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Data-Snooping, Technical Trading Rule

Per formance, and the Bootstrap

ABSTRACT

Numerous studies in the finance literature have investigated technical analysis to

determine its validity as an investment tool.  Several of these studies conclude that

technical analysis does have merit, however, it is noted that the effects of data-snooping

are not fully accounted for.  In this paper we utilize White’s Reality Check bootstrap

methodology (White (1997)) to evaluate simple technical trading rules while quantifying

the data-snooping bias and fully adjusting for its effect in the context of the full universe

from which the trading rules were drawn.  Hence, for the first time, the paper presents a

means of calculating a comprehensive test of performance across all trading rules.  In

particular, we consider the study of Brock, Lakonishok, and LeBaron (1992), expand

their universe of 26 trading rules, apply the rules to 100 years of daily data on the Dow

Jones Industrial Average, and determine the effects of data-snooping.  During the sample

period inspected by Brock, Lakonishok and LeBaron, we find that the best technical

trading rule is capable of generating superior performance even after accounting for data-

snooping.  However, we also find that the best technical trading rule does not provide

superior performance when used to trade in the subsequent 10-year post-sample period.

We also perform a similar analysis, applying technical trading rules to the Standard and

Poor’s 500 futures contract.  Here, too, we find no evidence that the best technical rule

outperforms, once account is taken of data-snooping effects.
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Technical trading rules have been used in financial markets for over a century.

Numerous studies have been performed to determine whether such rules can be employed

to provide superior investing performance.1 By and large, the recent academic literature

suggests that technical trading rules are capable of producing valuable economic signals.

In perhaps the most comprehensive recent study of technical trading rules using 90 years

of daily stock prices, Brock, Lakonishok, and LeBaron (1992) (BLL, hereafter) found

that 26 technical trading rules applied to the Dow Jones Industrial Average significantly

outperformed a benchmark of holding cash.  Their findings are especially strong since

every single one of the trading rules they considered was capable of beating the

benchmark.  When taken at face value, these results indicate either that the stock market

is not efficient even in the weak form – a conclusion which, if found to be robust, would

go against most researchers’  prior beliefs – or that risk-premia display considerable

variation even over very short periods of time (i.e., at the daily interval).

An important issue generally encountered, but rarely directly addressed when evaluating

technical trading rules, is data-snooping.  Data-snooping occurs when a given set of data

is used more than once for purposes of inference or model selection.  When such data

reuse occurs, there is always the possibility that any satisfactory results obtained may

simply be due to chance rather than to any merit inherent in the method yielding the

results.  With respect to their choice of technical trading rules, BLL state that “…

numerous moving average rules can be designed, and some, without a doubt, will work.

However, the dangers of data snooping are immense.” 2  Thus, BLL rightfully

acknowledge the effects of data-snooping.  They go on to evaluate their results by fitting

several models to the raw data and resampling the residuals to create numerous bootstrap

samples.  The goal of this effort is to determine the statistical significance of their

findings.  However, as acknowledged by BLL, they were not able “ to compute a

                                                
1 See, for example, Brock, Lakonishok and LeBaron (1992), Fama and Blume (1966), Kaufman (1987),
Levich and Thomas (1993), Neftci (1991), Osler and Chang (1995), Sweeney (1988), Taylor (1992), and
Taylor (1994).
2 Brock, Lakonishok, and LeBaron (1992), page 1736.
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comprehensive test across all rules.  Such a test would have to take into account the

dependencies between results for different rules.” 3  This task has thus far eluded

researchers.

A main purpose of our paper is to extend and enrich the earlier research on technical

trading rules by applying a novel procedure that permits computation of precisely such a

test.  Although the bootstrap approach (introduced by Efron (1979)) is not new to the

evaluation of technical analysis, White’s Reality Check bootstrap methodology

(introduced by White (1997)) adopted in this paper permits us to correct for the effects of

data-snooping in a manner not previously possible.  Thus we are able to evaluate the

performance of technical trading rules in a way that permits us to ascertain whether

superior performance is a result of superior economic content, or simply due to luck.

