Presentation   News Events   Archives    Links   Sections Submit a     paper Mail

FRENIS  zero 

 Rivista di Psicoanalisi Neuro-evolutiva  

  Home Frenis Zero

        

 

 

  "LA DISREGOLAZIONE DEL CERVELLO DESTRO: Un meccanismo fondamentale dell'attaccamento traumatico e della psicopatogenesi del disturbo post-traumatico da stress"

 

 

 

 

 

 

 di Allan N. Schore

 

    Foto: Allan N. Schore

 

 

 

 


 

Allan N. Schore è docente al Dipartimento di Psichiatria e di Scienze Biocomportamentali alla "UCLA David Geffen School of Medicine" e all'"UCLA Center for Culture, Brain and Development". E' autore del libro "Affect Regulation and the Origin of the Self" e di due recenti libri: "Affect Dysregulation and Disorders of the Self" e "Affect Regulation and the Repair of the Self", quest'ultimo uscito anche in italiano per Astrolabio. Si ringrazia sentitamente  l'autore per aver acconsentito alla sua pubblicazione in versione italiana su "Frenis Zero". La traduzione in italiano è di Giuseppe Leo.

Abstract in English:

Objective: This review integrates recent advances in attachment theory, affective neuroscience, developmental stress research, and infant psychiatry in order to delineate the developmental precursors of posttraumatic stress disorder.

Method: Existing attachment, stress physiology, trauma, and neuroscience literatures were collected using Index Medicus/Medline and Psychological Abstracts. This converging interdisciplinary data was used as a theoretical base for modeling the effects of early relational trauma on the developing central and autonomic nervous system activities that drive attachment functions.

Results: Current trends that integrate neuropsychiatry, infant psychiatry, and clinical psychiatry are generating more powerful models of the early genesis of a predisposition to psychiatric disorders, including PTSD. Data are presented which suggest that traumatic attachments, expressed in episodes of hyperarousal and dissociation, are imprinted into the developing limbic and autonomic nervous systems of the early maturing right brain. These enduring structural changes lead to the inefficent stress coping mechanisms that lie at the core of infant, child, and adult posttraumatic stress disorders.

Conclusions: Disorganized-disoriented insecure attachment, a pattern common in infants abused in the first two years of life, is psychologically manifest as an inability to generate a coherent strategy for coping with relational stress. Early abuse negatively impacts the developmental trajectory of the right brain, dominant for attachment, affect regulation, and stress modulation, thereby setting a template for the coping deficits of both mind and body that characterize PTSD symptomatology. These data suggest that early intervention programs can significantly alter the intergenerational transmission of postttraumatic stress disorders.

 

Uno studio recente ed ampio, rappresentativo a livello nazionale, riporta che il 60% degli uomini ed il 50% delle donne sperimenta un evento traumatico in un qualche periodo della loro vita [1]. Eppure questo stesso studio trova che le stime del tipo 'lifetime' del disturbo post-traumatico da stress (PTSD) sono del 5% per gli uomini e del 10% per le donne. Un'altra ricerca indica che approssimativamente solo una metà di coloro che hanno un episodio di PTSD sviluppano sintomi cronici del disturbo [2]. Questi dati sottostimano un problema centrale: sebbene il trauma sia un elemento comune di molte se non della maggior parte delle vite umane, perché solo una certa proporzione minoritaria di individui esposta alle varie forme di trauma sviluppa reazioni patologiche croniche a livello mentale e fisico nei confronti di eventi catastrofici della vita?

Un gran cambiamento nel nostro approccio a questo problema si riflette nel passaggio dal DSM-III-R, in cui la gravità del trauma era considerata il fattore chiave nello scatenare uno PTSD, al DSM-IV in cui vengono valorizzate le caratteristiche della vittima, comprese la reazione al trauma. In altre parole, la eziologia del PTSD viene meglio compresa in termini di ciò che un individuo porta all'evento traumatico, come anche ciò che egli sperimenta in seguito, e non la natura dell'evento traumatico in sé e per sé[3]. Ciò chiaramente implica che certi tratti di personalità sono specificatamente associati con l'unicità dei modi con cui gli individui fronteggiano o falliscono nel fronteggiare lo stress.

L'odierna ricerca psicobiologica sul PTSD ripete questo principio[4]:

<<Sebbene molte persone siano esposte al trauma, solo alcuni individui sviluppano lo PTSD; la maggior parte non lo fa. E' possibile che gli esseri umani si differenzino riguardo al livello a cui lo stress induce delle perturbazioni neurobiologiche dei loro sistemi di risposta agli eventi minacciosi, che può tradursi in una differente capacità di fronteggiare le esperienze avversative>> (p. 412). <<Queste differenze individuali esistono prima dell'esposizione al trauma e possono essere utilizzate per costruire dei tests di resistenza e di vulnerabilità allo stress negli esseri umani>> (p. 420).

C'è attualmente un generale consenso che lo  stadio di sviluppo in cui avviene l'esposizione[5] e lo specifico tipo di esposizione traumatica[6] sono fattori essenziali nel PTSD, eppure essi sono stati svalorizzati nella recente letteratura[7]. Sottolineare questi fattori, comunque, porta in primo piano una serie di elementi fondamentali. Quali sono gli effetti a breve ed a lungo termine del trauma negli stadi più precoci dello sviluppo, perché questa esposizione influisce negativamente nella maturazione dei sistemi individuali di "stress coping", e in che modo ciò è correlato con la genesi di organizzazioni di personalità premorbose vulnerabili al PTSD? Tali questioni, che si trovano al centro della teoria del trauma, indirizzano la psichiatria clinica nel regno della psichiatria dell'età evolutiva, ed in particolare di quella infantile.

 

 

Attaccamento e sviluppo dei meccanismi del cervello destro di "stress coping"

 

Di fatto l'esplorazione dello sviluppo dei meccanismi adattativi di "coping" e della personalità è al centro della teoria dell'attaccamento, <<l'approccio dominante per comprendere lo sviluppo precoce socio-emotivo e della personalità durante gli ultimi 25 anni di ricerca>> [8, pag. 145]. Nel suo rivoluzionario libro sull'attaccamento John Bowlby[9] ha ipotizzato che la infantile "capacità di far fronte allo stress" è correlata con certi comportamenti materni, e che l'esito dell'attaccamento ha conseguenze che sono "vitali per la sopravvivenza della specie". L'ipotesi di Bowlby che, all'interno della relazione di attaccamento, la madre modelli lo sviluppo delle risposte di "coping" del bambino è oggi supportata da un gran numero di stdi sperimentali che caratterizzano le cure materne e lo sviluppo delle risposte allo stress[10], e l'influenza dei fattori materni sull'ontogenesi dell'asse limbico-ipotalamico-pituitario-surrenale[11].

Recenti modelli psicobiologici dello sviluppo indicano che

<<Una risposta individuale a stimoli stressogeni può essere disadattativa producendo risposte fisiologiche e comportamentali che possono avere conseguenze dannose, oppure possono essere adattative, rendendo l'individuo capace di migliorare le proprie capacità di 'coping' nei confronti dello stress. Eventi  che sono stati precocemente sperimentati nella vita possono essere particolarmente importanti nel modellare la modalità individuale di responsività nelle fasi successive della vita[12, pag. 1435].

Questi "eventi" sono esperienze di attaccamento, modellate dall'interazione delle predisposizioni psicofisiologiche innate del bambino con l'ambiente sociale delle cure materna[13-22].

