[35] Templates  Updated! 
(Part of C++ FAQ, Copyright © 1991-2011, Marshall Cline, cline@parashift.com)


FAQs in section [35]:


[35.1] What's the idea behind templates?

A template is a cookie-cutter that specifies how to cut cookies that all look pretty much the same (although the cookies can be made of various kinds of dough, they'll all have the same basic shape). In the same way, a class template is a cookie cutter for a description of how to build a family of classes that all look basically the same, and a function template describes how to build a family of similar looking functions.

Class templates are often used to build type safe containers (although this only scratches the surface for how they can be used).

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.2] What's the syntax / semantics for a "class template"?  Updated! 

[Recently fixed a typo thanks to Thomas Middeldorp (in 7/11). Click here to go to the next FAQ in the "chain" of recent changes.]

Consider a container class Array that acts like an array of integers:

 // This would go into a header file such as "Array.h"
 class Array {
 public:
   Array(int len=10)                  : len_(len), data_(new int[len]) { }
  ~Array()                            { delete[] data_; }
   int len() const                    { return len_;     }
   int const& operator[](int i) const { return data_[check(i)]; }  
 subscript operators often come in pairs
   int&       operator[](int i)       { return data_[check(i)]; }  
 subscript operators often come in pairs
   Array(Array const&);
   Array& operator= (Array const&);
 private:
   int  len_;
   int* data_;
   int  check(int i) const
     {
       if (i < 0 || i >= len_)
         throw BoundsViol("Array", i, len_);
       return i;
     }
 };

Repeating the above over and over for Array of float, of char, of std::string, of Array-of-std::string, etc, will become tedious.

 // This would go into a header file such as "Array.h"
 template<typename T>
 class Array {
 public:
   Array(int len=10)                : len_(len), data_(new T[len]) { }
  ~Array()                          { delete[] data_; }
   int len() const                  { return len_;     }
   T const& operator[](int i) const { return data_[check(i)]; }
   T&       operator[](int i)       { return data_[check(i)]; }
   Array(const Array<T>&);
   Array<T>& operator= (const Array<T>&);
 private:
   int len_;
   T*  data_;
   int check(int i) const
     {
       if (i < 0 || i >= len_)
         throw BoundsViol("Array", i, len_);
       return i;
     }
 };

Just as with a normal class, you can optionally define your methods outside the class:

 template<typename T>
 class Array {
 public:
   int len() const;
   
...
 };
 
 template<typename T>
 inline      
 see below if you want to make this non-inline
 int Array<T>::len() const
 {
   
...
 }

Unlike template functions, template classes (instantiations of class templates) need to be explicit about the parameters over which they are instantiating:

 int main()
 {
   Array<int>           ai;
   Array<float>         af;
   Array<char*>         ac;
   Array<std::string>   as;
   Array< Array<int> >  aai;
   
...
 }

Note the space between the two >'s in the last example. Without this space, the compiler would see a >> (right-shift) token instead of two >'s.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.3] What's the syntax / semantics for a "function template"?

Consider this function that swaps its two integer arguments:

 void swap(int& x, int& y)
 {
   int tmp = x;
   x = y;
   y = tmp;
 }

If we also had to swap floats, longs, Strings, Sets, and FileSystems, we'd get pretty tired of coding lines that look almost identical except for the type. Mindless repetition is an ideal job for a computer, hence a function template:

 template<typename T>
 void swap(T& x, T& y)
 {
   T tmp = x;
   x = y;
   y = tmp;
 }

Every time we used swap() with a given pair of types, the compiler will go to the above definition and will create yet another "template function" as an instantiation of the above. E.g.,

 int main()
 {
   int         i,j;  
/*...*/  swap(i,j);  // Instantiates a swap for int
   float       a,b;  
/*...*/  swap(a,b);  // Instantiates a swap for float
   char        c,d;  
/*...*/  swap(c,d);  // Instantiates a swap for char
   std::string s,t;  
/*...*/  swap(s,t);  // Instantiates a swap for std::string
   
...
 }

Note: A "template function" is the instantiation of a "function template".

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.4] How do I explicitly select which version of a function template should get called?

When you call a function template, the compiler tries to deduce the template type. Most of the time it can do that successfully, but every once in a while you may want to help the compiler deduce the right type — either because it cannot deduce the type at all, or perhaps because it would deduce the wrong type.

For example, you might be calling a function template that doesn't have any parameters of its template argument types, or you might want to force the compiler to do certain promotions on the arguments before selecting the correct function template. In these cases you'll need to explicitly tell the compiler which instantiation of the function template should be called.