Data-snooping need not be the consequence of a particular researcher’s efforts.4 It can

result from a subtle survivorship bias operating on the entire universe of technical trading

rules that have been considered historically.  Suppose that, over time, investors have

experimented with technical trading rules drawn from a very wide universe – in principle,

thousands of parameterizations of a variety of types of rules.  As time progresses, the

rules that happened to perform well historically receive more attention and are considered

‘serious contenders’  by the investment community, while unsuccessful trading rules are

more likely to be forgotten.5  After a long sample period, only a small set of trading rules

may be left for consideration, and these rules’  historical track record will be cited as

evidence of their merits.  If enough trading rules are considered over time, some rules are

bound by pure luck, even in a very large sample, to produce superior performance even if

they do not genuinely possess predictive power over asset returns.  Of course, inference

based solely on the subset of surviving trading rules may be misleading in this context

                                                
3 Brock, Lakonishok, and LeBaron (1992), page 1743.
4 Indeed, BLL report that they did not consider a larger set of trading rules than the 26 rules they report
results for.
5 See also Lo and MacKinlay (1990) for a similar point.
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since it does not account for the full set of initial trading rules, most of which are likely to

have under-performed.

The effects of such data-snooping, operating over time and across many investors and

researchers, can only be quantified provided that one considers the performance of the

best trading rule in the context of the full universe of trading rules from which the best

rule conceivably was chosen.  A further purpose of our study is to address this issue by

constructing a universe of nearly 8,000 parameterizations of trading rules which are

applied to the Dow Jones Industrial Average over a 100-year period from 1897 to 1996.

We use the same data set as BLL to investigate the potential effects of data-snooping in

their experiment.6  Our results show that, during the sample originally investigated by

BLL, 1897–1986, certain trading rules did indeed outperform the benchmark, even after

adjustment is made for data-snooping.  We base our evaluation both on mean returns and

on a version of the Sharpe ratio which adjusts for total risk.

Since BLL’s study finished in 1986, we benefit from having access to another 10 years of

data on the Dow Jones portfolio.  We use this data to test whether their results hold out-

of-sample.  Interestingly, we find that this is not the case: the probability that the best-

performing trading rule did not outperform the benchmark during this period is nearly 12

percent, suggesting that, at conventional levels of significance, there is scant evidence

that technical trading rules were of any economic value during the period 1987–1996.

To determine whether transaction costs or short-sale constraints could have accounted for

the apparent historical success of the trading rules studied by BLL, we also conduct our

bootstrap simulation experiment using price data on the Standard and Poor’s 500 (S&P

500) index futures.  Transaction costs are easy to control in trading the futures contract

and it also would not have been a problem to take a short position in this contract.  Over

the 13-year period since the futures contract started trading in 1984, we find no evidence

that the trading rules outperformed.

                                                
6 We thank Blake LeBaron for providing us with the data set used in the BLL study.
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While the current paper adopts a bootstrap methodology to evaluate the performance of

technical trading rules, the methodology applied in this paper also has a wide range of

other applications.  This is important, because the dangers from data-snooping emerge in

many areas of finance and economics, such as in the predictability of stock returns (as

addressed by, for example, Foster, Smith, and Whaley (1997)), modeling of exchange

and interest rates, identification of factors and “anomalies”  in cross-sectional tests of

asset pricing models (Lo and MacKinlay (1990)), and other exercises where theory does

not suggest the exact identity and functional form of the model to be tested.  Thus, the

chosen model is likely to be data-dependent and a genuinely meaningful out-of-sample

experiment is difficult to carry out.

The plan of the paper is as follows.  Section I introduces the bootstrap data-snooping

methodology, section II reviews the existing evidence on technical trading rules, and

section III introduces the universe of trading rules that we consider in the empirical

analysis.  Section IV presents our bootstrap results for the data set studied by BLL, while

section V conducts the out-of-sample experiment.  Finally, section VI discusses in more

detail the economic interpretation of our findings.