Inoltre, l'odierna ricerca di base sullo stress suggerisce che la deprivazione delle cure materne rappresenta una fonte di informazioni ambientali stressogene per il tipo di  evoluzione e di maturazione dei circuiti neuronali del sistema  di regolazione dello stress del bambino[23]. Tutto ciò completa gli studi che indicano che i fattori di stress pre- o post-natali influenzano negativamente la successiva salute mentale, specie quando le cure materne sono assenti. Tale lavoro deriva dal profondo interesse della teoria dell'attaccamento per l'eziologia non solo dello  sviluppo normale, ma anche per quello anomalo. Nell'applicare la teoria ai legami tra i caratteri dello "stress coping" e la psicopatologia, Bowlby [24] ha proposto:

<<Nel campo dell'eziologia e della psicopatologia [la teoria dell'attaccamento] può essere usata come cornice di riferimento per formulare specifiche ipotesi che correlino differenti esperienze familiari a differenti forme di disturbo psichiatrico ed anche, se possibile, a cambiamenti neurofisiologici che accompagnano loro>>.

In questo articolo applicherò questo principio centrale della teoria dell'attaccamento all'eziologia del PTSD. Sebbene i modelli eziologici del PTSD si siano concentrati innanzitutto sull'abuso sessuale infantile, suggerirò che una maggiore attenzione sulle conseguenze neurobiologiche dell'abuso relazionale e dell'attaccamento disregolato del bambino può offrire una più profonda comprensione dei deficit psiconeurobiologici dello "stress coping", sia sul versante mentale che su quello somatico, che definiscono la presentazione sintomatologica del disturbo.

 

Stress ed emisfero destro

 

 

Una crescente quantità di prove recenti mostra che il circuito neuronale del sistema dello stress è localizzato nel cervello destro, il primo a svilupparsi, nell'emisfero cioè che è dominante per il controllo delle funzioni vitali che sostengono la sopravvivenza e la risposta allo stress degli esseri umani[25]. Poiché le strategie di "stress coping" sono profondamente connesse in funzioni essenziali dell'organismo, esse cominciano la loro maturazione prima e dopo la nascita, in un periodo di dominanza del cervello destro[26]. Uno studio molto recente di Risonanza Magnetica (MRI) su bambini riporta che  il volume del cervello aumenta rapidamente durante i primi due anni, che l'aspetto adulto normale si rileva a due anni e che tutti i più importanti fasci di fibre possono essere identificati all'età di 3 anni, e che i bambini sotto i 2 anni mostrano volumi emisferici più grandi a destra che a sinistra[27]. Le esperienze di attaccamento dei primi 2 anni perciò influenzano direttamente la maturazione dipendente dall'esperienza del cervello destro[14, 21, 28-32]. Queste comprendono le esperienze con un "caregiver" traumatizzante, che sono ben note per influenzare negativamente la sicurezza dell'attaccamento del bambino, le sue strategie con cui fa fronte allo stress ("stress coping") ed il sentimento di sé[33, 34].

I recenti studi nel campo della traumatologia dello sviluppo concludono che <<lo stress opprimente legato a maltrattamento nel corso dell'infanzia è associato ad influenze dannose sullo sviluppo del cervello>>[35, pag. 1281]. Questo "maltrattamento" si riferisce in modo specifico alla grave di disregolazione degli affetti di due forme prevalenti di trauma infantile: l'abuso e la trascuratezza. Ci sono molte prove per cui i fattori di stress sociali sono di gran lunga più dannosi rispetto agli stimoli avversativi non sociali[36], e quindi l'attaccamento o il "trauma relazionale" proveniente dall'ambiente sociale ha un impatto più negativo sul cervello del bambino rispetto agli attacchi provenienti dall'ambiente fisico, non umano o inanimato. E così si sta oggi sottolineando che una relazione precoce disfunzionale e traumatica è, in modo specifico, il fattore di stress che porta al PTSD, che il trauma grave di origine interpersonale può avere la meglio su qualsiasi fattore di resilienza genetico, costituzionale, sociale o psicologico, e che i conseguenti effetti dannosi sullo sviluppo cerebrale e le alterazioni dei sistemi biologici di regolazione dello stress possono essere considerati come "un complesso disturbo dello sviluppo indotto dall'ambiente"[37].

Il fatto che un tale trauma sia l'"ambiente" suggerisce chiaramente che il bambino piccolo sperimenta frequentemente non un episodio singolo o acuto, ma un imprevedibile stress traumatico "cumulativo" e cronico nelle sue primissime interazioni con un altro essere umano. La letteratura sullo stress, che oggi sta investigando i "determinanti delle differenze individuali nella reattività allo stress nello sviluppo precoce" dimostra chiaramente che lo stress acuto produce deficit a breve termine e reversibili, mentre lo stress ripetuto, prolungato e cronico è associato a profili a lungo termine di reattività autonomica, espressi in "cambiamenti neuronali strutturali, inclusa l'atrofia che potrebbe condurre a danni permanenti, come la perdita neuronale"[38, pag. 183]. In consonanza con questo principio, in miei  scritti precedenti ho suggerito che il trauma relazionale precoce ha un significativo impatto negativo sulla maturazione dipendente dall'esperienza del cervello destro, che si trova in un periodo critico di crescita durante gli stessi intervalli temporali rispetto alle esperienze diadiche di attaccamento[14, 39-44].

Poiché l'emisfero destro, che si sviluppa più precocemente, è, più del sinistro, profondamente interconnesso coi sistemi autonomico, limbico e della vigilanza, esso è dominante per l'elaborazione dell'informazione sociale, emotiva e corporea[14, 45-47]. Un gran numero di studi oggi indicano che questo emisfero è dominante non solo per la ricezione[48-51], per l'espressione[52], e per la comunicazione[53] dell'emozione, ma anche per il controllo delle reazioni emotive spontaneamente evocate[54], per la modulazione delle "emozioni primarie"[55], e per la capacità adattativa della regolazione degli affetti[14, 18, 56].

Si è detto che la conseguenza più significativa del fattore stressogeno di un trauma relazionale precoce è la mancanza di capacità di auto-regolazione emozionale[57], espressa nella perdita della capacità di regolare l'intensità e la durata degli affetti[58]. Studi fondamentali di neuropsicobiologia dello sviluppo oggi indicano che lo stress perinatale porta ad un affievolimento della risposta di regolazione dello stress della corteccia prefrontale destra (e non sinistra) che diventa manifesto nell'età adulta[59]. Alla luce del ruolo essenziale dell'emisfero destro nella risposta allo stress degli esseri umani, questa concezione psiconeurobiologica della patogenesi del cervello destro indotta dal trauma si basa su dati recenti che suggeriscono che esperienze avverse precoci esitano in un'aumentata sensibilità agli effetti dello stress che si verifica più tardi nella vita e rendono un individuo vulnerabile a disturbi psichiatrici correlati allo stress[60]. La disregolazione affettiva viene oggi considerata un meccanismo fondamentale alla base di tutti i disturbi psichiatrici[61].

Una prospettiva basata sulla neuropsicopatologia dello sviluppo impone che <<Conoscere lo sviluppo neuropsicologico consiste nel confrontarsi col fatto che il cervello è modificabile, in modo tale che la sua organizzazione strutturale riflette la storia dell'organismo>>[62, pag. 297]. Una storia dello stress traumatico relazionale precoce è impressa in modo specifico nel cervello destro, che è dominante per la memoria "autobiografica"[63] o "personale"[64]. Terr[65] scrive che l'esatto rispecchiamento ("literal mirroring") degli eventi traumatici da parte della memoria comportamentale si può stabilire a qualsiasi età, compresa l'infanzia. Questo modello evolutivo suggerisce che gli attaccamenti traumatici, che si verificano in un periodo critico dell'organizzazione del cervello destro, creeranno una durevole vulnerabilità alla disfunzione durante lo stress ed una predisposizione al PTSD.

