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Abstract

Serious studies of the results of clinical interventions, such as those of heart valve surgery, employ mathematical and statistical methods and modes of expression and presentation that are complex. I, along with my colleagues, am guilty of developing one of these methods. However, in this address I race the more than three centuries of development that has led to present methodology, demonstrating that each increase in complexity was born of the necessity to reflect clinical reality.

These methods include survival analysis, and particularly its central theme, the hazard function, from its invention by a storekeeper during the Plague to the multiple phase hazard method developed by us. 

Importantly, contemporary methods permit patient specific predictions that are useful for recommending therapy and for informed patient consent.

In contemporary medicine, molecular-level research would seem to hold the promise of making observational clinical studies obsolete; yet a flurry so-called Outcomes Research has emerged. However the danger now is that new forces and philosophies are driving that interest that are not as strongly tuned to the necessities of improving individual patient care and longitudinal outcome as has been the case the past.
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Introduction

It is an honor to be your keynote speaker. I will seize this opportunity to answer a question often posed to us: "Why do you use such complex statistical methods in analyzing outcomes of clinical experiences?" I assure our it is not a diabolical attempt to confuse you; to the contrary, our intent has been to be helpful. Nor did we develop methods and then go in search of an applicant-on. No, the methods, including their apparent complexitv, were born of necessity.

Evolving clinical needs defy simple methods
Simple, intuitive methods sufficed to assess results when cardiac surgery was young (1). With an enormous amount to discover, advances came easily, rapidly, and in large increments. As the discipline matured, advances came in smaller increments with greater effort. By the 1970s simple descriptive counting methods were inadequate to illuminate the path toward increased safety and efficacy of cardiac operation Thus, by necessity simple methods gave way to more appropriate ones, hand-in-hand with an evolving philosophy of the value of patient information, its analysis, and its use.

Even while protesting that more complex analyze surpassed their understanding, some clinician remained skeptical that they accounted for all the variables important in caring for patients. Faced with this enigma, we wondered "Should we give up?"

The need for patient-centric outcomes research
Today accelerating accumulation of captivating new knowledge at the molecular level suggests that study ( clinical results (now called Outcomes Research) is mundane by comparison and of limited value. Yet there is new frenzy of Outcomes Research, suggesting the study of clinical results is interesting and valuable to someone! These two "hot" contemporary research areas represent opposite analytic poles. The human genome at one pole, is individualistic, epitomizing ultimate discrimination of one person from the other. Outcome research as often practiced is at the other pole, blurring or erasing individual patient characteristics, focusing on coarse average treatment responses

Is filling gaps in knowledge to care more effectively for patients driving the development of these contemporary research areas? While the Human Genome Project holds promise of a new medical paradigm, it is being driven strongly by promise of corporate profit. Outcomes research, while being driven ostensibly by the need to reduce variance in patient care outcome, is also driven strongly by request for decreased health care costs that translate, at least in the United States into increased corporate profits. I am skeptical that the profit motive is compatible with the search for new knowledge and its appropriate application.

I must be careful in my criticism, however, for "selling shoes" is among the motives that drive some analyses of cardiac surgery results! Another is defense against the accusation of unnecessary, inappropriate, ineffective, and lucrative surgery. However, many clinical studies in cardiac surgery are motivated by a genuine quest for new knowledge to fill in the gaps about the nature of heart disease and its intervention, to reveal the optimal timing for imperfect and palliative interventions! to permit comparisons of patient-specific risks and benefits when selecting among alternative therapies, and to identify areas in need of  basic research for improving of results in future patients.

These serious clinical studies require laborious assemblage of accurate, reasonably complete data sets. They require unbiased, expert medical review of each morbid event, resulting in classifying each according to its cause: human error or lack of scientific progress, a distinction vital for programming research to generate new knowledge on the one hand and for incorporating present knowledge into clinical practice on the other (2). They require formal follow up of patients to determine the appropriateness of intervention. They require thoughtful statistical analyses, and these are most effective when they involve an intense collaboration between medical and statistical investigators.