I .  The Bootstrap Snooper

Data-snooping biases are widely recognized to be a very significant problem in financial

studies.  They have been quantified by Lo and MacKinlay (1990)7, described in

mainstream books on investing (O’Shaughnessy (1997), page 24) and forecasting

(Diebold (1998), page 87), and have recently been addressed in the popular press

(Business Week, Coy (1997)): “For example, [David Leinweber, managing director of

First Quadrant Corporation in Pasadena, California] sifted through a United Nations CD-

ROM and discovered that historically, the single best prediction of the Standard & Poor’s

500 stock index was butter production in Bangladesh.”   Our purpose in this study is to

                                                
7 Lo and MacKinlay (1990) quantify the data-snooping bias in tests of asset pricing models where the firm
characteristic used to sort stocks into portfolios is correlated with the estimation error of the performance
measure.
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determine whether technical trading rules have genuine predictive ability or fall into the

category of “butter production in Bangladesh” .  The apparatus used to accomplish this is

the Reality Check bootstrap methodology which we briefly describe.

White (1997) provides a procedure, building on work of Diebold and Mariano (1995) and

West (1996), to test whether a given model has predictive superiority over a benchmark

model after accounting for the effects of data-snooping.  The idea is to evaluate the

distribution of a suitable performance measure giving consideration to the full set of

models that led to the best-performing trading rule.  The test procedure is based on the l ×

1 performance statistic:

∑
=

+
−=

T

Rt
ttfPf )ˆ(1

1 , (1)

where l is the number of technical trading rules, P is the number of prediction periods

indexed from R through T so that T = R + P – 1, t
ˆ  is a vector of estimated parameters,

and ft+1 ( t
ˆ ) = f ( Zt, t

ˆ ).  Generally, Z consists of a vector of dependent variables and

predictor variables consistent with Diebold and Mariano’s (1995) or West’s (1996)

assumptions.  For convenience, we reproduce key results of White (1997) in the

Technical Appendix.

In our application there are no estimated parameters.  Instead, the various

parameterizations of the trading rules (βk, k = 1,…,l) directly generate returns that are

then used to measure performance.  In our full sample of the Dow Jones Industrial

Average, P is set equal to 27,069, representing nearly 100 years of daily predictions.  R is

set equal to 251, accommodating the technical trading rules which require 250 days of

previous data in order to provide a trading signal.  For the purpose of assessing technical

trading rules, each of which is indexed by a subscript k, we follow the literature in

choosing the following form for fk,t+1:

fk,t+1(β)  =  ln[1 +  yt+1 Sk(χt, βk)]  –  ln[1 + yt+1 S0(χt, β0)],  k  =  1, …, l (2)

where
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χt = Xt i i
R

− =

� �
0
, (3)

Xt is the original price series (the Dow Jones Industrials Average and S&P 500 futures, in

our case), yt+1 = (Xt+1 – Xt) / Xt, and Sk( ⋅ ) and S0( ⋅ ) are “signal”  functions that convert

the sequence of price index information χt into market positions, for system parameters

βk and β0.
8  The signal functions have a range of three values: 1 represents a long

position, 0 represents a neutral position (i.e., out of the market), and –1 represents a short

position.  As discussed below, we will utilize an extension of this set-up to evaluate the

trading rules with the Sharpe ratio (relative to a zero risk-free rate) in addition to mean

returns.  The natural null hypothesis to test when assessing whether there exists a superior

technical trading rule is that the performance of the best technical trading rule is no better

than the performance of the benchmark.  In other words,

H0:  
lk ,...,1

max
=

 { E( fk )}   ≤  0. (4)

Rejection of this null hypothesis would lead us to believe that the best technical trading

rule achieves performance superior to the benchmark.