 

 

 

(fine della prima parte dell'articolo- l'articolo completo verrà pubblicato su un prossimo libro edito a cura di Frenis Zero)
 
 

 

       

 

 

 

 

 

 

 

 

 

Bibliografia originale:

References

  1. Kessler DC. Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry 1995; 52:1048-1060.
  2. Zlotnick C, Warshaw M, Shea MT, Allsworth J, Pearlstein T, Keller MB. Chronicity in posttraumatic stress disorder (PTSD) and predictors of course of comorbid PTSD in patients with anxiety disorders. Journal of Traumatic Stress 1999; 12:89-100.
  3. Schnurr PP, Friedman MJ. An overview of research findings on the nature of posttraumatic stress disorder. In Session: Psychotherapy in Practice 1997; 3:11-25.
  4. Morgan CA III, Wang S, Rasmusson A, Hazlett G, Anderson G, Charney D.S. Relationship among plasma cortisol, catecholamines, neuropeptide Y, and human performance during exposure to uncontrollable stress. Psychosomatic Medicine 2001; 63:412-422.
  5. Pynoos RS. Traumatic stress and developmental psychopathology in children and adolescents. In: Oldham JM, Riba MB, Tasman, A. eds. Review of psychiatry. Washington: American Psychiatric Press, 1993:239-272.
  6. Davidson JRT, Foa E. Post traumatic stress disorder: DSM-IV and beyond. Washington: American Psychiatric Press, 1993.
  7. McFarlane AC, Yehuda R. Clinical treatment of posttraumatic stress disorder: conceptual challenges raised by recent research. Australian and New Zealand Journal of Psychiatry 2000; 34:940-953.
  8. Thompson RA. The legacy of early attachments. Child Development 2000; 71:145-152.
  9. Bowlby J. Attachment and loss. Vol. 1: Attachment. New York: Basic Books, 1969.
  10. Francis DD, Meaney MJ. Maternal care and the development of stress responses. Current Opinion in Neurobiology 1999; 9:128-134.
  11. Levine S. The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Annals of the New York Academy of Sciences 1994; 746:275-288.
  12. Kehoe P, Shoemaker WJ, Triano L, Hoffman J Arons C. Repeated isolation in the neonatal rat produces alterations in behavior and ventral striatal dopamine release in the juvenile after amphetamine challenge. Behavioral Neuroscience 1996; 110:1435-1444.
  13. Nachmias M, Gunnar MR, Mangelsdorf S, Parritz R, Buss K. Behavioral inhibition and stress reactivity: moderating role of attachment security. Child Development 1996; 67:508-522.
  14. Schore AN. Affect regulation and the origin of the self: The neurobiology of emotional development. Mahwah, NJ: Lawrence Erlbaum, 1994.
  15. Schore AN. Early shame experiences and the development of the infant brain. In: Gilbert P, Andrews B. eds. Shame: interpersonal behaviour, psychopathology, and culture. London: Oxford University Press, 1998:57-77.
  16. Schore AN. Foreword to the reissue of Attachment and Loss, Vol. 1: Attachment by John Bowlby. New York: Basic Books, 2000.
  17. Schore AN. Plenary Address: Parent-infant communications and the neurobiology of emotional development. In: Proceedings of Head Startis Fifth National Research Conference, Developmental and contextual transitions of children and families. Implications for research, policy, and practice, 2000:49-73.
  18. Schore AN. The effects of a secure attachment relationship on right brain development, affect regulation, and infant mental health. Infant Mental Health Journal 2001; 22:7-66.
  19. Henry JP Wang S. Effects of early stress on adult affiliative behavior. Psychoneuroendocrinology 1998; 23:863-875.
  20. Valent, P. From survival to fulfillment. A framework for the life-trauma dialectic. Philadelphia, PA: Brunner/Mazel, 1998.
  21. Siegel DJ. The developing mind: Toward a neurobiology of interpersonal experience. New York: Guilford Press, 1999.
  22. Streeck-Fischer A, van der kolk BA. Down will come baby, cradle and all: diagnostic and therapeutic implications of chronic trauma on child development. Australian and New Zealand Journal of Psychiatry 2000; 34:903-918.
  23. Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neuroscience and Biobehavioral Reviews 2001; 25:117-142.
  24. Bowlby J. Attachment theory and its therapeutic implications. In: Feinstein SC Giovacchini PL, eds. Adolescent psychiatry: Developmental and clinical studies. Chicago: University of Chicago Press, 1978.
  25. Wittling W. The right hemisphere and the human stress response. Acta Physiologica Scandinavica, Supplement 1997; 640:55-59.
  26. Chiron C, Jambaque I, Nabbout R, Lounes R, Syrota A, Dulac O. The right brain hemisphere is dominant in human infants. Brain 1997; 120:1057-1065.
  27. Matsuzawa J, Matsui M, Konishi T, Noguchi K, Gur RC, Bilker W, Miyawaki T. Age-related changes of brain gray and white matter in healthy infants and children. Cerebral Cortex 2001; 11:335-342.
  28. Henry JP. Psychological and physiological responses to stress: The right hemisphere and the hypothalamo-pituitary-adrenal axis, an inquiry into problems of human bonding. Integrative Physiological and Behavioral Science 1993; 28:369-387.
  29. Schore AN. The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology. Development and Psychopathology 1996; 8:59-87.
  30. Schore AN. Interdisciplinary developmental research as a source of clinical models. In: Moskowitz M, Monk C, Kaye C, Ellman S, eds.The neurobiological and developmental basis for psychotherapeutic intervention. New York: Jason Aronson, 1997: 1-71.
  31. Schore AN. Attachment and the regulation of the right brain. Attachment & Human Development 2000; 2: 23-47.
  32. Wang S. Traumatic stress and attachment. Acta Physiologica Scandinavica, Supplement 1997; 640:164-169.
  33. Crittenden PM, Ainsworth MDS. Child maltreatment and attachment theory. In: Cicchetti D, Carlson V. eds. Child maltreatment: Theory and research on the causes and consequences of child abuse and neglect. New York: Cambridge University Press, 1989:432-463.
  34. Erickson MF, Egeland B, Pianta R. The effects of maltreatment on the development of young children. In: Cicchetti D, Carlson V. eds. Child maltreatment: Theory and research on the causes and consequences of child abuse and neglect. New York: Cambridge University Press, 1989:647-684.
  35. deBellis MD, Baum AS, Birmaher B, Keshavan MS, Eccard CH, Boring AM, Jenkins FJ, Ryan ND. Developmental traumatology Part I: Biological stress systems. Biological Psychiatry 1999; 45:1259-1270.
  36. Sgoifo A, Koolhaas J, De Boer S, Musso E, Stilli D, Buwalda B, Meerlo P. Social stress, autonomic neural activation, and cardiac activity in rats. Neuroscience and Biobehavioral Reviews 1999; 23:915-923.
  37. de Bellis, MD. Developmental traumatology: the psychobiological development of maltreated children and its implications for research, treatment, and policy. Development and Psychopathology 2001; 13:539-564.
  38. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Research 2000; 886:172-189.
  39. Schore AN. Early organization of the nonlinear right brain and development of a predisposition to psychiatric disorders. Development and Psychopathology 1997; 9:595-631.
  40. Schore AN. Early trauma and the development of the right brain. Unpublished keynote address, Royal Australian and New Zealand College of Psychiatrists, Faculty of Child and Adolescent Psychiatry 11th Annual Conference, Sydney, Australia, October, 1998.