Contrast such painstaking studies that today, like the Human Genome Project, generate a product that can be individualized to a patient's unique constellation of risk factors, with the rote statistical study of uncontrolled administrative data that is today the rage, or with the broad average outcome of patient in randomized clinical studies whose analyses do not take into account possible sistematic differences in response of patients to therapy. The distinction is leading to an unanticipated dichotomy between analyses that are thought useful for individual patient management and those thought useful for public policy making. Consider this recent quotation:

Thus, IV (instrumental variables) methods are ideally suited to address the question, "What would be the

effect of reducing the use of invasive procedures after AMI  in the elderlv bv, for example, one fourth?" They do not address the question, "What could be the effect of treating a particular patient aggressively rather than with non-invasive therapies alone?" For clinical decisions involving treatment of individual patients, the answer to the latter question is more useful. For policy decision affecting the treatment of patient populations, the answer to the former is likely to be more useful (3).

Surely the authors must realize that with rare exceptions only individual patients, not populations, are treated. Research such as this is likely to become embodied in public policy regulations, and form the basis for reimbursement, effectively prescribing individual patient care without regard to patient characteristics that influence outcome.

Based on studying the history of medicine and analyzing many clinical studies, I hypothesize that the best health for the public will be a side product of serious studies of clinical experiences that have as an inherent ingredient the provision of information helpful for the management of individual patients. Much of what passes as outcomes research in the present climate fails to meet the latter criterion. However, for more than 300 years a methodology has been evolving that does.

Medical necessity at the interdisciplinary interface

Permit me to take you on an historical romp that illustrates the synergism between pressing medical needs and the development of analytic methods to meet them. It happened at the interface of unlikely disciplines, a phenomenon occasionally repeated, but hard to force into existence without just the right minds, circumstances, and needs.

In 1603, during one of its worst Plague epidemics, the City of London began collecting weekly records of christenings and burials. Disappointingly, those "who constantly took in the weekly bills of mortality, made little other use of them, than to look at the foot, how the burials increased, or decreased; and among the casualties, what has happened rare, and extraordinary, in the week current," complained shopkeeper John Graunt (4). He believed the Bills could yield useful inferences about the nature and control of the Plague. That Graunt succeeded is an example of the potential power for advance at the interface between disciplines. In this case it was the interface between medical necessity and commercial inventory management dynamics.

Graunt recognized analogies between the rate at which merchandise is received and the rate of birth, the rate at which goods are purchased and the rate of death, and the resulting on-shelf inventory and the population census. Today we recognize both inventory and population dynamics as instances of the broad mass-balance compartment model (Fig. 1). (Here model denotes the formal mathematical organization of relationships among variables). Other variations on this theme include biochemical reaction dynamics, radioactive decay, indicator dilution, and substrate diffusion.

The data were not perfect for constructing the model. For example, while the date of each death was recorded, the age at death was not! (For the inventory model, this was akin to knowing the date of each purchase, but not the duration of preceding shelf residence). Graunt had to make some assumptions. He set maximum life span in the absence of the Plague at 75 years. He assumed the rate of death between birth and maximum life span was constant (we call this the linearized rate today). He called the mortality rate the "hazard" for death, a technical term borrowed from dicing; it was one parameter of his mathematical expression of mass-balance. Using the mathematical relations, Graunt calculated the probability of being alive at any age; nowadays we call this the survivorship function. Many other assumptions were necessary before the ingenious population dynamics model was complete. Ultimately, the model permitted Graunt to estimate the value for the constant hazard rate for death from the data in the Bills.

Graunt investigated how the estimated hazard rate varied among subsets of entries in the Bills of Mortality, using, in addition, variables from other concurrent historical records. Among his findings were an increased hazard during weeks in  which overseas ships arrived at the London docks, in subsets of persons from districts in which animal contact was frequent, among those living in proximity to persons dying of the Plague and in densely populated districts.

None of these factors caused the PIague, but were associated with increased hazard from it. From these associations, he made quaint public health recommendations: avoid foul air brought by ships from overseas, minimize animal contact, flee from the city, and erect houses for quarantine. They allowed the Plague to the checked for 200 years before its cause and mode of spread were discovered.