Here is a sample function template where the template parameter T does not appear in the function's parameter list. In this case the compiler cannot deduce the template parameter types when the function is called.

 template<typename T>
 void f()
 {
   
...
 }

To call this function with T being an int or a std::string, you could say:

 #include <string>
 
 void sample()
 {
   f<int>();          
// type T will be int in this call
   f<std::string>();  
// type T will be std::string in this call
 }

Here is another function whose template parameters appear in the function's list of formal parameters (that is, the compiler can deduce the template type from the actual arguments):

 template<typename T>
 void g(T x)
 {
   
...
 }

Now if you want to force the actual arguments to be promoted before the compiler deduces the template type, you can use the above technique. E.g., if you simply called g(42) you would get g<int>(42), but if you wanted to pass 42 to g<long>(), you could say this: g<long>(42). (Of course you could also promote the parameter explicitly, such as either g(long(42)) or even g(42L), but that ruins the example.)

Similarly if you said g("xyz") you'd end up calling g<char*>(char*), but if you wanted to call the std::string version of g<>() you could say g<std::string>("xyz"). (Again you could also promote the argument, such as g(std::string("xyz")), but that's another story.)

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.5] What is a "parameterized type"?

Another way to say, "class templates."

A parameterized type is a type that is parameterized over another type or some value. List<int> is a type (List) parameterized over another type (int).

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.6] What is "genericity"?

Yet another way to say, "class templates."

Not to be confused with "generality" (which just means avoiding solutions which are overly specific), "genericity" means class templates.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.7] My template function does something special when the template type T is int or std::string; how do I write my template so it uses the special code when T is one of those specific types?

Before showing how to do this, let's make sure you're not shooting yourself in the foot. Does the function's behavior appear different to your users? In other words, is the observable behavior different in some substantive way? If so, you're probably shooting yourself in the foot and you will probably confuse your users — you're probably better off using different functions with different names — don't use templates, don't use overloading. For example, if the code for int inserts something into a container and sorts the result, but the code for std::string removes something from a container and does not sort the result, those two functions ought not to be an overloaded pair — their observable behavior is different so they ought to have different names.

However if the function's observable behavior is consistent for all the T types with the differences limited to implementation details, then you can proceed. Let's proceed with an example of this (conceptual only; not C++):

 template<typename T>
 void foo(T const& x)
 {
   switch (typeof(T)) {  
 conceptual only; not C++
     case int:
       ...  
 implementation details when T is int
       break;
 
     case std::string:
       ...  
 implementation details when T is std::string
       break;
 
     default:
       ...  
 implementation details when T is neither int nor std::string
       break;
   }
 }

One way to implement the above is via template specialization. Instead of a switch-statement, you end up breaking up the code into separate functions. The first function is the default case — the code to be used when T is anything other than int or std::string:

 template<typename T>
 void foo(T const& x)
 {
   ...  
 implementation details when T is neither int nor std::string
 }

Next are the two specializations, first for the int case...

 template<>
 void foo<int>(int const& x)
 {
   ...  
 implementation details when T is int
 }

...and next for the std::string case...

 template<>
 void foo<std::string>(std::string const& x)
 {
   ...  
 implementation details when T is std::string
 }

That's it; you're done. The compiler will automagically select the correct specialization when it sees which T you are using.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.8] Huh? Can you provide an example of template specialization that doesn't use foo and bar?

Yes.

One of several ways I personally use template specialization is for stringification. I usually use a template to stringify various objects of various types, but I often need to specialize the code for stringifying certain specific types. For instance, when stringifying bools I prefer "true" and "false" over "1" and "0" so I use std::boolalpha when T is bool. Also I often prefer floating point output to contain all the digits (so I can see very small differences, etc.) so I use std::setprecision when T is a floating point type. The end result usually looks something like this:

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <string>
 #include <limits>
 
 template<typename T> inline std::string stringify(T const& x)
 {
   std::ostringstream out;
   out << x;
   return out.str();
 }
 
 template<> inline std::string stringify<bool>(bool const& x)
 {
   std::ostringstream out;
   out << std::boolalpha << x;
   return out.str();
 }
 
 template<> inline std::string stringify<double>(double const& x)
 {
   const int sigdigits = std::numeric_limits<double>::digits10;
   
// or perhaps std::numeric_limits<double>::max_digits10 if that is available on your compiler
   std::ostringstream out;
   out << std::setprecision(sigdigits) << x;
   return out.str();
 }
 
 template<> inline std::string stringify<float>(float const& x)
 {
   const int sigdigits = std::numeric_limits<float>::digits10;
   