  41. Schore AN. Early trauma and the development of the right brain. Unpublished keynote address, C.M. Hincks Institute Conference, "Traumatized parents and infants: The long shadow of early childhood trauma", University of Toronto, Toronto, Canada, November, 1998.
  42. Schore AN. Early trauma and the development of the right brain. Unpublished keynote address, Boston University School of Medicine Conference, "Psychological trauma: Maturational processes and therapeutic interventions," Boston, MA, April, 1999.
  43. Schore AN. The enduring effects of early trauma on the right brain. Unpublished address, Annual Meeting of the American Academy of Child and Adolescent Psychiatry, Symposium, "Attachment, trauma, and the developing mind", Chicago, IL, October, 1999.
  44. Schore AN. The effects of relational trauma on right brain development, affect regulation, and infant mental health. Infant Mental Health Journal 2001; 22: 201-269.
  45. Schore AN. The self-organization of the right brain and the neurobiology of emotional development. In: Lewis MD, Granic I, eds. Emotion, development, and self-organization. New York: Cambridge University Press, 2000:155-185.
  46. Schore AN. The right brain as the neurobiological substratum of Freudis dynamic unconscious. In: Scharff D, ed. The psychoanalytic century: Freudis legacy for the future. New York: The Other Press, 2001: 61-88.
  47. Devinsky O. Right cerebral hemisphere dominance for a sense of corporeal and emotional self. Epilepsy & Behavior 2000; 1:60-73.
  48. Adolphs R, Damasio H, Tranel D, Damasio, AR. Cortical systems for the recognition of emotion in facial expressions. Journal of Neuroscience, 1996; 23:7678-7687.
  49. George MS, Parekh PI, Rosinsky N, Ketter TA, Kimbrell TA, Heilman KM, Herscovitch P, Post RM. Understanding emotional prosody activates right hemispheric regions. Archives of Neurology 1996; 53:665-670.
  50. Borod J, Cicero BA, Obler, LK, Welkowitz J, Erhan HM, Santschi C, Grunwald IS, Agosti RM, Whalen JR. Right hemisphere emotional perception: Evidence across multiple channels. Neuropsychology 1998; 12:446-458.
  51. Nakamura K, Kawashima R, Ito K, Sugiura M, Kato T, Nakamura A, Hatano K, Nagumo S, Kubota K, Fukuda H, Kojima S. Activation of the right inferior frontal cortex during assessment of facial emotion. Journal of Neurophysiology 1999; 82:1610-1614.
  52. Borod J, Haywood CS, Koff E. Neuropsychological aspects of facial asymmetry during emotuional expression: A review of the adult literature. Neuopsychology Review 1997; 7:41-60.
  53. Blonder LX, Bowers D, Heilman KM. The role of the right hemisphere in emotional communication. Brain, 1991;114:1115-1127.
  54. Dimberg U, Petterson M. Facial reactions to happy and angry facial expressions: Evidence for right hemsphere dominance. Psychophysiology 2000; 37:693-696.
  55. Ross ED, Homan RW, Buck R. Differential hemispheric lateralization of primary and social emotions. Implications for developing a comprehensive neurology for emotions, repression, and the subconscious. Neuropsychiatry, Neuropsychology, and Behavioral Neurology 1994; 7:1-19.
  56. Schore AN. The experience-dependent maturation of an evaluative system in the cortex. In: Pribram KH, ed. Fifth Appalachian conference on behavioral neurodynamics, "Brain and values". Mahweh, NJ: Lawrence Erlbaum, 1998:337-358.
  57. Toth SC, Cicchetti D. Remembering, forgetting, and the effects of trauma on memory: a developmental psychopathologic perspective. Developmental and Psychopathology 1998; 10:580-605.
  58. van der Kolk BA, Fisler RE. Childhood abuse and neglect and loss of self-regulation. Bulletin of the Menninger Clinic 1994; 58:145-168.
  59. Brake WG, Sullivan RM, Gratton A. Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. Journal of Neuroscience 2000; 20: 5538-5543.
  60. Graham YP, Heim C, Goodman SH, Miller AH, Nemeroff CB. The effects of neonatal stress on brain development: implications for psychopathology. Development and Psychopathology 1999; 11:545-565.
  61. Taylor GJ, Bagby RM, Parker JDA. Disorders of affect regulation: Alexithymia in medical and psychiatric illness. Cambridge, UK: Cambridge University Press, 1997.
  62. Luu P, Tucker DM. Self-regulation and cortical development: Implications for functional studies of the brain. In: Thatcher RW, Reid Lyon G, Rumsey J, Krasnegor N, eds. Developmental neuroimaging: Mapping the development of brain and behavior. San Diego, Academic Press,1996:297-305.
  63. Fink GR, Markowitsch HJ, Reinkemeier M, Bruckbauer T, Kessler J, Heiss W-D. Cerebral representation of oneis own past: Neural networks involved in autobiographical memory. Journal of Neuroscience 1996; 16:4275-4282.
  64. Nakamura K, Kawashima R, Ito K, Sato N, Nakamura A, Sugiura M, Kato T, Hatano K, Ito K, Fukuda H, Schorman T, Zilles K. Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. Brain 2000; 123:1903-1912.
  65. Terr LC. What happens to early memories of trauma? Journal of the American Academy of Child and Adolescent Psychiatry 1988; 1:96-104.
  66. van der Kolk, B.A. (1996). The body keeps the score. Approaches to the psychobiology of posttraumatic stress disorder. In: van der Kolk BA, McFarlane AC, Weisaeth L, eds. Traumatic stress: the effects of overwhelming experience on mind, body, and society. New York, Guilford Press, 1996:214-241.
  67. Garavan H, Ross TJ, Stein E.A. Right hemisphere dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences of the United States of America 1999; 96:8301-8306.
  68. Rauch SL, van der Kolk BA, Fisler RE, Alpert NM, Orr SP, Savage CR, Fischman AJ, Jenike MA, Pitman RK. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Archives of General Psychiatry 1996; 53:380-387.
  69. Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM, Metzger LJ, Lasko NB, Orr SP, Pitman RK. Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. American Journal of Psychiatry 1999; 156:575-584.
  70. Schuff N, Marmar CR, Weiss DS, Neylan TC, Schoenfield F, Fein G, Weiner MW. Reduced hippocampal volume and n-acetyl aspartate in posttraumatic stress disorder. Annals of the New York Academy of Sciences 1997; 821:516-520.
  71. Falk D, Hildebolt C, Cheverud J, Vannier M, Helmkamp, RC, Konigsberg, L. Cortical asymmetries in frontal lobes of Rhesus monkeys (Macaca mulatta). Brain Research, 1990; 512: 40-45.
  72. Semple, WE, Goyer P, McCormick R, Morris E. Compton B, Donvan B, Berridge M, Miraldi F, Schulz SC. Increased orbital frontal cortex blood flow and hippocampal abnormality in PTSD: a pilot PET syudy. Biological Psychiatry 1992; 31:129A.
  73. Charney DS, Deutch AY, Southwick SM, Krystal JH Neural circuits and mechanisms of post-traumatic stress disorder. In: Friedman MJ, Charney DS eds. Neurobiological and clinical consequences of stress: from normal adaptation to post-traumatic stress disorder. Philadelphia: Lippincott Williams & Wilkins, 1995.
  74. Deutch AY, Young CD. A model of the stress-induced activation of prefrontal cortical dopamine systems: Coping and the development of post-traumatic stress disorder. In: Friedman MJ, Charney DS eds. Neurobiological and clinical consequences of stress: from normal adaptation to post-traumatic stress disorder Philadelphia: Lippincott Williams & Wilkins, 1995:163-175.
  75. Bremner JD, Innis RB, Ng CK, Staib LH, Salomon RM, Bronen RA, Duncan J, Southwick SM, Krystal JH, Rich D, Zubal G, Dey H, Soufer R, Charney DS. Positron emission tomography measurement of cerebral metabolic correlates of yohimbe administration in combat-related posttraumatic stress disorder. Archives of General Psychiatry 1997; 54:246-254.