Thus, from the genius of a storekeeper applying methodology from a completely different field, came the survivorship function, the hazard function, incremental risk factors, and application from these associations to practical health care. Despite this success, medical application of the methodology for analyzing time-related events did not advance rapidly, possible for the reasons that I will suggest shortly.

Necessity and hazard function regression methods
The problem that riveted my attention on the inadequacies of methods for analyzing time-related events was dramatic, lethal poppet escape from Braunwald-Cutter aortic valve prostheses. Our institution and the Mayo Clinic joined forces to understand the data in such a way as to permit rational recommendations to patients concerning continued retention of their prosthesis (5). By concerted effort the patients were contacted to determine the prevalence of the event. Six of 465 patients had experienced poppet escape. The only analytic tools we had for projecting the risk of this rare disaster were simple curve-fits to life table estimates. Ancillary data were gathered to assess the risks of valve reoperation. As we worked, six additional pop-pet escapes occurred. Exasperatingly, the data themselves and available methods for analyzing them were not helpful in resolving whether the hazard function was increasing or had peaked and was declining, or if it was correlated with patient characteristics.

This drove us on a quest over the next 10 years to discover more adequate methodology for analysis of time-related events. Our initial approach was to construct a generic mathematical framework that encompassed the efforts of earlier workers in biodynamics, including those studying allometric growth, biochemical reaction rates, and population growth, from seventeenth century Graunt, to eighteenth century Bernoulli, to nine-tenth century Gompertz, to twentieth century Weibull (6-8). Our early efforts were not completely satisfying (9,10), for the clinical reality is that patients in most cardiac series are not followed sufficiently long for the majority of patients to experience an event and therefore to estimate some model parameters. We needed an approach applicable to very incomplete data about the distribution of times until an event. Statisticians call this a high degree of right censoring (truncation of follow up).

A breakthrough came when a graduate student proposed a duaI component mathematical model for characterizing survival after simultaneous aortic and mitral replacement (Fig. 2a) (11). The log transformed survival curve (Fig. 2b), called the cumulative hazard function! seemed to her to be best described by a mixture of two simple components: an early component shortly after surgery and a a later component. Since I had been thinking along the lines of an overall (single component) model to describe the entire hazard function, her idea did not at first appeal to me. But, in the face of my failures, I was in no position to argue with her success (Fig. 2c). Mathematically, I recognized her early phase component as a scaled special case of the family of models we had published (7), and the later component the simplest case of the industrial Weibull equation (Fig. 2d). A formalization and generalization of the approach of decomposing risk into multiple, overlapping phases (analogous to the concept of competing risks, as will be described shortly) was the answer to our problems of the preceding several years (12).

Figure 3 illustrates the concept. A typical cardiac surgical survivorship function is depicted, accompanied by its cumulative hazard function (Fig. 3a). The slope of the cumulative hazard function, is the rate at which survivors experience the event, the hazard function. Notice the early drop in survival, corresponding to high early hazard. The curve is then relatively flat before hazard again rises. The hazard function is shown composed of three components that add together: early, constant, and late (Fig. 3b). Both the number of phases and the shape of each phase required to well characterize the distribution of times until an event are determined from the data themselves on statistical grounds, not arbitrarily. Now we had a method to express in more general mathematical terms than did Graunt the underlying nature of time-related events.

Side-tracked by other necessities
Allow me to wrap up the Graunt story, for much of his thinking was lost for analysis of clinical series for nearly 300 years. Just as need is the mother of invention, other needs can side-track progress. The first side-track was Graunt's application of his method to the economics of annuities. At that time governments sold annuities to finance large projects and were, thus, keenly interested in population dynamics for their economic survival. The second side-track was the development of a valuable non-model-based, and thus "nonparametric" life table technique for estimating the survivorship function directly from the data by Edmund Haley (of comet fame), a contemporary of Graunt (13). It made descriptive demography simple. But the advance bypassed the mathematical underpinnings of population dynamics and associated risk factors.

A third side track was destructive criticism of bright medical mindes, such as that of Graunt's contemporary William Petty. He condemned, Graunt’s constant hazard assumption, believing it obviated all useful inferences from the data (4). Indeed, inappropriate application of the linearized rate continues today, but it is rarely a fatal flaw. Perfection can be the enemy of the good.