// or perhaps std::numeric_limits<float>::max_digits10 if that is available on your compiler
   std::ostringstream out;
   out << std::setprecision(sigdigits) << x;
   return out.str();
 }
 
 template<> inline std::string stringify<long double>(const long double& x)
 {
   const int sigdigits = std::numeric_limits<long double>::digits10;
   
// or perhaps std::numeric_limits<long_double>::max_digits10 if that is available on your compiler
   std::ostringstream out;
   out << std::setprecision(sigdigits) << x;
   return out.str();
 }

Conceptually they all do the same thing: stringify the parameter. That means the observable behavior is consistent, therefore the specializations do not confuse callers. However the details for implementing that observable behavior is slightly different for bool and floating point types, so template specialization is a good approach.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.9] But most of the code in my template function is the same; is there some way to get the benefits of template specialization without duplicating all that source code?

Yes.

For example, suppose your template function has a bunch of common code along with a relatively small amount of T-specific code (conceptual only; not C++):

 template<typename T>
 void foo(T const& x)
 {
   
... common code that works for all T types ...
 
   switch (typeof(T)) {  
 conceptual only; not C++
     case int:
       
... small amount of code used only when T is int ...
       break;
 
     case std::string:
       
... small amount of code used only when T is std::string ...
       break;
 
     default:
       
... small amount of code used when T is neither int nor std::string ...
       break;
   }
 
   
... more common code that works for all T types ...
 }

If you blindly applied the advice from the FAQ on template specialization, you would end up duplicating all that code before and after the pseudo-switch statement. The way to get the best of both worlds — to get the benefits of T-specific pieces without duplicating the entire function, is to extract the pseudo-switch statement portion into a separate function foo_part(), and use template specialization on that separate function:

 template<typename T> inline void foo_part(T const& x)
 {
   
... small amount of code used when T is neither int nor std::string ...
 }
 
 template<> inline void foo_part<int>(int const& x)
 {
   
... small amount of code used only when T is int ...
 }
 
 template<> inline void foo_part<std::string>(std::string const& x)
 {
   
... small amount of code used only when T is std::string ...
 }

The main foo() function would be a simple template — no specializations. Note that the pseudo-switch statement has been replaced by a call to foo_part():

 template<typename T>
 void foo(T const& x)
 {
   
... common code that works for all T types ...
 
   foo_part(x);
 
   
... more common code that works for all T types ...
 }

As you can see, the body of foo() now doesn't mention any particular T. It all gets figured out automatically. The compiler generates foo for you based on type T, and will generate the correctly typed foo_part function based on the actual compile-time known type of the x argument. Proper specializations of foo_part will be instantiated.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.10] All those templates and template specializations must slow down my program, right?

Wrong.

This is a quality-of-implementation issue so your results may vary. However there is usually no slow-down at all. If anything, the templates might affect the speed of compilation slightly, but once the types are resolved by the compiler at compile-time, it will typically generate code that is just as fast as with non-template functions, including inline-expanding appropriate functions, etc.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.11] So templates are overloading, right?

Yes and no.

Function templates participate in name resolution for overloaded functions, but the rules are different. For a template to be considered in overload resolution, the type has to match exactly. If the types do not match exactly, the conversions are not considered and the template is simply dropped from the set of viable functions. That's what is known as "SFINAE" — Substitution Failure Is Not An Error. Example:

 #include <iostream>
 #include <typeinfo>
 
 template<typename T> void foo(T* x)
 { std::cout << "foo<" << typeid(T).name() << ">(T*)\n"; }
 
 void foo(int x)
 { std::cout << "foo(int)\n"; }
 
 void foo(double x)
 { std::cout << "foo(double)\n"; }
 
 int main()
 {
     foo(42);        
// matches foo(int) exactly
     foo(42.0);      
// matches foo(double) exactly
     foo("abcdef");  
// matches foo<T>(T*) with T = char
     return 0;
 }

In this example, foo<T> cannot be considered for the first or the second call to foo in the body of main because neither 42 nor 42.0 gives the compiler any information to deduce T. The third call, however, includes foo<T> with T = char and it wins.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.12] Why can't I separate the definition of my templates class from its declaration and put it inside a .cpp file?