  76. Vasterling JJ, Brailey K, Sutker PB. Olfactory identification in combat-related posttraumatic stress disorder. Journal of Traumatic Stress 2000; 13:241-253.
  77. Galletly C. Clark CR, McFarlane AC, Weber DL Working memory in posttraumatic stress disorder n an event-related potential study. Journal of Traumatic Stress 2001; 14:295-309.
  78. Berthier ML, Posada A, Puentes C. Dissociative flashbacks after right frontal injury in a Vietnam veteran with combat-related posttraumatic stress disorder. Journal of Neuropsychiatry and Clinical Neuroscience 2001; 13:101-105.
  79. Koenen KC, Driver KL, Oscar-Berman M, Wolfe J, Folsom S, Huang MT, Schlessinger L. Measures of prefrontal system dysfunction in posttraumatic stress disorder. Brain and Cognition 2001; 45:64-78.
  80. Hariri AR, Bookheimer SY Mazziotta JC. Modulating emotional responses: effects of a neocortical network on the limbic system. NeuroReport 2000; 11:43-48.
  81. Schore AN. The right brain, the right mind, and psychoanalysis. On-line at the website for Neuro-Psychoanalysis, http://www.neuro-psa.com/schore.htm 1999.
  82. Adamec RE. Transmitter systems involved in neural plasticity underlying increased anxiety and defense - implications for understanding anxiety following traumatic stress. Neuroscience and Biobehavioral Reviews 1997; 21:755-765.
  83. Whalen PJ, Rauch SL, Etcoff N, McInerney SC, Lee MB, Jenike, MA. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience 1998; 18:411-418.
  84. Adolphs R, Tranel D, Damasio H. Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology 2001; 15:396-404.
  85. Morris JS, Ohman, A, Dolan RJ. A subcortical pathway to the right amygdala mediating "unseen" fear. Proceedings of the National Academy of Sciences of the Unitted States of America 1999; 96:1680-1685.
  86. Morgan MA LeDoux JE. Differential acquisition of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioral Neuroscience 1995; 109:681-688.
  87. La Bar KS, Gatenby JC, Gore JC, Le Doux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron 1998; 20:937-945.
  88. Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neuroscience Letters 1993; 163:109-113.
  89. Putnam FW. Development of dissociative disorders. In: Cicchetti D, Cohen, DJ, eds. Developmental psychopathology: Vol. 2 Risk, disorder, and adaptation. New York: Wiley, 1995: 581-608.
  90. Main M. Introduction to the special section on attachment and psychopathology: 2. Overview of the field of attachment. Journal of Consulting and Clinical Psychology 1996; 64:237-243.
  91. Liotti G. Disorganized/disoriented attachment in the etiology of the dissociative disorders. Dissociation 1992; IV:196-204.
  92. Schore AN. Early relational trauma and the development of the right brain. Unpublished keynote address, Joint Annual Conference, Australian Centre for Posttraumatic Mental Health and The Australasian Society for Traumatic Stress Studies, Canberra, Australia, March, 2001.
  93. Chambers RA, Bremner JD, Moghaddam B, Southwick SM, Charney DS, Krystal JH. Glutamate and post-traumatic stress disorder: toward a psychobiology of dissociation. Seminars in Clinical Neuropsychiatry 1999; 4: 274-281.
  94. Weinberg I. The prisoners of despair: right hemisphere deficiency and suicide. In Neuroscience and Biobehavioral Reviews 2000; 24:799-815.
  95. Davidson RJ, Hugdahl K. Brain asymmetry. Cambridge: MA. MIT Press. 1995.
  96. Cutting J. The role of right hemisphere dysfunction in psychiatric disorders. British Journal of Psychiatry 1992; 160:583-588.
  97. Janet P. LiAutomatisme psychologique. Paris: Alcan, 1889.
  98. Keenan JP, Nelson A, OiConnor M, Pascual-Leone A. Self-recognition and the right hemisphere. Nature 2001; 409:305.
  99. McFarlane AC. Traumatic stress in the 21st century. Australian and New Zealand Journal of Psychiatry 2000; 34:896-902.
  100. Rapoport S. The development of neurodevelopmental psychiatry. American Journal of Psychiatry 2000; 157:159-161.
  101. Basch MF. The concept of affect: A re-examination. Journal of the American Psychoanalytic Association 1976; 24:759-777.
  102. Sroufe L.A. Emotional development: The organization of emotional life in the early years. New York: Cambridge Universty Press, 1996.
  103. Stern D. N. The interpersonal world of the infant. New York: Basic Books, 1985.
  104. Spangler G. Schieche M, Ilg U, Maier U, Ackerman C. Maternal sensitivity as an organizer for biobehavioral regulation in infancy. Developmental Psychobiology 1994; 27:425-437.
  105. MacLean PD. Evolutionary psychiatry and the triune brain. Psychological Medicine 1985; 15:219-221.
  106. Mesulam M-M. From sensation to cognition. Brain 1998; 121:1013-1052.
  107. Tucker DM. Developing emotions and cortical networks. In: Gunnar MR, Nelson CA eds. Minnesota symposium on child psychology. Vol. 24, Developmental behavioral neuroscience Hillsdale, NJ: Erlbaum, 1992:75-128.
  108. Spence S, Shapiro D, Zaidel E. The role of the right hemisphere in the physiological and cognitive components of emotional processing. Psychophysiology 1996; 33:112-122.
  109. Rinaman L, Levitt P, Card JP. Progressive postnatal assembly of limbic-autonomic circuits revealed by central transneuronal transport of pseudorabies virus. Journal of Neuroscience, 2000; 20:2731-2741.
  110. Schore AN. The Seventh Annual John Bowlby Memorial Lecture, Minds in the making: attachment, the self-organizing brain, and developmentally-oriented psychoanalytic psychotherapy. British Journal of Psychotherapy 2001; 17:299-328.
  111. Price JL, Carmichael ST, Drevets WC. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Progress in Brain Research 1996; 107:523-536.
  112. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995;118:279-306.
  113. Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology 1995; 363:615-641.
  114. Pribram, KH. Emotions. In: Filskov SB & T.J. Boll TJ, eds. Handbook of clinical neuropsychology. New York: Wiley, 1981:102-134.
  115. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex 2000; 10:220-242.
  116. Ryan RM, Kuhl J, Deci EL. Nature and autonomy: An organizational view of social and neurobiological aspects of self-regulation in behavior and development. Development and Psychopathology 1997; 9:701-728.
  117. Berntson GG, Cacioppo JT, Quigley KS. Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review 1991; 98:459-487.
  118. Hilz HW, Tarnowski W, Arend P. Glucose polymerisation and cortisol. Biochemical and Biophysical Research Communications 1963; 10:492-502.
  119. Shimazu T. Regulation of glycogen metabolism in liver by the autonomic nervous system. IV. Activation of glycogen synthetase by vagal stimulation. Biochimica Biophysica Acta 1971:252, 28-38.
  120. Shimazu T, Amakawa A. Regulation of glycogen metabolism in liver by the autonomic nervous system. II. Neural control of glycogenolytic enzymes. Biochimica Biophysica Acta 1968;165:335-348.
  121. Damasio AR. Descartes' error. New York: Grosset/Putnam, 1994.
  122. Coghill RC, Gilron I, Iadorola MJ. Hemispheric lateralization of somatosensory processing. Journal of Neurophysiology 2001; 85:2602-2612.
  123. Yoon B-W, Morillo CA, Cechetto DF, Hachinski V. Cerebral hemsipheric lateralization in cardiac autonomic control. Archives of Neurology 1997; 54:741-744.