Centrality of the hazard function

An exception to side-tracking of the methodology from medical time-related events was the puzzle Daniel Bernoulli solved 100 years after Graunt:"if in a given population smallpox,could be eradicated, what would be the effect on the population mortality structure at different ages?"(14). He answered the question by generalizing the birth-death process to causespecific death. From his work, multiple decrement life tables were introduced into and used by government and insurance actuaries. His generalization is known to the statistical world under a number of different names (even after a 200 year history!), most often as the problem of competing risks (14,15).

Figure 4 is a scheme I would use to understand the competing risks involved in the setting of heart valve reoperation. A system of compartments depicts the status of patients at each point in time after initial valve replacement as regard the competing events death and reoperation. A patient has one and only one (mutually exclusive) status at a time. All patients must be accounted for at all times (conservation of mass). All dynamics of the system are defined by the hazard func-tions for the rates of transfer from compartment to compartment. Assuming that the individual hazard functions do not interact with one another (independence), each hazard function can be determined individually from clinlcal follow up data, censoring for all other competing risks.

Once all hazard rates (incidence) are estimated, other complementary depictions of the status of the patients become available. They include probabilities, specifically the probability of reoperation, death after reoperation, and death before reoperation (or their complement, "freedom from"). In addition, they include a different aspect of the same dynamic process, namely the proportion of patients in each status, including the proportion dying before reoperation and surviving to have a reoperation (prevalences). These latter enumerations are akin to the masses in a mass balance model, and are the substantive new contributions of competing risk theory. Thus the hazard function, from which both "ordinary" and "competing risks" calculations are made, is the key to understanding individual events as well as a complex set of competing events.

A number of years ago we presented the various competing risks of the modes of death after valve replacement (16). Each had a characteristically shaped hazard pattern (Fig. 5a), with different ones dominating at different times (Fig. 5b). Each was associated with a set of risk factors. Addition of all hazards in this competing risk setting yields the overaIl hazard function for death, assuming independence.

The need to maximize use of precious clinical data

The decomposition of the hazard function for death after valve replacement illustrates that an overall survivorship curve (and its hazard function) is an average for the particular set of patients constituting a clinical study. In common with averages, it may hide differences that need to be unmasked by subsetting the patients, by more narrowly defining the event or by accounting for risk factors. On the other hand, it is possible for an event or study group to be defined too narrowly, reducing the analytic power to discover associations. We face the proverbial problem of lumping and splitting!

As we investigated clinical experiences, the inappropriateness of one common "splitting" became apparent: hospital and late death (see Figure 2a and Figure 6). Early after interventional therapy, the hazard function for death is higher, but the higher risk continues well beyond the hospital stay and for a variable time period. The transition to a low hazard is smooth, not abrupt. The only value I perceive in retaining the artificiality of distinguishing in hospital events from those occurring over the entire sweep of postoperative time accrues to those enterprises, such as hospital administration, that focus on the health care institution rather than on the longitudinal welfare of patients.

The second artificial "splitting" we observed in the analysis of events after valve replacement was sub-grouping by valve replacement position (aortic, mitral, multiple). Governmental device regulatory agencies demand such "splitting," and in some instances there may be scientific reasons for doing so. By and large, however, there are sufficient commonalties across valve positions to justify coalescence of the data. If we accept the ancient philosophies of a) parsimony (17) and b) continuity in nature, (18). we should prefer to lump that which is scientifically justified, splitting only that which scientifically does not belong together.

When should we split by subsetting the data set or by redefining the event to make it less inclusive? As a general guideline, I would tend to split when two subgroup hazard functions are clearly dissimilar in shape. For example, the event reoperation after valve replacement in a group of patients mixed as regards mechanical and biologic valves would be too broadlv a lumped event since it is well known that there is a late phase of increased risk of need for valve reoperation when the prosthesis is an allograft or a xenograft. The overall hazard function for valve reoperation in this mixed group reflects the proportionate mix of mechanical and biological valves, and is an inaccurate representation of the hazard in either subgroup (12,16). In this instance, one option is to subset the patients by general prosthesis type. A better option would be to subset only when necessary (for example, to analize biologic valve degeneration), and define new events for the whole  group when common mechanisms of those events are reasonable to assume (valve dehiscence, prosthetic valve infection).

