
Agent Architecture for Score-based Web Local Search 1

M. Angelaccio, B. Buttarazzi
Dipartimento di Informatica, Sistemi e Produzione - Università degli Studi di Roma "Tor Vergata"

Via di Tor Vergata, 110 - 00133 - ROMA (Italy)
angelaccio@info.uniroma2.it buttarazzi@info.uniroma2.it

1 The work described in this paper has been carried out under the financial support of the Italian Ministero dell'Università e
della Ricerca Scientifica e Tecnologica (MURST) in the framework of “ ALGORITHMS for LARGE DATA SETS: SCIENCE
and ENGINEERING” Project

Abstract

Big changes are taking place in the area of
information supply and demand on Internet. The first big
change, which took place quite a while ago, is related to
the type of information is available and the amount that
it is available in, the number of sources and the ease with
which it can be obtained.

What's more, information is playing an increasingly
important role in our lives, as we are moving towards an
information society. Information has become an
instrument, a tool that can be used to solve many
problems. Recent research trends show that these
developments will carry on into the future through the
agent technology. Software agents are a rapid
developing area of research and they are largely used for
web search tools.

In this paper is presented an agent-based framework
for local search tools and it has been applied to the case
of VSEARCH a local search tool implemented in Java. In
particular, it has shown how agent properties are
strictly related to VSEARCH document filtering.

1. Introduction

The amounts of information available in Internet today
is too vast: information that is being sought is probably
available somewhere, but often only parts of it can be
retrieved, or sometimes nothing can be found at all. The
number of needles that can be found has increased, but so
has the size of the haystack they are hidden in.

The sheer endlessness of the information available
through the Internet, which at first glance looks like its
major strength, is at the same time one of its major
weakness.

Typically, one would expect that satisfying information
demand has become easier, but this in not completely true,
the reasons for this being:

• The dynamic nature of the Internet itself: there is
no central supervision on the growth and
development of Internet. Anybody, who wants to
use it and/or offer information or services on it, is
free to do so. This has created a situation where it
has become very hard to get a clear picture of the
size of the Internet, let alone to make an estimation
of the amount of information that is available on or
through it;

• The dynamic nature of the information on Internet:
information that cannot be found today, may
become available tomorrow. And the reverse
happens too: information that was available, may
suddenly disappear without further notice, for
instance because an Internet service has stopped
its activities, or because information has been
moved to a different, unknown location;

• The information and information services on the
Internet are very heterogeneous: information on
the Internet is being offered in many different
kinds of formats and in many different ways. This
makes it very difficult to search for information
automatically, because every information format
and every type of information service requires a
different approach.

Most of the current solutions are based on programs
that roam the Internet (with names like spider, worm or
searchbot). The gathered information, characterized by a
number of keywords (references) and perhaps some
supplementary information, is then put into a large
database. Anyone who is searching for some kind of
information on the Internet can then try to localize relevant
information by giving one or more query terms (keywords)
to such a search engine.

Although search engines are a valuable service at this
moment, they also have several disadvantages ([3], [7]).

A different solution for the problem as described in 2, is
the use of tools based on Software Agents that
autonomously explore a neighbor of a starting node (local
search).

There are many different kinds of software agents,
ranging from Interface agents to Retrieval agents. This
paper will be mainly about agents that are used for
discovery information tasks, such as finding any kind of
information.

1.1 Agent Properties

In this section we outline the main issues of software
agents that will be used in the rest of the paper (see [5]
and [6]). An agent is usually described as a software
program that supports a user with the accomplishment of
some task or activity.

Perhaps the most general way, that distinguishes
agents from ordinary programs, in which the term software
agent is used to denote a software system that enjoys a
long list of properties, which for information retrieval and
integration purposes can be limited to the following:

• Autonomy: agents operate without the direct
intervention of humans or others, and have some
kind of control over their actions and internal
state;

• Social ability: agents interact with other agents via
communication language;

• Reactivity: agents perceive their environment
(which may be the physical world, a user via a
graphical user interface, a collection of other
agents, the Internet, or perhaps all of these
combined), and respond in a timely fashion to
changes that occur in it. This may entail that an
agent spends most of its time in a kind of sleep
state from which it will awake if certain changes in
its environment (like the arrival of new e-mail) give
rise to it;

• Proactivity: agents do not simply act in response
to their environment, they are able to exhibit goal-
directed behavior by taking the initiative;

• Temporal continuity: agents are continuously
running processes (either running active in the
foreground or sleeping/passive in the

background), not once-only computations or
scripts that map a single input to a single output
and then terminate;

• Mobility: the ability of an agent to move around a
network.

Notice that no single agent possesses all these abilities
and at this moment no consensus has yet been reached
about the relative importance of each of these
characteristics in the agent as a whole.

Thus, a simple way of conceptualizing an agent is as a
kind of UNIX-like software process that exhibits the
properties listed above.

2. Agents for Web Local Search

We propose to exploit the class of Web local searching
tools that aim to explore a neighbor of a starting web node,
in terms of agent concepts.