  124. Erciyas AH, Topaktas S, Akyuz A, Dener S. Suppression of cardiac parasympathetic functions in patients with right hemispheric stroke. European Journal of Neurology 1999; 6:685-690.
  125. Porges SW. The polyvagal theory: phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 2001; 42: 123-146.
  126. Neafsey EJ. Prefrontal cortical of the autonomic nervous system: Anatomical and physiological observations. Progress in Brain Research 1990; 85:147-166.
  127. Zald DH, Kim SW. Anatomy and function of the orbital frontal cortex, II: Function and relevance to obsessive-compulsive disorder. Journal of Neuropsychiatry 1996; 8:249-261.
  128. Adolphs R, Damasio H, Tranel D, Cooper G, Damasio AR. A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience 2000; 20:2683-2690.
  129. Bargh JA, Chartrand TL. The unbearable automaticity of being. American Psychologist 1999; 54:462-479.
  130. Hugdahl, K. Classical conditioning and implicit learning: The right hemisphere hypothesis. In: Davidson RJ, Hugdahl K, eds. Brain asymmetry. Cambridge, MA: MIT Press, 1995:235-267.
  131. Thompson RA. Emotion and self-regulation. Nebraska Symposium on Motivation. Lincoln: University of Nebraska Press, 1990: 367-467.
  132. Savage CR, Deckersbach T, Heckers S, Wagner AD, Schacter DL, Alpert NM, Fischman AJ, Rauch SL. Prefrontal regions supporting spontaneous and directed application of verbal learning strategies. Evidence from PET. Brain 2001; 124:219-231.
  133. Elliott R, Dolan RJ, Frith CD. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cerebral Cortex 2000; 10:308-317.
  134. Lipton PA., Alvarez, P, Eichenbaum H. Crossmodal associative memory representations in rodent orbitofrontal cortex. Neuron 1999; 22:349-359.
  135. Davies JM, Frawley MG. Treating the adult survivor of childhood sexual abuse. A psychoanalytic perspective. New York: Basic Books, 1994.
  136. Freyd JJ. Betrayal trauma theory: The logic of forgetting childhood abuse. Cambridge, MA: Harvard University Press, 1996.
  137. Tronick EZ, Weinberg MK. Depressed mothers and infants: failure to form dyadic states of consciousness. In: Murray L, Cooper, PJ., eds. Postpartum depression in child development. New York: Guilford Press, 1997:54-81
  138. Perry BD, Pollard RA, Blakely TL, Baker WL, Vigilante D. Childhood trauma, the neurobiology of adaptation, and "use-dependent" development of the brain. How "states" become "traits". Infant Mental Health Journal 1995; 16:271-291.
  139. Beebe B. Coconstructing mother-infant distress: the microsychrony of maternal impingement and infant avoidance in the face-to-face encounter. Psychoanalytic Inquiry 2000; 20:412-440.
  140. Brown MR, Fisher LA, Spiess J, Rivier C, Rivier J, Vale W. Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism. Endocrinology 1982; 111:928-931.
  141. Butler PD, Weiss JM, Stout JC, Nemeroff CB. Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. Journal of Neuroscience 1990; 10:176-183.
  142. Aston-Jones G, Valentino RJ, Van Bockstaele EJ, Meyerson AT. Locus coeruleus, stress, and PTSD: neurobiological and clinical parallels. In: Marburg MM, ed. Catecholamine function in PTSD. Washington, DC: American Psychiatric Press, 1996:17-62.
  143. Sabban EL, Kvetnansky R. Stress-triggered activation of gene expresion in catecholaminergic systems: dynamics of transcriptional events. Trends n Neuroscience 2001; 24:91-98.
  144. Galton VA. Thyroid hormone-catecholamine relationships. Endocrinology 1965; 77:278-284.
  145. Nunez J. Effects of thyroid hormones during brain differentiation. Molecular and Cellular Endocrinology 1984; 37:125-132.
  146. Lauder JM, Krebs H. Do neurotransmitters, neurohumors, and hormones specify critical periods? In: Greenough WT, Juraska JM, eds. Developmental Neuropsychobiology Orlando, FL: Academic Press, 1986:119-174.
  147. Kvetnansky R, Dobrakovova M, Jezova D, Oprsalova Z, Lichardus B, Makara G. Hypothalamic regulation of plasma catecholamine levels during stress: Effect of vasopressin and CRF. In: Van Loon GR, Kvetnansky R, McCarty R, Axelrod J, eds. Stress: Neurochemical and humoral mechanisms. New York: Gordon and Breach Science Publishers: 1989: 549-570.
  148. Kvetnansky R, Jezova D, Oprsalova Z, Foldes O, Michjlovskij N, Dobrakovova M, lichardus B, Makara GB. Regulation of the sympathetic nervous system by circulating vasopressin. In Porter JC, Jezova D, eds. Circulating regulatory factors and neuroendocrine function. New York: Plenum Press; 1990: 113-134.
  149. Koch KL, Summy-Long J, Bingaman S, Sperry N, Stern, RM. Vasopressin and oxytocin responses to illusory self-motion and nausea in man. Journal of Clinical and Endocrinological Metabolism 1990; 71:1269-1275.
  150. Powles WE. Human development and homeostasis. Madison, CT: International Universities Press, 1992.
  151. Barach PMM. Multiple personality disorder as an attachment disorder. Dissociation, 1991; IV:117-123.
  152. Bion WR. Learning from experience. London: Heinemann, 1962.
  153. Mollon P. Multiple selves, multiple voices: working with trauma, violation and dissociation. Chichester: John Wiley & Sons, 1996.
  154. Putnam FW. Dissociation in children and adolescents: a developmental perspective. New York: Guilford Press, 1997
  155. Dixon AK Ethological strategies for defense in animals and humans: Their role in some psychiatric disorders. British Journal of Medical Psychology 1998; 7: 417-445.
  156. Fanselow, M.S. Condtioned fear-induced opiate analgesia: A compelling motivational state theory of stress analgesia. In: Kelly DD, eds. Stress-induced analgesia. New York: The New York Academy of Sciences, 1986: 40-54.
  157. Porges SW. Emotion: an evolutionary by-product of the neural regulation of the autonomic nervous system. Annals of the New York Academy of Sciences 1997; 807:62-77.
  158. Meares R. The contribution of Hughlings Jackson to an understanding of dissociation. American Journal of Psychiatry 1999; 156:850-1855.
  159. Main M, Solomon J. Discovery of an insecure-disorganized / disoriented attachment pattern: Procedures, findings and implications for the classification of behavior. In: Brazelton TB, Yogman MW, eds. Affective development in infancy, Norwood, NJ: Ablex, 1986:95-124.
  160. Carlson V, Cicchetti D, Barnett D, Braunwald K. Disorganized/disoriented attachment relationships in maltreated infants. Developmental Psychology 1989; 25:525-531.
  161. Hertsgaard L, Gunnar M, Erickson MF, Nachimias M. Adrenocortical responses to the strange situation in infants with disorganized/disoriented attachment relationships. Child Development 1995; 66:1100-1106.
  162. Spangler G, Grossman K. Individual and physiological correlates of attachment disorganization in infancy. In: Solomon J, George C, eds. Attachment disorganization. New York: Guilford Press, 1999:95-124.
  163. Frey S, Petrides M. Orbitofrontal cortex: a key prefrontal region for encoding information. Proceedings of the National Academy of Sciences of the Unitted States of America 2000; 97:8723-8727.
  164. Kawasaki H, Adolphs R, Kaufman O, Damasio H, Damasio AR, Granner M, Bakken H, Hori T, Howard MA. Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nature Neuroscience 2001; 4:15-16.
  165. Hess E, Main MM. Second-generation effects of unresolved trauma in nonmaltreating parents: dissociated, frightened, and threatening parental behavior. Psychoanalytic Inquiry 1999; 19:481-540.