The need to account for differences in patient response to therapy

The survivorship and hazard functions are averages in another sense. Medical experience tells us that patients respond differently to therapy; however, there are important and recognizable trends in their response that permit the results to be usefully predicted (19). Those factors that are associated with differing response to therapy are what we term incremental risk factors. The overall survivorship curve reflects the average therapeutic response of a mixed study group as regards risk factors, and would be different for another group of patients with a different prevalence of risk factors.

In developing our hazard function methodology we postulated that each phase of hazard may be influenced by different variables (risk factors). We found that some patient and procedure risk factors greatly increase the influence of the early hazard phase for a particular patient, such as precarious clinical condition at operation. Other risk factors, such as young age, lower the constant or late hazard components. A single patient's constellation of risk factors may, therefore, result in a predicted risk across time that is quite different in shape from that for the group as a whole, or any other one patient.

The need for determining in what particulars those who developed cardiovascular diseases differ from those who escape it gave birth in the late 1940s to a major medical advance (20). The Framingham investigators had no delusions that they could discover the cause for cardiovascular disease or even powerful associated factors. Instead, they wanted to discover what (weak) factors act to increase or decrease the risk of cardiovascular disease, quantify the importance of each contributing factor both individually and jointly with other factors, and from that knowledge devise a plan to impact the disease by suggesting modification of mutable risk factors.

As the data piled up, the investigators became increasingly dissatisfied with simple statistical treatment of their data. They had gathered values for a large number of variables, knowing the problem was multivariable. Yet even coarse cross-tabulation tables of just a few stratified variables created mounds of printed output impossible to assimilate intellectually. They needed methods that accounted simultaneously for multiple variables; accommodated continuous variables, such as age and blood pressure, rather than demanding their being chopped into a few arbitrary categories that lost both information and data continuity; permitted the calculation of absolute risk for a given set of patient risk factors in order to generate "risk-adjusted" comparisons of Framingham data to similar data gathered at other centers; and yielded equations that could be solved to predict absolute risk for individual future patients.

The investigators approached Jerry Cornfield for help (21). From their discussions arose the modern methodology for multivariable logistic regression (22). The logistic curve (Fig. 7) embodies the intuitive concepts of medical fragility and robustness. It is an S-shaped mapping of the scale of risk (that Berkson called the Logit scale (23)) to the probability of an event. From a logistic regression analysis coefficients are generated that quantify the increment in logit units of risk for each unit change of value for a variable. For example, a particular risk factor might be associated with a coefficient ot 1 logit unit, corresponding to about a 3-fold increase in relative risk. One logit unit increase in risk is associated with a trivial increase in the absolute probability of experiencing an event if all other factors position that patient either far to the left or far to the right on the logit curve. But as other factors move a patient toward the center of the logit curve, that same increment makes a large difference in absolute probability. This is consistent with the phvsician's perception of patients' response to therapv according to their health status. Some are robust, equivalent to being positioned far to the left on the logistic curve. Some are fragile, equivalent to being positioned near the center of the curve where, proverbiallv, one more straw can break the camel's back. For yet others, intervention is  futile since they are positioned far to the right on the logistic curve. Thus, the analytical tools, born of the necessity of reducing a pile of printouts, contained within them some interesting mathematical relations that reflect clinical reality.

The end product of logistic analysis is a mathematical equation that can be solved for individuals at risk of an event, by substituting values for his or her characteristics into the equation. Although an unproved hypothesis, it was hoped that wide-spread use of such patient-specific information would influence individu-als to alter those factors that were mutable, and there-by reduce their risk of developing cardiovascular dis-ease. Thus the Framingham investigators were contending that patient-specific information should drive public preventive programs, in contrast to the recent dissociation of individual patient care and pub-lic health policy earlier cited (21).

