2)

x3 := x(t3)
...

xn := x(tn) (42)

(43)

we have a succession extracted from the trajectory, and we can think of it as
the iteration of map. This method is called the Poincare’ section.
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As an example of it let’s see what it can do with the harmonic oscillator.
If we choose S so that

S := {(r, v) | r = 0} (44)

then

x1 = (0, vmax)

x2 = (0,−vmax)
x3 = (0, vmax)

x4 = (0,−vmax)
...

xn = (0, (−1)n+1vmax) (45)

so we have a succession of period 2. This means that

xn = xn+2 = M(M(xn)) (46)

that me can write as
xn = xn+2 = M2(xn)) (47)

In the general case, if a map M has period p, then each of the p elements of
the period is a fixed point for the map Mp.

If T is periodic, then each map M derived from T is periodic and can be
set to have period 1 with this method.

4 Chaos

What is chaos? What do we mean about it?
To be continued. . .
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