  166. Schuengel C, Bakersmans-Kranenburg MJ, Van Ijzendoorn MH. Frightening maternal behavior linking unresolved loss and disorganized infant attachment. Journal of Consulting and Clinical Psychology 1999; 67:54-63.
  167. Johnson JG, Cohen P, Kasen S, Smailes E, Brook JS. Association of maladaptive parental behavior with psychiatric disorder among parents and their offspring. Archives of General Psychiatry 2001; 58:453-460.
  168. Yehuda R, Halligan SL, Grossman R. Childhood trauma and risk for PTSD: relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Development and Psychopathology 2001; 13:733-753.
  169. Dobbing J, Sands J. Quantitative growth and development of human brain. Archives of Diseases of Childhood 1973; 48:757-767.
  170. McDonald JW, Silverstein FS, Johnston MV. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Research 1988; 459:200-203.
  171. Wittling W, Pfluger M. Neuroendocrine hemisphere asymmetries: Salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain and Cognition 1990; 14:243-265.
  172. Kalogeras KT, Nieman LK, Friedman TC, Doppman JL, Cutler GB Jr, Chrousos GP, Wilder RL, Gold PW, Yanovski JA. Inferior petrosal sinus sampling in healthy human subjects reveals a unilateral corticotropin-releasing hormone-induced arginine vasopressin release associated with ipsilateral adrenocorticotropin secretion. Journal of Clinical Investigation 1996; 97:2045-2050.
  173. Yehuda R. Linking the neuroendocrinology of post-traumatic stress disorder with recent neuroanatomic findings. Seminars in Clinical Neuropsychiatry 1999;4:256-265.
  174. Margolis RL, Chuang DM, Post RM. Programmed cell death: Implications for neuropsychiatric disorders. Biological Psychiatry 1994: 35: 946-956.
  175. Gould E, Wooley CS, McEwen, BS. Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. Journal of Comparative Neurology 1991; 313:479-485.
  176. Gunnar MR, Vazquz DM. Low cortisol and a flattening of expected daytime rhythm: potential indices of risk in human development. Development and Psychopathology 2001; 13:515-538.
  177. Yehuda R, McFarlane AC, Shalev AY. Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biological Psychiatry 1998; 44:1305-1313.
  178. Harkness KL, Tucker DM. Motivation of neural plasticity: neural mechanisms in the self-organization of depression. In: Lewis MD, Granic I, eds. Emotion, development, and self-organization. New York: Cambridge University Press, 2000:186-208.
  179. Post RM, Weiss RB, Leverich GS. Recurrent affective disorder: Roots in developmental neurobiology and illness progression based on changes in gene expression. Development and Psychopathology, 1994; 6:781-813.
  180. Prins A, Kaloupek DG, Keane T.M. Psychophysiological evidence for autonomic arousal and startle in traumatized adult populations. In: Friedman MJ, Charney DS eds. Neurobiological and clinical consequences of stress: from normal adaptation to post-traumatic stress disorder Philadelphia: Lippincott Williams & Wilkins, 1995: 291-314.
  181. Southwick SM, Krystal JH, Morgan A, Johnson D, Nagy LM, Nicolaou A, Heninger GR, Charney DS. Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry 1993; 50:266-274.
  182. Geracioti TD, Baker DG, Ekhator NN, West, SA, Hill KK, Bruce AB, Scmidt D, Rounds-Kugler RN, Yehuda R, Keck PE, Kasckow JW. CSF norepinephrine concentrations in posttraumatic stress disorder. American Journal of Psychiatry 2001; 158:1227-1330.
  183. Gurvits TV, Gilbertson MW, Lasko NB, Tarhan AS, Simeon D, Macklin ML, Orr SP, Pitman RK. Neurologic soft signs in chronic posttraumatic stress disorder. Archives of General Psychiatry 2000; 57:181-186.
  184. Antelman SM, Caggiula AR, Gershon S, Edwards DJ, Austin MC, Kiss S, Kocan D. Stressor-induced oscillation. A possible model of the bidirectional symptoms in PTSD. Annals of the New York Academy of Sciences, 1997; 821:296-304.
  185. Post RM, Weiss SRB, Smith M, Li H, McCann U. Kindling versus Quenching: implications for the evolution and treatment of posttraumatic stress disorder. In: Yehuda R, McFarlane, AC, eds. Psychobiology of posttraumatic stress disorder. New York Academy of Sciences, 1997; 821:285-295.
  186. Sutker PB, Vasterling JJ, Brailey K, Allain AN Jr. Memory, attention, and executive deficits in POW survivors: Contributing biological and psychological factors. Neuropsychology 1995; 9:118-125.
  187. Uddo M, Vasterling JJ, Brailey K, Sutker, PB. Memory and attention in combat-related post-traumatic stress disorder (PTSD). Journal of Psychopathology and Behavioral Assessment 1993; 15:43-52.
  188. Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS. Neural correlates of exposure to traumatic pictures and sound in combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry 1999; 45:806-818.
  189. Hamner MB, Lorberbaum JP, George MS. Potential role of the anterior cingulate cortex in PTSD: review and hypothesis. Depression and Anxiety 1999; 9:1-14.
  190. Young JB, Rosa RM, Landsberg L. Dissociation of sympathetic nervous system and adrenal medullary responses. American Journal of Physiology 1984; 247:E35-E40.
  191. Rolls, E.T. The orbitofrontal cortex. Philosophical Transactions of the Royal Society of London B 1996; 351:1433-1444.
  192. Kinsbourne M, Bemporad, B. Lateralization of emotion: A model and the evidence. In: Fox NA & RJ Davidson eds. The psychobiology of affective development. Hillsdale, NJ: Erlbaum, 1984:259-291.
  193. Adamec RE. Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation (Quenching?) on long-term potentiation of amygdala efferents and behavior following kindling. Brain Research 1999 839:133-152.
  194. Halgren, E. Emotional neurophysiology of the amygdala within the context of human cognition. In: Aggleton JP ed. The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. New York: Wiley-Liss, 1992:191-228.
  195. Davis M. (1989). The role of the amygdala and its efferent projections in fear and anxiety. In: Tyrer P ed. Psychopharmacology of anxiety. Oxford: Oxford University Press, 1989:52-79.
  196. Corodimas KP, LeDoux JE, Gold PW, Schulkin J. Corticosterone potentiation of learned fear. Annals of the New York Academy of Sciences 1994; 746:392-393.
  197. Johnsen BH, Hugdahl K. Hemispheric asymmetry in conditioning to facial emotional expressions. Psychophysiology 1991; 28:154-162.
  198. Morris JS, Ohman, A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature 1998; 393:467-470.
  199. Coleman-Mensches K, McGaugh JL. Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Research 1995; 670:75-81.
  200. Mogg K., Bradley BP, Williams R, Mathews A. Subliminal processing of emotional information in anxiety and depression. Journal of Abnormal Psychology 1993;102: 304-311.
  201. Bradley M, Cuthbert BN, Lang PJ. Lateralized startle probes in the study of emotion. Psychophysiology 1996; 33:156-161.
  202. Braeutigam S, Bailey AJ, Swithenby SJ. Task-dependent early latency (30-60ms) visual processsing of human faces and other objects. Neuroreport 2001; 12:1531-1536.
  203. Funnell MG, Corballis PM, Gazzaniga MS. Hemispheric processing asymmetries: Implications for memory. Brain & Cognition 2001; 46:135-139.
  204. Simons JS, Graham KS, Owen AM, Patterson K, Hodges JR. Perceptual and semantic components of memory for objects and faces: A PET study. Journal of Cognitive Neuroscience 2001; 13:430-443.