Summary of needs that gave birth to modern analytic tools
Although methodology is still evolving, the needs summarized below are among those that gave birth to the methods we use in analyzing clinical experiences. That developed by us has been packaged as computer software and made generally available (by anonymous ftp from our intemet site uabcvsr.cvsr.uab.edu). What is not possible to package is our attitude about the value of clinical data, our desire for accuracy, reproducibility, and understandability of data and the analyses, our approach to what might be called the mechanics of data analvsis and clinical inference therefrom, and our bent to scientific philosophy and historical development (1).

Medical reality

The need to account for the observation that patients respond differently to the same treatment on the basis of other factors must be embodied into the methodology at a fundamental level. This need requires that we abandon the desire for simple solutions, such as addition of risk probabilities. It remains my greatest criticism of some analyses of randomized studies (24).

Multiple variables
The need to account simultaneously for many variables requires techniques that account for correlation among variables, since few medical variables are inde-pendent in a formal statistical sense. Some recent outcomes research analyses use methods implemented, unnecessarily, in such a way as not to account for this inherent correlation structure (25). Not surprisingly, they yield inaccurate predictions when multiple risk factors are present.

Further, the methods must accommodate any combination of two-valued (dichotomous), ordered valued (ordinal), multivalued (polytomous), or continuously valued (continuous) variables. A common practice today is to stratify arbitrarily continuous variables in defiance of the continuity of nature and common sense. This practice is unnecessary. I suspect it is driven by the desire to simplify the analysis and its presentation. This is a laudable desire. But, in my opinion, it comes with an unacceptable sacrifice. If individual patient prediction is a major goal of an analysis, there is no difference in difficulty in solving an equation with continuous variables compared to one with only discrete ones.

 Influence of time

Some factors exert different degrees of influence across time. This phenomenon is particularly apparent after interventions such as valve replacement. Methods are needed that account for this. Typical Cox regression analyses (26), in which risk factors retain an average influence across all time, yield inferior results in this regard, compared to multiple time-phase methods.

 Patient-specific predictions

The need for absolute, as opposed to relative, outcome predictions for individual patients requires time-related analyses expressed in terms of equations that can yield something more than relative risks or hazard ratios. The latter characterize Cox regression. Despite its increased complexity of analysis and presentation, this need is most simply met by a completely parametric model along the lines of the biomathematical work of the last 300 years. Likely all workers who have used such techniques would admit that they introduce another task to accomplish, the modeling of the underlying hazard. However, we would all also agree that direct generation of absolute risks then becomes easy, for a parametric equation results that can be explored in detail bv a series of specific nomograms (simulations) to discover the nature of risk factor inter-relations. The nomogram can be for an individual, new patient.

Validation

An added benefit of patient-specific prediction is that it meets the need to validate the analyses. A predicted curve can be generated for each new patient and the average of these compared with the life table estimates of actual events (27). As an aside, completely parametric equations are "transparent" in the sense that all relations and coefficients are visible for validation. Another parametric technique, neural network estimation, is gaining popu-larity these days which has the opposite characteristic: the resulting model is opaque (black box) (28, 29). It is not clear that this characteristic is necessary; it may reflect the state of the art. It may be that in the future this technology will be tamed to generate parsimonious networks in which transparent associations can be observed, a requirement essential for both validation and for the human obligation of drawing scientific inferences from the analyses.

Informed consent

The methods need to generate information for new patients in such a way that the physician is aided in making recommendations for therapy and the patient is assisted in making an informed decision about that recommendation. Examples include the information generated for assessing the risks of prophylactic removal of 60° and 70° Bjork-Shiley heart valves (30), and of alternative therapies for ischemic heart disease (1,31,32). Rarely is this information so simple as to permit generation of an automated optimum decision rule.

Scientific inferences
The need to provide insight into the nature of disease and its treatment, identifying areas in need of further research and suggesting interim risk-avoidance strategies, must be part of the overall methodologic approach.

The statistical methodology used is not the critical issue here. This is that activity of clinical studies that is not amenable to automation. It is the thoughtful, contemplative, collaborative, and iterative approach to data and analyses by investigators.

What is needed to meet future analytic challenges?