White (1997) shows that this null hypothesis can be evaluated by applying the stationary

bootstrap of Politis and Romano (1994) to the observed values of fk,t.  That is, we are

resampling the returns from the trading rules.  This yields B bootstrapped values of kf ,

denoted as *
,ikf , where i indexes the B bootstrap samples.  We set B = 500 and then

construct the following statistics,

V   = 
lk ,...,1

max
=

{ P ( kf )} (5)

*
iV   = 

lk ,...,1
max
=

{ P ( kik ff −*
, )} ,  i = 1, …, B. (6)

We compare V  to the quantiles of *
iV  to obtain White’s Reality Check P-value for the

null hypothesis.  By employing the maximum value over all the l trading rules, the

                                                
8 Note that the best trading rule, identified as the one with the highest average continuously compounded
rate of return, will also be the optimal trading rule for a risk averse investor with logarithmic utility defined
over terminal wealth.
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Reality Check P-value incorporates the effects of data-snooping from the search over the

l rules.

This approach may also be modified to evaluate forecasts based on the Sharpe ratio

which measures the average excess return per unit of total risk.  In this case we seek to

test the null hypothesis

H0:  
lk ,...,1

max
=

  {  g(E(hk)) }  ≤  g(E(h0)) (7)

where h is a 2×1 vector with components given by

hk t, +1
1 (β)  =  ( yt+1 Sk(χt, βk)) (8)

hk t, +1
2 (β)  =  ( yt+1 Sk(χt, βk))

2 (9)

and where the form of g(⋅) is given by

g(E(ht+1
1 ), E( ht+1

2 ))  =  
E h

E h E h

t

t t

( )

( ) ( )

+

+ +−

1
1

1
2

1
1 2� � . (10)

The expectations are evaluated with arithmetic averages.  Relevant sample statistics are

fk  = g hk( )  – g h( )0 , (11)

where 0h  and kh  are averages computed over the prediction sample for the benchmark

model and the k th trading rule, respectively.  That is,

h k  =  ∑
=

+
−

T

Rt
tkhP )(1,

1 ,  k = 0,…,l. (12)

Once again, the Politis and Romano (1994) bootstrap procedure is applied to yield B

bootstrapped values of kf , denoted as *
,ikf , where

*
,ikf  = g hk i( ),

*  – g h i( ),
*
0 ,  i=1,…, B (13)

*
,ikh  = ∑

=
+

−
T

Rt
tkhP )(*

1,
1 ,  i=1,…, B. (14)
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The above procedure is now repeated to obtain White’s Reality Check P-value for the

Sharpe ratio performance criterion.  Note that by using a zero risk-free rate in

constructing the Sharpe ratio, we are making it easier to find “good” trading rules.

I I .  Technical Trading Rule Performance and Data-Snooping Biases

After more than a century of experience with technical trading rules, these rules are still

widely used to forecast asset prices.  Taylor (1992) conducted a survey of chief foreign

exchange dealers based in London and found that in excess of 90 percent of respondents

placed some weight on technical analysis when predicting future returns.  Unsurprisingly,

the wide use of technical analysis in the finance industry has resulted in several academic

studies to determine its value.

Levich and Thomas (1993) researched simple moving average and filter trading rules in

the foreign currency futures market.  They applied a bootstrap approach to the raw

returns on the futures, rather than fitting a model to the data and resampling the residuals.

Their research suggests that some technical rules may be profitable.  Evidence in favor of

technical analysis is also reported in Osler and Chang (1995) who used bootstrap

procedures to examine the head and shoulders charting pattern in foreign exchange

markets.  However, Levich and Thomas (1993) note the dangers of data-snooping and

suggest that “Other filter sizes and moving average lengths along with other technical

models could, of course, be analyzed.  Data-mining exercises of this sort must be

avoided.” 9  With the development of White’s Reality Check, it is no longer necessary to

avoid such data mining exercises, as we can now account for their effects.

Our study uses Brock, Lakonishok, and LeBaron (1992) as a springboard for analysis.