  205. Schore AN. Clinical implications of a psychoneurobiological model of projective identification. In: Alhanati S, ed. Primitive mental states. Volume II: Psychobiological and psychoanalytic perspectives on early trauma and personality development. New York, Other Press, 2002: pp. 1-65.
  206. Phelps EA, OiConnor KJ, Gatenby JC, Gore JC, Grillon C, Davis M. Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience 2001; 4:437-441.
  207. Critchley HD, Melmed RN, Featherstone E, Mathias CJ, Dolan RJ. Brain activity during biofeedback relaxation. A functional neuroimaging investigation. Brain 2001; 124:1003-1012.
  208. Schnider A, Treyer V, Buck A. Selection of currently relevant memories by the human posterior medial orbitofrontal cortex. Journal of Neuroscience 2000; 20:5880-5884.
  209. Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, Orr SP, Pitman RK. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: A functional MRI study. Biological Psychiatry 2000;47:769-776.
  210. de Bellis MD, Keshaven MS, Spencer S, Hall J. N-acetylaspartate concentration in anterior cingulate with PTSD. American Journal of Psychiatry 2000; 157:1175-1177.
  211. de Bellis MD, Casey BJ, Dahl RE, Birmaher B, Williamson DE, Thomas KM, Axelson DA, Frustaci K, Boring AM, Hall J, Ryan ND. A pilot study of amygdala volume in pediatric generalized anxiety disorder. Biological Psychiatry 2000; 48:51-57.
  212. Raine A, Park S, Lencz T, Bihrle S, Lacasse L, Widom CS, Louai A-D, Singh M. Reduced right hemisphere activation in severely abused violent offenders during a working memory task: An fMRI study. Aggressive Behavior 2001; 27:111-129.
  213. Freeman TW, Kimbrell, T. A "cure" for chronic combat-related posttraumatic stress disorder secondary to a right frontal lobe infarct: a case report. Journal of Neuropsychiatry and Clinical Neuroscience 2001; 13:106-109.
  214. Schiffer F, Teicher MH, Papanicolaou AC. Evoked potential evidence for right brain activity during the recall of traumatic memories. Journal of Neuropsychiatry and Clinical Neurosciences 1995; 7:169-175.
  215. Davidson RJ, Marshall JR, Tomarken AJ, Henriques JB. While a phobic waits: Regional brain electical and autonomic activity in social phobics during anticipation of public speaking. Biological Psychiatry 2000; 47:85-95.
  216. Galderisi S, Bucci P, Mucci A, Bernardo A, Koenig T, Maj M. Brain electrical microstates in subjects with panic disorder. Psychophysiology 2001; 54:427-435.
  217. Nijenhuis ERS, Vanderlinden J, Spinhoven, P. Animal defensive reactions as a model for trauma-induced dissociative reations. Journal of Traumatic Stress 1998; 11:242-260.
  218. van Ijzendoorn MH, Schuengel C, Bakermans-Kranenburg MJ. Disorganized attachment in early childhood: Meta-analysis of precursors, concomitants, and sequelae. Development and Psychopathology 1999; 11:225-249.
  219. Allen JG, Coyne L. Dissociation and vulnerability to psychotic experience. The Dissociative Experiences Scale and the MMPI-2. Journal of Nervous and Mental Disease 1995; 183:615-622.
  220. Ogawa JR, Sroufe LA, Weinfield NS, Carlson EA, Egeland B. Development and the fragmented self: Longitudinal study of dissociative symptomatology in a nonclinical sample. Development and Psychopathology 1997; 9:855-879.
  221. Koopman C, Classen C Spiegel D. Predictors of posttraumatic stress symptoms among survivors of the Oakland/Berkeley, Calif, firestorm. American Journal of Psychiatry 1994; 151:888-894.
  222. Shalev AY, Peri T, Canetti L, Schreiber S. Predictors of PTSD in injured trauma survivors: a prospective study. American Journal of Psychiatry 1996;153:219-225.
  223. Scaer RC. The body bears the burden: Trauma, dissciation, and disease. New York: The Haworth Press, 2001.
  224. Nijenhuis ERS. Somatoform dissociation: major symptoms of dissociative disorders. Journal of Trauma & Dissociation 2000; 1:7-32.
  225. Crucian GP, Hughes JD, Barrett AM, Williamson DJG, Bauer RM, Bowers D, Heilman KM. Emotional and physiological responses to false feedback. Cortex 2000; 36:623-647.
  226. Thatcher RW. Cyclical cortical reorganization: Origins of human cognitive development. In Dawson D, Fischer KW, eds. Human behavior and the developing brain, New York: Guilford Press, 1994: 232-266.
  227. Teicher MH, Ito Y, Gold CA, Andersen SL, Dumont N, Ackerman E. Prelliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Annals of the New York Academy of Sciences 1997; 821:160-175.
  228. Epstein H.T. An outline of the role of brain in human cognitive development. Brain and Cognition 2001; 45:44-51.
  229. Ruby P, Decety J. Effect of subjective perspective taking during stimulation of action: a PET investigation of agency. Nature Neuroscience 2001; 4:546-550.
  230. van der kolk BA, McFarlane AC. The black hole of trauma. In: van der Kolk BA, McFarlane AC, Weisaeth L, eds. Traumatic stress: the effects of overwhelming experience on mind, body, and society. New York, Guilford Press, 1996:3-23.
  231. Cavada C, Schultz W. The mysterious orbitofrontal cortex. Foreword. Cerebral Cortex 2000; 10:205.
  232. Krystal H. Integration and self-healing: Affect-trauma-alexithymia. Hillsdale, NJ: The Analytic Press, 1988.
  233. Frijda NH. The laws of emotion. Amerian Psychologist 1988;43:349-358.
  234. Lazarus, RS. Progress on a cognitive-motivational-relational theory of emotion. American Psychologist 1991; 46:819-834.
  235. Wang S, Wilson JP, Mason JW. Stages of decompensation in combat-related posttraumatic tress disorder: a new conceptual model. Integrative Physiological and Behavioral Science 1996; 31:237-253.
  236. Jackson JH. Selected writings of J.H. Jackson. Vol. I. London: Hodder and Soughton, 1931.
  237. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation-a possible prelude to violence. Science 2000; 289:591-594.
  238. Mezzacappa ES, Kelsey RM, Katkin ES, Sloan RP. Vagal rebound and recovery from psychological stress. Psychosomatic Medicine 2001; 63:650-657.
  239. Sahar T, Shalev AY, Porges SW. Vagal modulation of responses to mental challenge in posttraumatic stress disorder. Biological Psychiatry 2001; 49:637-643.
  240. Mason JW, Kosten TR, Southwick S, Giller EL. The use of psychoendocrine strategies in posttraumatic stress disorder. Journal of Applied Social Psychology 1990: 20;1822-1846.
  241. Mason JW, Wang S, Yehuda R, Riney S, Charney DS, Southwick SM. Psychogenic lowering of urinary cortisol levels linked to increased emotional numbing and a shame-depressive syndrome in combat-related posttraumatic stress disorder. Psychosomatic Medicine 2001; 63:387-401.
  242. Lansky MR. Posttraumatic nightmares: Psychodynamic explorations. New York: Analytic Press, 1995.
  243. Van Lancker D. Personal relevance and the human right hemisphere. Brain and Cognition 1991; 17:64-92.
  244. Maunder RG, Hunter JJ. Attachment and psychosomatic medicine: Developmental contributions to stress and disease. Psychosomatic Medicine 2001; 63:556-567.
  245. Luecken, LJ. Childhood attachment and loss experiences affect adult cardiovascular and cortisol function. Psychosomatic Medicine 1998; 60:765-772.
  246. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The adverse childhood experiences (ACE) study. American Journal of Preventive Medicine 1998; 14:245-258.

 

 

 

 

 

Responsabile Editoriale : Giuseppe Leo

Copyright - Ce.Psi.Di. - Rivista "FRENIS ZERO" All rights reserved 2004-2005-2006-2007-2008-2009