If all you want to know is how to fix this situation, read the next two FAQs. But in order to understand why things are the way they are, first accept these facts:

  1. A template is not a class or a function. A template is a "pattern" that the compiler uses to generate a family of classes or functions.
  2. In order for the compiler to generate the code, it must see both the template definition (not just declaration) and the specific types/whatever used to "fill in" the template. For example, if you're trying to use a Foo<int>, the compiler must see both the Foo template and the fact that you're trying to make a specific Foo<int>.
  3. Your compiler probably doesn't remember the details of one .cpp file while it is compiling another .cpp file. It could, but most do not and if you are reading this FAQ, it almost definitely does not. BTW this is called the "separate compilation model."

Now based on those facts, here's an example that shows why things are the way they are. Suppose you have a template Foo defined like this:

 template<typename T>
 class Foo {
 public:
   Foo();
   void someMethod(T x);
 private:
   T x;
 };

Along with similar definitions for the member functions:

 template<typename T>
 Foo<T>::Foo()
 {
   
...
 }
 
 template<typename T>
 void Foo<T>::someMethod(T x)
 {
   
...
 }

Now suppose you have some code in file Bar.cpp that uses Foo<int>:

 // Bar.cpp
 
 void blah_blah_blah()
 {
   
...
   Foo<int> f;
   f.someMethod(5);
   
...
 }

Clearly somebody somewhere is going to have to use the "pattern" for the constructor definition and for the someMethod() definition and instantiate those when T is actually int. But if you had put the definition of the constructor and someMethod() into file Foo.cpp, the compiler would see the template code when it compiled Foo.cpp and it would see Foo<int> when it compiled Bar.cpp, but there would never be a time when it saw both the template code and Foo<int>. So by rule #2 above, it could never generate the code for Foo<int>::someMethod().

A note to the experts: I have obviously made several simplifications above. This was intentional so please don't complain too loudly. If you know the difference between a .cpp file and a compilation unit, the difference between a class template and a template class, and the fact that templates really aren't just glorified macros, then don't complain: this particular question/answer wasn't aimed at you to begin with. I simplified things so newbies would "get it," even if doing so offends some experts.

Reminder: Read the next two FAQs for some solutions to this problem.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.13] How can I avoid linker errors with my template functions?  Updated! 

[Recently fixed a typo thanks to Thomas Middeldorp (in 7/11). Click here to go to the next FAQ in the "chain" of recent changes.]

Tell your C++ compiler which instantiations to make while it is compiling your template function's .cpp file.

As an example, consider the header file foo.h which contains the following template function declaration:

 // File "foo.h"
 template<typename T>
 extern void foo();

Now suppose file foo.cpp actually defines that template function:

 // File "foo.cpp"
 #include <iostream>
 #include "foo.h"
 
 template<typename T>
 void foo()
 {
   std::cout << "Here I am!\n";
 }

Suppose file main.cpp uses this template function by calling foo<int>():

 // File "main.cpp"
 #include "foo.h"
 
 int main()
 {
   foo<int>();
   
...
 }

If you compile and (try to) link these two .cpp files, most compilers will generate linker errors. There are two solutions for this. The first solution is to physically move the definition of the template function into the .h file, even if it is not an inline function. This solution may (or may not!) cause significant code bloat, meaning your executable size may increase dramatically (or, if your compiler is smart enough, may not; try it and see).

The other solution is to leave the definition of the template function in the .cpp file and simply add the line template void foo<int>(); to that file:

 // File "foo.cpp"
 #include <iostream>
 #include "foo.h"
 
 template<typename T> void foo()
 {
   std::cout << "Here I am!\n";
 }
 
 template void foo<int>();

If you can't modify foo.cpp, simply create a new .cpp file such as foo-impl.cpp as follows:

 // File "foo-impl.cpp"
 #include "foo.cpp"
 
 template void foo<int>();

Notice that foo-impl.cpp #includes a .cpp file, not a .h file. If that's confusing, click your heels twice, think of Kansas, and repeat after me, "I will do it anyway even though it's confusing." You can trust me on this one. But if you don't trust me or are simply curious, the rationale is given earlier.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.14] How does the C++ keyword export help with template linker errors?

The C++ keyword export was originally designed to eliminate the need to include a template definition (either by providing the definition in the header file or by including the implementation file). However, only a few compilers ever supported this capability, such as Comeau C++ and Sun Studio, and the general concensus was that it was not worth the trouble.

Because of that, the C++0x standardization committee has voted to remove the export feature from the language. Assuming this meets final approval, export will remain a reserved word but it will no longer have any meaning in the standard.