Their study utilizes the daily closing price of the Dow Jones Industrial Average from

1897 to 1986 to evaluate 26 technical trading rules.  These rules include the simple

moving average, fixed moving average, and trading range break.  BLL found that these

rules provide superior performance.  One drawback to their analysis is that they were

                                                
9 Levich and Thomas (1993), page 458.
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unable to account for data-snooping biases.  In their words, “… the possibility that

various spurious patterns were uncovered by technical analysis cannot be dismissed.

Although a complete remedy for data-snooping biases does not exist, we mitigate this

problem: (1) by reporting results from all our trading strategies, (2) by utilizing a very

long data series, the Dow Jones index from 1897 to 1986, and (3) emphasizing the

robustness of results across various nonoverlapping subperiods for statistical inference.”

As explained in the previous section, our method provides just such a data-snooping

remedy.

Three conclusions can be drawn from these previous studies.  First, there appears to be

evidence that technical trading rules are capable of producing superior performance.

Second, this evidence is tempered by the widely recognized importance of data-snooping

biases when evaluating the empirical results.  Third, the preferred way to handle data-

snooping appears to be to focus exclusively on the performance of a small subset of

trading rules, in order not to fall victim to data-snooping biases.  Nevertheless, as

mentioned in the introduction, there are reasons to believe that such a strategy may not

work in practice.  Technical trading rules that historically have been successful are also

the ones most likely to catch the attention of researchers, since they are the ones

promoted by textbooks and the financial press.  Hence, even though individual

researchers may act prudently and do not experiment extensively across trading rules, the

financial community may effectively have acted as such a “ filter” , necessitating a

consideration in principle of all trading rules that have been considered by investors.

I I I .  Universe of Trading Rules

To conduct our bootstrap data-snooping analysis, we first need to specify an appropriate

universe of trading rules from which the current popular rules conceivably may have

been drawn.  The magnitude of data-snooping effects on the assessment of the

performance of the best trading rule is determined by the dependence between all the

trading rules’  payoffs, so the design of the universe from which the trading rules are

drawn is crucial to the experiment.  We consider a very large number (7,846) of trading

rules drawn from a wide variety of rule specifications.  To be considered in our universe,
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a trading rule must have been in use in a substantial part of the sample period.  This

requirement is important for the economic interpretation of our results.  Only if the

trading rules under consideration were known during the sample would the existence of

outperforming trading rules seem to have consequences for weak-form market efficiency

or variations in ex-ante risk-premia.10  For this reason, we make a point of referring to

sources that quote the use of the various trading rules under consideration.

The trading rules employed in this paper are drawn from previous academic studies and

the technical analysis literature.  Included are filter rules, moving averages, support and

resistance, channel break-outs, and on-balance volume averages.  We briefly describe

each of these types of rules.  An appendix provides the parameterizations of the 7,846

trading rules used to create the complete universe.  Few of the original sources for the

technical trading rules report their preferred choice of parameter values, so we simply

choose a wide range of parameterizations to span the sorts of models investors may have

considered through time.  We realize that our list of trading rules does not completely

exhaust the set of rules that were considered historically.  However, our list of rules is

vastly larger than those compiled in previous studies, and we include the most important

types of trading rules that can be parsimoniously parameterized and do not rely on

“subjective”  judgments.  The notation used in the following description corresponds to

the appendix of parameterizations.

A.  Filter Rules

Filter rules were used in Alexander (1961) to assess the efficiency of stock price

movements.  Fama and Blume (1966) explain the standard filter rule:

An x per cent filter is defined as follows: If the daily closing price of a

particular security moves up at least x per cent, buy and hold the security

                                                
10 Suppose that some technical trading rules could be found that unambiguously outperformed the
benchmark over the sample period, but that these were based on technology (e.g., neural networks) that
only became available after the end of the sample.  Since the technique used was not available to investors
during the sample period, we do not believe that such evidence would contradict weak-form market
efficiency.
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until its price moves down at least x per cent from a subsequent high, at

which time simultaneously sell and go short.  The short position is

maintained until the daily closing price rises at least x per cent above a

subsequent low at which time one covers and buys.  Moves less than x per

cent in either direction are ignored.