What is needed to permit continued advancement in elaborating new knowledge and applying current knowledge to management of patients with valvular heart disease? I am sympathetic to the current establishment of large national or international registries of patients receiving prosthetic heart valves. They will be valuable for identifying rare structural valve failure events and for locating patients when changes in therapv are recommended. For such purposes they can be simple, making their implementation and maintenance easy and economical. However, such data bases will be derived and be incomplete. They may overemphasize hospital outcomes if they are administrative in character. Because of the lack of relevant  verified variables they may be poor substrate for developing new clinical inferences. Data bases that capture only long term events are also valuable, but may lack rich clinical information. In-depth clinical studies are limited at present in large part from the time-consuming tasks of extracting data and following patients systematically.

One solution for the future is establishing the longitudinal computer-based patient record. To be most useful for extracting data for outcomes research, the clinical information should be entered in a structured way as values for variables. Some say the computerized patient record will never happen, citing physician resistance. Physician resistance is understandable if it is nothing more than a repository. Unlike medical technologic advances, such as the imaging techniques, that clearly add value, an electronic repository of patient information adds little value to the physician's care of individual patients above that of data availability. For the computerized patient record to interest the physician as well as the outcomes investigator it must be an active repository. For example, it could be programmed to solve the equations that are developed from the outcomes research. Then, at the time that recommendations for a patient's care are being developed, be it the comparative benefits and risks of a tissue valve or a mechanical valve, or the pros and cons of removing a potentially failing valve, the equations would be solved to predict the probability of dying or experiencing various morbid events across time for that specific patient, using values of variables stored in the patient's electronic medical record.

Hierarchy of needs for advances in heart valve therapy

Where does outcomes research fit into the overall need for advances in heart valve therapy? Needed advances include the exploitation of clinical intuition, inventiveness, creativity, teaching, and skills transfer in developing durable, effective native heart valve reconstruction; basic science advances in biocompatibility of materials resistant to thrombosis and infection; advances in understanding thrombus formation on prosthesis and methods or agents for its prevention without Increasing bleeding tendencies; optimization of the biomechanical aspects of valve replacement devices to neutralize the increment in risk early after valve replacement compared to that of valve repair. Given these pressing needs, limited resources, and resistance to currently available, but complex, statistical methodology, particularly at a regulatory level, further work to advance the serious study of clinical outcomes for demonstrating improvements, safetv, and effectiveness of therapy, for suggesting areas in need of improvement, and for assisting in optimizing care in the interim, must be low on the research hierarchy.

Nevertheless, if we think of the patient, it is clinical studies that provide the mechanism by which to identify which of our patients will benefit from new heart valve therapies. Thus, I cannot in good conscience suggest abandoning the work and embracing clinical intuition alone on the one hand or prescribed generalized guidelines on the other. We must remember that heart valves are repaired or replaced, if they need to be, on a patient at a time, and at a particular point in each patient's heart disease course. I suggest that if we desire to improve the health of the population of heart disease patients, it will come in part from presenting the results of serious clinical studies in a way that permits wise, informed decisions for each individual patient's management.

References:

1)Kirklin JW, Barratt-Boyes BG. Cardiac Surgery. 2nd ed. New York: Churchill Livingstone, 1993, 249-282

2)Rizzoli G, B1ackstone EH, Kirklin JW, et al. Incremen-tal risk factors in hospital mortality rate after repair of ventricular septal defect. J Thorac Cardiovasc Surg 1980;80:494-505

3)McClellan M, NcNeil BJ, Newhouse JP. Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? JAMA 1994;272:859-866 4)Hacking I. The Emergence of Probability. Cambridge. Cambridge University Press, 1975,102-121

5. Blackstone EH, Kirklin JW, Pluth JR, et al. The perfor-mance of the Braunwald-Cutter aortic prosthetic valve. Ann Thorac Surg 1977;23:302-318

Zeger SL, Harlow SD. Mathematical models from laws of growth to tools for biologic analysis: Fifty years of Growth. Growth 1987;51:1-21

Hazelrig JB, Turner ME Jr, Blackstone EH. Parametric survival analysis combining longitudinal and cro@ss-sectional-censored and interval-censored data with concomitant information. Biometrics 1982;38:1-15

Turner ME Jr, Hazelrig JB, Blackstone EH. Bounded survival. Mathematical Biosci 1982;59:33-46