If you are working with a compiler that supports the export keyword, it will probably continue to support the keyword via some sort of compiler option or extension until its users migrate away from it. If you already have code that uses export, you can use a fairly simple discipline to allow your code to easily migrate if/when your compiler stops supporting it entirely. Just define your template header-files like this:

 // File Foo.h
 
 #ifdef USE_EXPORT_KEYWORD
 export
 #endif
 template<typename T>
 class Foo {
   
...
 };
 
 #ifndef USE_EXPORT_KEYWORD
   #include "Foo.cpp"
 #endif

And define your non-inline functions in a source-file like this:

 // File Foo.cpp
 
 #ifdef USE_EXPORT_KEYWORD
 export
 #endif
 template<typename T> ...

Then compile with -DUSE_EXPORT_KEYWORD, or whatever equivalent compiler option lets you set a preprocessor symbol like USE_COMPILER_KEYWORD, and if/when your compiler removes support for export, just remove that compiler option.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.15] How can I avoid linker errors with my template classes?  Updated! 

[Recently fixed a typo thanks to Thomas Middeldorp (in 7/11). Click here to go to the next FAQ in the "chain" of recent changes.]

Tell your C++ compiler which instantiations to make while it is compiling your template class's .cpp file.

(If you've already read the previous FAQ, this answer is completely symmetric with that one, so you can probably skip this answer.)

As an example, consider the header file Foo.h which contains the following template class. Note that method Foo<T>::f() is inline and methods Foo<T>::g() and Foo<T>::h() are not.

 // File "Foo.h"
 template<typename T>
 class Foo {
 public:
   void f();
   void g();
   void h();
 };
 
 template<typename T>
 inline
 void Foo<T>::f()
 {
   
...
 }

Now suppose file Foo.cpp actually defines the non-inline methods Foo<T>::g() and Foo<T>::h():

 // File "Foo.cpp"
 #include <iostream>
 #include "Foo.h"
 
 template<typename T>
 void Foo<T>::g()
 {
   std::cout << "Foo<T>::g()\n";
 }
 
 template<typename T>
 void Foo<T>::h()
 {
   std::cout << "Foo<T>::h()\n";
 }

Suppose file main.cpp uses this template class by creating a Foo<int> and calling its methods:

 // File "main.cpp"
 #include "Foo.h"
 
 int main()
 {
   Foo<int> x;
   x.f();
   x.g();
   x.h();
   
...
 }

If you compile and (try to) link these two .cpp files, most compilers will generate linker errors. There are two solutions for this. The first solution is to physically move the definition of the template functions into the .h file, even if they are not inline functions. This solution may (or may not!) cause significant code bloat, meaning your executable size may increase dramatically (or, if your compiler is smart enough, may not; try it and see).

The other solution is to leave the definition of the template function in the .cpp file and simply add the line template class Foo<int>; to that file:

 // File "Foo.cpp"
 #include <iostream>
 #include "Foo.h"
 
 
...definition of Foo<T>::f() is unchanged -- see above...
 
...definition of Foo<T>::g() is unchanged -- see above...
 
 template class Foo<int>;

If you can't modify Foo.cpp, simply create a new .cpp file such as Foo-impl.cpp as follows:

 // File "Foo-impl.cpp"
 #include "Foo.cpp"
 
 template class Foo<int>;

Notice that Foo-impl.cpp #includes a .cpp file, not a .h file. If that's confusing, click your heels twice, think of Kansas, and repeat after me, "I will do it anyway even though it's confusing." You can trust me on this one. But if you don't trust me or are simply curious, the rationale is given earlier.

If you are using Comeau C++, you probably want to learn about the export keyword.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.16] Why do I get linker errors when I use template friends?

Ah, the intricacies of template friends. Here's an example of what people often want to do:

 #include <iostream>
 
 template<typename T>
 class Foo {
 public:
   Foo(T const& value = T());
   friend Foo<T> operator+ (const Foo<T>& lhs, const Foo<T>& rhs);
   friend std::ostream& operator<< (std::ostream& o, const Foo<T>& x);
 private:
   T value_;
 };

Naturally the template will need to actually be used somewhere:

 int main()
 {
   Foo<int> lhs(1);
   Foo<int> rhs(2);
   Foo<int> result = lhs + rhs;
   std::cout << result;
   
...
 }

And of course the various member and friend functions will need to be defined somewhere:

 template<typename T>
 Foo<T>::Foo(T const& value = T())
   : value_(value)
 { }
 
 template<typename T>
 Foo<T> operator+ (const Foo<T>& lhs, const Foo<T>& rhs)
 { return Foo<T>(lhs.value_ + rhs.value_); }
 
 template<typename T>
 std::ostream& operator<< (std::ostream& o, const Foo<T>& x)
 { return o << x.value_; }