The first item of consideration is how to define subsequent lows and highs.  We will do

this in two ways.  As the above excerpt suggests, a subsequent high is the highest closing

price achieved while holding a particular long position.  Likewise, a subsequent low is

the lowest closing price achieved while holding a particular short position.  Alternatively,

a low (high) can be defined as the most recent closing price that is less (greater) than the

e previous closing prices.  Next, we will expand the universe of filter rules by allowing a

neutral position to be imposed.  This is accomplished by liquidating a long position when

the price decreases y percent from the previous high, and covering a short position when

the price increases y percent from the previous low.  Following BLL (1992), we also

consider holding a given long or short position for a prespecified number of days, c,

effectively ignoring all other signals generated during that time.

B.  Moving Averages

Moving average cross-over rules, highlighted in BLL, are one of the most popular and

common trading rules discussed in the technical analysis literature.  The standard moving

average rule, which utilizes the price line and the moving average of price, generates

signals as explained in Gartley (1935):

In an uptrend, long commitments are retained as long as the price trend

remains above the moving average.  Thus, when the price trend reaches a

top, and turns downward, the downside penetration of the moving average

is regarded as a sell signal…  Similarly, in a downtrend, short positions

are held as long as the price trend remains below the moving average.
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Thus, when the price trend reaches a bottom, and turns upward, the upside

penetration of the moving average is regarded as a buy signal.11

There are numerous variations and modifications of this rule.  We examine several of

these.  For example, more than one moving average (MA) can be used to generate trading

signals.  Buy and sell signals can be generated by cross-overs of a slow moving average

by a fast moving average, where a slow MA is calculated over a greater number of days

than the fast MA.12

There are two types of “ filters”  we will impose on the moving average rules.  The filters

are said to assist in filtering out false trading signals (i.e., those signals that would result

in losses).  The fixed percentage band filter requires that the buy or sell signal exceed the

moving average by a fixed multiplicative amount, b.  The time delay filter requires that

the buy or sell signal remain valid for a pre-specified number of days, d, before action is

taken.  Note that only one filter will be imposed at a given time.  Once again, we consider

holding a given long or short position for a pre-specified number of days, c.

C.  Support and Resistance

The notion of support and resistance is discussed as early as in Wyckoff (1910) and

tested in BLL (1992) under the title of “ trading range break” .  A simple trading rule

based on the notion of support and resistance (S&R) is to buy when the closing price

exceeds the maximum price over the previous n days, and sell when the closing price is

less than the minimum price over the previous n days.  Rather than base the rules on the

maximum (minimum) over a prespecified range of days, the S&R trading rules can also

be based on an alternate definition of local extrema.  That is, define a minimum

(maximum) to be the most recent closing price that is less (greater) than the e previous

closing prices.  As with the moving average rules, a fixed percentage band filter, b, and a

                                                
11 Gartley (1935), page 256.
12 The moving average for a particular day is calculated as the arithmetic average of prices over the
previous n days, including the current day.  Thus, a fast moving average has a smaller value of n than a
slow moving average.



Data-Snooping, Technical Trading Rule Performance, and the Bootstrap

- 13 -

time delay filter, d, can be included.  Also, positions can be held for a prespecified

number of days, c.

D.  Channel Break-Outs

A channel (sometimes referred to as a trading range) can be said to occur when the high

over the previous n days is within x percent of the low over the previous n days, not

including the current price.  Channels have their origin in the “ line”  of Dow Theory

which was set forth by Charles Dow around the turn of the century.13  The rules we

develop for testing the channel break-out are to buy when the closing price exceeds the

channel, and to sell when the price moves below the channel.  Long and short positions

are held for a fixed number of days, c.  Additionally, a fixed percentage band, b, can be

applied to the channel as a filter.