The purpose is to show a practical example of local
search tool named VSEARCH (see [1] for a first
description) whose architecture details are given in terms
of software agents.

Before entering into architecture details for VSEARCH,
we analyze in this section the agent architecture of a local
searching tool that provides an interface (virtual level) for
the searching/browsing phases.

2.1 Agent Description for Local Search

Traditionally the so-called user-web server access for
information retrieval can be decomposed in two phases:
searching phase and browsing phase.
The first searching phase consists in:

• Submission of a query to a search engine
The second one: searching & browsing for each
interesting link returned from search engine:

• Browsing of selected document.
• Seek for the correlated information.

Normally the browsing process is not limited to the only
pages returned by the search engine, but also to those
correlated.

Fig. 1 shows the two phases of the typical searching-
browsing access schema for the client-remote server
architecture.

Fig. 1 User-remote server access
Bolded arrows evidence slow communications due to

network latency and server overloading.
In the searching phase the client submits a keyword to

the remote server. Next a list of URLs (URL1, URL2,…)
will be received from the server as a result of the search
executed on the remote server.

In the browsing phase a sequence of loads whose
address has been taken from the answers obtained in the
searching phase have been submitted to remote server.
Hence it happens that only cached URLs offer fast access,
thus motivating the need to have a suitable interface
between the user client and the remote server in order to
reduce latency time for other documents.

As alternative to the user-agents-webserver access a
suitable interface has been introduced in many local
search tools. In this way, the agent-based approach to
local search can be viewed as a virtual access to the web.
In other terms software agents are used

Fig. 2 Virtual searching in the virtual server model

as interface between the user client and web server in a
way like a "virtual server".

 Fig. 2 and Fig. 3 describe how virtual server is
organized. It evidences the agents used to support a
virtual access for the searching-browsing schema. These
agents are templates for true agents that are used in local
searching tools. In particular we evidence search and
prefetch template agents.

The searching phase (Fig. 2) may be viewed as virtual
search in the sense that the search is explicitly executed
on the local copy freeing the user to have remote access.
The completion of the search is done remotely by the
search agent that independently communicates with the
remote server. In such a way the system offers the
capability to overlap the incoming answers. For instance
we have assumed that URL2 is a local answer that will be
sent directly from the local mirroring agent and
concurrently from the other answers that will be sent by
the remote server via the search agent.

The browsing phase (Fig. 3) is implemented as virtual
browsing in the sense that all load actions are directed to
the local hypertext by consulting the prefetch agent. The
user avoids remote loads, which are delegated to the
prefetch agent.

Fig. 3 Virtual browsing in the virtual server model

The behavior of the virtual server requires the
definition of the actions taken from the prefetch in
corresponding of both virtual searching phase and virtual
browsing phase.

In the next section we show an example and its
implementation of such agent architecture named
VSEARCH that explore a neighbor of a starting node by
using a score-based prefetch model. In this case the agent
characterization introduced in 1.1 will match VSEARCH
features like score-based prefetch model.

3. VSEARCH Software Agents Architecture

In this section we describe how agents introduced in
the virtual server model are implemented by showing a
concrete example named VSEARCH. This local searching
tool performs a neighbor search, by using a score-based
prefetch model to select pages that must be explored and
then pushes the results back to the user's browser in a tree

C l i e n t

Remote
w e b

serve r
Submit(keyword

URL1
URL2
.

C l i e n t

Remote

w e b
server !

Load(URL1)

Document 1

Load(URL2)

Document 2

Load (URL1)

C a c h e

S e a r c h i n g P h a s e

B r o w s i n g P h a s e

Document 1

Cl ien t

R e m o t e

web se rver

keyword

U R L 1

.

V i r t u a l s e a r c h i n g P h a s e

keyword

U R L 2

Loca l
Hypertext Document 2

Search
A g e n t

keyword

C l i e n t

Remote
w e b s e r v e r

Load(URL1)

V i r t u a l b r o w s i n g P h a s e

Local
Hypertext

Document 2

Pre fe t ch
A g e n t

Document 1

Load(URL2)

map. Herein we focus on its agent architecture that is
described in Fig. 4.

Fig. 4 VSEARCH Agent Architecture

Colored boxes in Fig. 4 evidence VSEARCH
components. The two agents SearchManager (SM) and
MicroBrowser (MB) respectively implement Search and
Prefetch agents introduced in virtual server model.
Moreover to obtain a dynamic html interface, a third agent
named QueryParser (QP) has been added.

The others components of Fig. 4 are standard software
components that interface with VSEARCH. In particular,
WS is the web server that receives query from the browser
client C via the html CGI program called by the query form
QF, and JS is the html document that displays the results
using a dynamic JavaScript visualization program. It has
been evidenced the score computation function (sc) called
by the SM agent and applied to each page fetched by the
MBs.

3.1 VSEARCH Agent Properties

In the following we give for each agent a description of
its behavior by showing its agent properties.