The snag happens when the compiler sees the friend lines way up in the class definition proper. At that moment it does not yet know the friend functions are themselves templates; it assumes they are non-templates like this:

 Foo<int> operator+ (const Foo<int>& lhs, const Foo<int>& rhs)
 { ... }
 
 std::ostream& operator<< (std::ostream& o, const Foo<int>& x)
 { ... }

When you call the operator+ or operator<< functions, this assumption causes the compiler to generate a call to the non-template functions, but the linker will give you an "undefined external" error because you never actually defined those non-template functions.

The solution is to convince the compiler while it is examining the class body proper that the operator+ and operator<< functions are themselves templates. There are several ways to do this; one simple approach is pre-declare each template friend function above the definition of template class Foo:

 template<typename T> class Foo;  // pre-declare the template class itself
 template<typename T> Foo<T> operator+ (const Foo<T>& lhs, const Foo<T>& rhs);
 template<typename T> std::ostream& operator<< (std::ostream& o, const Foo<T>& x);

Also you add <> in the friend lines, as shown:

 #include <iostream>
 
 template<typename T>
 class Foo {
 public:
   Foo(T const& value = T());
   friend Foo<T> operator+ <> (const Foo<T>& lhs, const Foo<T>& rhs);
   friend std::ostream& operator<< <> (std::ostream& o, const Foo<T>& x);
 private:
   T value_;
 };

After the compiler sees that magic stuff, it will be better informed about the friend functions. In particular, it will realize that the friend lines are referring to functions that are themselves templates. That eliminates the confusion.

Another approach is to define the friend function within the class body at the same moment you declare it to be a friend. For example:

 #include <iostream>
 
 template<typename T>
 class Foo {
 public:
   Foo(T const& value = T());
 
   friend Foo<T> operator+ (const Foo<T>& lhs, const Foo<T>& rhs)
   {
     
...
   }
 
   friend std::ostream& operator<< (std::ostream& o, const Foo<T>& x)
   {
     
...
   }
 
 private:
   T value_;
 };

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.17] How can any human hope to understand these overly verbose template-based error messages?

Here's a free tool that transforms error messages into something more understandable. At the time of this writing, it works with the following compilers: Comeau C++, Intel C++, CodeWarrior C++, gcc, Borland C++, Microsoft Visual C++, and EDG C++.

Here's an example showing some unfiltered gcc error messages:

 rtmap.cpp: In function `int main()':
 rtmap.cpp:19: invalid conversion from `int' to `
    std::_Rb_tree_node<std::pair<const int, double> >*'
 rtmap.cpp:19:   initializing argument 1 of `std::_Rb_tree_iterator<_Val, _Ref,
    _Ptr>::_Rb_tree_iterator(std::_Rb_tree_node<_Val>*) [with _Val =
    std::pair<const int, double>, _Ref = std::pair<const int, double>&, _Ptr =
    std::pair<const int, double>*]'
 rtmap.cpp:20: invalid conversion from `int' to `
    std::_Rb_tree_node<std::pair<const int, double> >*'
 rtmap.cpp:20:   initializing argument 1 of `std::_Rb_tree_iterator<_Val, _Ref,
    _Ptr>::_Rb_tree_iterator(std::_Rb_tree_node<_Val>*) [with _Val =
    std::pair<const int, double>, _Ref = std::pair<const int, double>&, _Ptr =
    std::pair<const int, double>*]'
 E:/GCC3/include/c++/3.2/bits/stl_tree.h: In member function `void
    std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::insert_unique(_II,
     _II) [with _InputIterator = int, _Key = int, _Val = std::pair<const int,
    double>, _KeyOfValue = std::_Select1st<std::pair<const int, double> >,
    _Compare = std::less<int>, _Alloc = std::allocator<std::pair<const int,
    double> >]':
 E:/GCC3/include/c++/3.2/bits/stl_map.h:272:   instantiated from `void std::map<_
 Key, _Tp, _Compare, _Alloc>::insert(_InputIterator, _InputIterator) [with _Input
 Iterator = int, _Key = int, _Tp = double, _Compare = std::less<int>, _Alloc = st
 d::allocator<std::pair<const int, double> >]'
 rtmap.cpp:21:   instantiated from here
 E:/GCC3/include/c++/3.2/bits/stl_tree.h:1161: invalid type argument of `unary *
    '