E.  On-Balance Volume Averages

Technical analysts often rely on volume of transactions data to assist in their market-

timing efforts.  Although volume is generally used as a secondary tool, we will include a

volume-based indicator trading rule in our universe of rules.  The on-balance volume

(OBV) indicator, popularized in Granville (1963), is calculated by keeping a running total

of the indicator each day and adding the entire amount of daily volume when the closing

price increases, and subtracting the daily volume when the closing price decreases.  We

then apply a moving average of n days to the OBV indicator, as suggested in Gartley

(1935).  The OBV trading rules employed are the same as for the moving average trading

rules, except in this case the value of interest is the OBV indicator rather than price.

F.  Benchmark

Following BLL, our benchmark trading rule is the “null”  system, which is always out of

the market.  Consequently, S0 is always zero.  Thus, both for the mean return and Sharpe

ratio performance measures the benchmark performance is zero. An alternative

                                                
13 Hamilton (1922) and Rhea (1932) explain the Dow line in detail.
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interpretation, also emphasized by BLL (page 1741), is to regard a long position in the

DJIA as the benchmark and superimpose the trading signals on this market index.

According to this second interpretation a buy signal translates into borrowing money at

the risk-free interest rate and doubling the investment in the stock index, a “neutral”

signal translates into simply holding the stock index, while a sell signal translates into a

zero position in the stock index (i.e., out of the market).

IV.  Empir ical Results

The trading results from the Dow Jones Industrial Average are reported for the 90 years

and four sub-periods used by BLL, as well as for the entire 100-year full sample and the

10 years since the BLL study.14  The S&P 500 Futures results are reported for the entire

available sample.  The sample periods are:

In-Sample

Sub-Period 1: January 1897 – December 1914

Sub-Period 2: January 1915 – December 1938

Sub-Period 3: January 1939 – June 1962

Sub-Period 4: July 1962 – December 1986

Out-of-Sample

Sub-Period 5: January 1987 – December 1996

S&P 500 Futures: January 1984 – December 1996

For each sample period, Table I reports the historically best-performing trading rule,

chosen according to the mean return criterion.  Two trading rule universes were used: the

BLL universe with 26 rules and our full universe with 7,846 rules.  Table II reports

results when the best-performing trading rule is chosen according to the Sharpe ratio

criterion.

                                                
14 We refer to BLL, Table 1, for a description of the basic statistical properties of the data set.
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[Insert Table I]

[Insert Table II]

Table III and Table IV present the performance results of the best technical trading rule

in each of the sample periods.  These tables report the performance measure (mean return

or Sharpe ratio) along with White’s Reality Check P-value and the nominal P-value. The

nominal P-value is that which results from applying the bootstrap methodology to the

best trading rule only, thereby ignoring the effects of the data-snooping.  Hence, the

difference between the two P-values will represent the magnitude of the data-snooping

bias on the performance measure.

One would expect that the best-performing trading rule in the full universe would be

different from the best performer in the much smaller and more restricted BLL universe.

But it is interesting to notice the very different types of trading rules that are identified as

optimal performers in the full universe.  The BLL study identified trading rules based on

long moving averages – 50-, 150-, and 200-day averages, respectively – as the best

performers, while in the full universe of trading rules, the best-performing trading rules

use much shorter windows of data typically based on 2 through 5 day averages.  Hence

the best trading rules from the full universe are more likely to trade on very short term

price movements.

A.  Results for the Mean Return Criterion

Turning next to the actual performance of the selected trading rules, first consider the

results for the universe of 26 trading rules used by BLL.  Both in the full sample and in

the first four sub-periods, we find that the apparent superior performance of the best

trading rule stands up to a closer inspection for data-snooping effects.  This finding is not

surprising since BLL found that, in fact, every single one of their trading rules

outperformed the benchmark, and hence a consideration of dependencies between trading

rules is unlikely to overturn their original finding.
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[Insert Table III]

[Insert Table IV]

Over the 100-year period from 1897 to 1996 the best technical trading rule from the BLL

universe was a 50-day variable moving average rule with a 0.01 band, yielding an

annualized return of 9.4 percent.15  For comparison, the mean annualized return on the

buy-and-hold strategy was 4.3 percent during this same period.  In our full universe, the

best trading rule chosen by the mean return criterion is a standard 5-day moving average

rule.  The average annual return resulting from this rule is 17.2 percent.  The Reality