The table shown in Fig. 5 lists the main agent
properties introduced in section 1.1.

Mobility has not been used for all components because
VSEARCH is a local tool running on a site and is not able
to migrate autonomously on other nodes (this is a feature
for future developments).

QueryParser evidences a little of agent properties
because it is only an HTML/Jscript interface component

and it is launched only at the beginning of query session
(no autonomy and no temporal continuity).

Table 1 Agent properties for VSEARCH

Search
Manager

Micro
Browser

Query
Parser

Autonomy × ×
social ability × × ×
reactivity × × ×
proactivity ×
temporal
continuity

× ×

It is interesting to note that the main difference
between SearchManager and MicroBrowser is the fact
that only the former has the proactivity property. This
corresponds to the score computation made for each
loaded document and used for taking a decision regarding
how many links must be further explored (score-based
prefetch model).

4. Example

To illustrate the behavior of VSEARCH, we show an
example of a query given in a session.

Fig. 5 Query example

Fig. 5 gives an example of query expressed in natural
language with neighbor size parameters depth and width.
After submission of this query by inserting keywords and
parameters in the html interface, the QueryParser awakes
SearchManager and a Searching/Browsing process starts.

The result is shown in Fig. 6 by using a dynamic
visualization. This output has the novel feature to show
both the search tree structure obtained by the agents and
the computed scores via a coloring technique. This has
been made possible thanks to the agent properties of
reactivity and proactivity.

query :
Find all documents in the neighbor of "Local Yahoo"

With the keywords "Diploma Ingegneria"

and depth = 8 width = 5

C Q
P

M
B

ST

re

MB

WS

QF

JS

CW

W
W
W

i

SM sc

Fig. 6 VSEARCH answers visualization

5. Conclusion and Related works

This paper has presented a high-level description of
local search tools in terms of software agents that it has
been applied to the VSEARCH tool in order to characterize
the behavior of its main Java modules. Hence main
differences among components are evidenced without
entering into architecture details. Other examples of local
search tool are:
• Personal agents that build user profiles ([4], [8]).

These systems exploit the knowledge of user
behavior to assist user browsing. This require other
different technologies to learn from user actions.

• WebSite search programs that build a searchable data
structure of a website. WebGlimpse [9] is one example
that has been the first to include neighbors. However
the approach is static. In fact the dimension of
neighbors cannot be defined at user level as in
VSEARCH. We think that since autonomy and
reactivity seems not satisfied they can be better
classified as programs instead of agents.

Therefore VSEARCH and in general agent-based local
search tools provide a starting point for developing more
powerful local search tools. As a future work, since
WebGlimpse has been described as example of intelligent
search that can be expressed in the relational web query
language WebSQL ([10], [11]), it is interesting to give an
analogous description for general local search tools like
VSEARCH.

6. References

[1] M. Angelaccio, L. Zamburru, D. Genovese
“BOTH:Cooperative Automatic Web Navigation with
Hierarchical Filtering” , AusWeb96 conference, July 1996
http://elmo.scu.edu.au/sponsored/ausweb/ausweb96/tech

[2] G. Arocena, A. Mendelzon, G. Mihaila. “Application of
a web query language”, Proc. of 6th WWW Conference,
Santa Clara, California, April 1997.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine.
http://huron.stanford.edu/ backrub/google.html, 1998

[4] Chen, L. and Sycara, K. "WebMate: A Personal Agent
for Browsing and Searching." In Proceedings of the 2nd
International Conference on Autonomous Agents and
Multi Agent Systems, Minneapolis, MN, May 10-13, 1998

[5] Haverkamp, D. S. & Gauch, S. (1998), "Intelligent
Information Agents: Review and Challenges for
Distributed Information Sources," in Journal of the
American Society for Information Science, 49(4):304-311.

[6] Jennings, N. R. & Wooldridge, M. J. (Eds.) (1998),
Agent Technology. Springer Verlag

[7] J. M. Kleinberg. “Authoritative Sources in a
Hyperlinked Environment”, Proc. of ACM-SIAM
Symposium on Discrete Algorithms, 1998

[8] Lieberman, H. “Letizia: An Agent That Assists
WebBrowsing”, Proceedings of AAAI 95 - AI
Applications in Knowledge Navigation and Retrieval -
MIT Cambridge MA, USA, 1995, pp. 97 –103

[9] U. Manber, M. Smith, B. Gopal,. “WebGlimpse-
Combining Browsing and Searching”. Proc. Of the
Sixteenth ACM Symposium on Principles of Database
Systems, Tucson, Arizona, May 1997.

[10] A. Mendelzon, T. Milo. “Formal Model of web
queries”. Proc. Of the Sixteenth ACM Symposium on
Principles of Database Systems, Tucson, Arizona, May
1997.

[11] Alberto O. Mendelzon, George A. Mihaila, and Tova
Milo. “Querying the world wide web”. Journal of Digital
Libraries, 1 1997 (1), 54-67.