Here's what the filtered error messages look like (note: you can configure the tool so it shows more information; this output was generated with settings to strip things down to a minimum):

 rtmap.cpp: In function `int main()':
 rtmap.cpp:19: invalid conversion from `int' to `iter'
 rtmap.cpp:19:   initializing argument 1 of `iter(iter)'
 rtmap.cpp:20: invalid conversion from `int' to `iter'
 rtmap.cpp:20:   initializing argument 1 of `iter(iter)'
 stl_tree.h: In member function `void map<int,double>::insert_unique(_II, _II)':
     [STL Decryptor: Suppressed 1 more STL standard header message]
 rtmap.cpp:21:   instantiated from here
 stl_tree.h:1161: invalid type argument of `unary *'

Here is the source code to generate the above example:

 #include <map>
 #include <algorithm>
 #include <cmath>
 
 const int values[] = { 1,2,3,4,5 };
 const int NVALS = sizeof values / sizeof (int);
 
 int main()
 {
     using namespace std;
 
     typedef map<int, double> valmap;
 
     valmap m;
 
     for (int i = 0; i < NVALS; i++)
         m.insert(make_pair(values[i], pow(values[i], .5)));
 
     valmap::iterator it = 100;              
// error
     valmap::iterator it2(100);              
// error
     m.insert(1,2);                          
// error
 
     return 0;
 }

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.18] Why am I getting errors when my template-derived-class uses a nested type it inherits from its template-base-class?

Perhaps surprisingly, the following code is not valid C++, even though some compilers accept it:

 template<typename T>
 class B {
 public:
   class Xyz { ... };  
 type nested in class B<T>
   typedef int Pqr;    
 type nested in class B<T>
 };
 
 template<typename T>
 class D : public B<T> {
 public:
   void g()
   {
     Xyz x;  
 bad (even though some compilers erroneously (temporarily?) accept it)
     Pqr y;  
 bad (even though some compilers erroneously (temporarily?) accept it)
   }
 };

This might hurt your head; better if you sit down.

Within D<T>::g(), name Xyz and Pqr do not depend on template parameter T, so they are known as a nondependent names. On the other hand, B<T> is dependent on template parameter T so B<T> is called a dependent name.

Here's the rule: the compiler does not look in dependent base classes (like B<T>) when looking up nondependent names (like Xyz or Pqr). As a result, the compiler does not know they even exist let alone are types.

At this point, programmers sometimes prefix them with B<T>::, such as:

 template<typename T>
 class D : public B<T> {
 public:
   void g()
   {
     B<T>::Xyz x;  
 bad (even though some compilers erroneously (temporarily?) accept it)
     B<T>::Pqr y;  
 bad (even though some compilers erroneously (temporarily?) accept it)
   }
 };

Unfortunately this doesn't work either because those names (are you ready? are you sitting down?) are not necessarily types. "Huh?!?" you say. "Not types?!?" you exclaim. "That's crazy; any fool can SEE they are types; just look!!!" you protest. Sorry, the fact is that they might not be types. The reason is that there can be a specialization of B<T>, say B<Foo>, where B<Foo>::Xyz is a data member, for example. Because of this potential specialization, the compiler cannot assume that B<T>::Xyz is a type until it knows T. The solution is to give the compiler a hint via the typename keyword:

 template<typename T>
 class D : public B<T> {
 public:
   void g()
   {
     typename B<T>::Xyz x;  
 good
     typename B<T>::Pqr y;  
 good
   }
 };

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.19] Why am I getting errors when my template-derived-class uses a member it inherits from its template-base-class?

Perhaps surprisingly, the following code is not valid C++, even though some compilers accept it:

 template<typename T>
 class B {
 public:
   void f() { }  
 member of class B<T>
 };
 
 template<typename T>
 class D : public B<T> {
 public:
   void g()
   {
     f();  
 bad (even though some compilers erroneously (temporarily?) accept it)
   }
 };

This might hurt your head; better if you sit down.

Within D<T>::g(), the name f does not depend on template parameter T, so f is known as a nondependent name. On the other hand, B<T> is dependent on template parameter T so B<T> is called a dependent name.

Here's the rule: the compiler does not look in dependent base classes (like B<T>) when looking up nondependent names (like f).

This doesn't mean that inheritance doesn't work. Class D<int> is still derived from class B<int>, the compiler still lets you implicitly do the is-a conversions (e.g., D<int>* to B<int>*), dynamic binding still works when virtual functions are invoked, etc. But there is an issue about how names are looked up.