Bertranou EG, Blackstone EH, Hazelrig JB, et al. Life expectancy without surgery in tetralogy of Fallot. Am

J Cardiol 1978;42:@8166

10. Berger TJ, Blackstone EH, Kirklin JW, et al. Survival and probabilitv of cure without and with operation in complete atrioventricular canal. Ann Thorac Surg l979;27:104- lll

11. Bradlev DH. A model for the analvsis of dual forces of mortalitv. Birmingham, AL; Thesis,1982

12. Blackstone EH, Naftel DC, Turner ME Jr. The decom-position of time-varving hazard into phases, each incorporating a separate stream of concomitant infor-mation. J Am Stat Assn 1986;81:615-624

13. Halev, E. An estimate of the degrees of mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslau; with an attempt to ascertain the price of annuities upon liver. Phil Trans Royal Soc 1693;17:596-610,654-656

14. David HA, Moeschberger ML. The theory of competing risks. New York: Macmillan,1978

Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. New York: John Wiley and Sons, 1980;179-188

16. Blackstone EH, Kirklin JW. Death and other time-related events after valve replacement. Circulation 1985;72:753-767

Formigari L. Chain of being. In Wiener PP, ed Dictio-narv of the History of Ideas. New York: Charles Scrib-ner"s Sons,1968;1:325-335

Bochner S. Continuity and discontinuity in nature and knowledge. In Wiener PP (ed) Dictionary of the His-tory of Ideas. New York: Charles Scribner's Sons, 1968;1 :492-504

19. Blackstone EH, Kirklin JW. Incremental risk factors of open cardiac surgery in the neonate. In: Pediatric Car-diology, Volume 6, Edinburgh: Churchill Livingstone,1986, 281-297

20. D'Agostine RB, Kannel WB. Epidemiological back-ground and design: The Framingham Study. In Gail MH, Johnson NL (eds). Proceedings of the American Statistical Association: Sesquicentennial Invited Paper Sessions. Alexandria, VI: American Statistical Association, 707-718

21. Gordon T. Statistics in a prospective study: The Fram-ingham Studv. In Gail MH, Johnson NL (eds). Proceedings of the American Statistical Association: Sesquicentennial Invited Paper Sessions. Alexandria, VI: American Statistical Association, 719-726

22. Cornfield J, Gordon T, Smith WS. Quantal response curves for experimentallv uncontrolled variables. Bull Int Stat Institute 1961;38:97-115

23. Berkson J. Whv I prefer logits to probits. Biometrics 1951 ;7:327-339

24. Blackstone EH: Invited Letter to the Editor (in response to: Grunkemeier GL, Starr A: Alternatives to randomization in surgical studies). J Heart Valve Dis 1993;2:119-122

25. Edwards FH, Albus RA, Zajtchuk R, Graeber GM, Barry MJ, Rumisek J, Arishita G. Use of a Bayesian sta-tistical model for risk assessment in coronarv artery surgery. Ann Thorac Surg 1988;45:437-440

26. Cox DR. Regression models and life tables. J Roy Statist Soc B 1972;34 187-220

27. Ferazzi P, McGiffin DC, Kirklin JW, et al. Have the results of mitral valve replacement improved? J Thorac Cardiovasc Surg 1986;92:186-197

28. Katz S, Katz AS, Lowe N, Quijano RC. Neural net-bootstrap hybrid methods for prediction of complica-tions in patients implanted with artificial heart valves. J Heart Valve Dis 1994;3:49-52

29. Blackstone EH. Editorial: Current state of risk factor analysis. J Heart Valve Dis 1994;3:45-48

30. Blackstone EH, Kirklin JW. Recommendations for prophylactic removal of heart valve prostheses. J Heart Valve Dis 1992;1:3-14

31. ACC/AHA Task Force Subcommittee on Coronary Arterv Bypass Graft Surgery. Guidelines and indica-tions for the coronary artery bypass graft operahon. J Am Coll Cardiol 1991;17:543-589

32. Kirklin JW, Barratt-Boyes BG: Cardiac Surgery. 2nd ed. New York: Churchill Livingstone,1993, 285-381