Workarounds:

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.20] Can the previous problem hurt me silently? Is it possible that the compiler will silently generate the wrong code?

Yes.

Since non-dependent types and non-dependent members are not found in the dependent template base-classes, the compiler will search the enclosing scope, such as the enclosing namespace. This can cause it to silently(!) do the wrong thing.

For example:

 class Xyz { ... };   global ("namespace scope") type
 void f() { }        
 global ("namespace scope") function
 
 template<typename T>
 class B {
 public:
   class Xyz { ... };  
 type nested in class B<T>
   void f() { }        
 member of class B<T>
 };
 
 template<typename T>
 class D : public B<T> {
 public:
   void g()
   {
     Xyz x;  
 suprise: you get the global Xyz!!
     f();    
 suprise: you get the global f!!
   }
 };

The use of Xyz and f within D<T>::g() will silently(!) resolve to the global entities rather than those inherited from class B<T>.

You have been warned.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.21] How can I create a container-template that allows my users to supply the type of the underlying container that actually stores the values?  Updated! 

[Recently fixed a typo thanks to Thomas Middeldorp (in 7/11). Click here to go to the next FAQ in the "chain" of recent changes.]

First, let's clarify the question: the goal is to create a template Foo<>, but having the template parameter-list include some particular type of std::vector<T> or std::list<T> or some other (possibly non-standard) container to actually store the values.

Here's one way to do that:

 template<typename Underlying>
 class Foo {
 public:
   
// typename value_type is the type of the values within a Foo-container
   typedef typename Underlying::value_type  value_type;
 
   void insert(const typename value_type& x)
   {
     
 code to insert x into data_
   }
 
   
...
 private:
   Underlying data_;
 };
 
 Foo<std::vector<int> > x;
 Foo<std::list<double> > y;

If you want to allow your users to provide you with an underlying container that does not necessarily have a value_type typedef (such as some container from a third party), you could provide the value-type explicitly:

 template<typename T, typename Underlying>
 class Foo {
 public:
   
// typename value_type is the type of the values within a Foo-container
   typedef T  value_type;
 
   void insert(const typename value_type& x)
   {
     
 code to insert x into data_
   }
 
   
...
 
 private:
   Underlying data_;
 };
 
 Foo<int, std::vector<int> > x;
 Foo<double, std::list<double> > y;

However you cannot (yet) provide an unspecified template as a template parameter, such as this:

 template<typename T, template<typename> class Underlying>   conceptual only; not C++
 class Foo {
 public:
   
...
 private:
   Underlying<T> data_;     
 conceptual only; not C++
 };
 
 Foo<int, std::vector> x;   
 conceptual only; not C++
 Foo<double, std::list> y;  
 conceptual only; not C++

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.22] Follow-up to previous: can I pass in the underlying structure and the element-type separately?

Yes, with a "proxy" trick.

Here's the problem: std::vector template can have, does have, more than one argument. You're required to make them match in the number, order, and nature — type/non-type, etc.

It is possible, however, to "cheat" your way out of specifying all those arguments and use the defaults. It's called the "proxy template" technique:

 #include <vector>
 #include <list>
 
 template<typename T> 
 struct wrap_vector {
   typedef std::vector<T> type;
 };
 
 template<typename T> 
 struct wrap_list {
   typedef std::list<T> type;
 };
 
 template<typename T, template<typename> class C>
 struct A {
   typename C<T>::type data;  
// trick to use a proxy
 };
 
 int main()
 {
   A<int,wrap_vector> avi;
   A<double,wrap_list> adl;
   
...
 }

You can also create a proxy if you actually have a template that takes only one argument:

 template<typename T>
 struct wrap_my1argtemplate {
   typedef my1argtemplate<T> type;
 };

The "template typedefs" proposal will allow redefining templates just like we do with types, which will make the proxy-trick unnecessary. Until then, use something like the above.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


[35.23] Related: all those proxies must negatively reflect on the speed of my program. Don't they?

No.

They might require an extra microsecond to compile, but once all the types are resolved by the compiler, the resulting code is just as fast as if you used them directly without any proxy templates whatsoever.

Not only that, there are some techniques (template meta programming or TMP) that can, under the right circumstances, improve the efficiency of the generated code. The basic notion is to get the compiler to do more work at compile-time so less work has to be done at runtime.

TopBottomPrevious sectionNext sectionSearch the FAQ ]


E-Mail E-mail the author
C++ FAQTable of contentsSubject indexAbout the author©Download your own copy ]
Revised Jun 26, 2011