Check P-value is effectively zero (i.e., less than 1/B = 0.002) strongly indicating that

trading with the 5-day moving average is superior to being out of the market.  In all four

sub-periods we find again that the best trading rule outperforms the benchmark strategy

generating data-snooping adjusted P-values less than 0.002.  Furthermore, the mean

return of the best trading rule in the full universe tends to be much higher than the mean

return of the best trading rule considered by BLL.

Considering next the full universe of trading rules from which, over time, the BLL rules

are more likely to have originated, notice that two possible outcomes can occur when an

additional trading rule is inspected.  If the marginal trading rule does not lead to an

improvement over the previously best performing trading rule, then the P-value for the

null hypothesis that the best model does not outperform will increase, effectively

accounting for the fact that the best trading rule has been selected from a larger set of

rules. On the other hand, if the additional trading rule improves on the maximum

performance statistic, then this can often reduce the P-value since better performance

increases the probability that the optimal model genuinely contains valuable economic

information.16

                                                
15 Annualized mean returns are calculated as the mean daily return over the duration of the sample,
multiplied by 252.  The mean daily return is simply the total return divided by the number of days in the
sample.
16 Notice, however, that if the improvement is sufficiently small, then it is possible that the data-snooping
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Figure 1 provides a fascinating picture of these effects operating sequentially across the

full universe of trading rules.  For the first sub-period, 1897–1914, the figure plots the

number identifying each trading rule against its mean return.17  We have also drawn a line

tracking the highest annualized mean return (measured on the y-axis to the left of the

figure) up to and including a given number of trading rules (indicated on the x-axis), and

the Reality Check P-value for the maximum mean return performance statistic (measured

on the y-axis to the right of the figure).  The maximum mean return performance starts

out around 11 percent and quickly increases to 15 percent, yielding a P-value of 0.002

after the first 200 trading rules have been considered.  Adding another 300 trading rules

does not improve on the best-performing trading rule and, as a result, the likelihood of no

superior performance, as measured by the P-value, while still very small, doubles

between rules 200 and 500.  After approximately 550 trading rules have been considered,

the best performance is improved to around 17 percent and the P-value is again reduced

to a level around 0.002.  After this, only a very small additional improvement in the

performance statistic occurs around trading rule number 2,700.  Hence the bootstrap P-

value increases very slowly after this point.  Note that this evolution illustrates how the

P-values adjust as our particular exercise proceeds.  Ultimately, the only numbers that

matter are those at the extreme right of the graph, as the order of experiments is arbitrary.

Still, this evolution is informative as it suggests how the effects of data-snooping may

propagate in the real world.

An even sharper picture of the operation of data-snooping effects emerges from the

corresponding graph (Figure 2) for the second sub-period, 1915–1938.  For this period,

the best performing model is selected early on and remains in effect across the first 500

models.  As a result, its P-value increases from 0.01 to 0.08 as more models are

considered.  After this, the addition of a model which improves the mean performance to

                                                                                                                                                
effect of searching for an improved model from a larger universe will dominate the improved performance
and hence will lead to a net increase in the P-value.
17 What appear to be vertical clusters of mean return points simply reflect the performance of neighbor
trading rules in a similar class as the parameters of the trading rules are varied.
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20 percent causes the P-value to drop to less than 0.002.  Only towards the end of the

universe of models does the P-value begin to increase again as no more improvements

occur.

Our experiment also suggests why the alternative procedure of using a simple Bonferroni

bound to assess the significance of the best performing trading rule would give

misleading results.  Since the performance of the best trading rule drawn from the full

universe is not known when considering only a subset of trading rules, the Bonferroni

bound on the P-value cannot possibly be used to account for data-snooping.  A researcher

might believe that, say, the BLL trading rules were the result of traders considering an

original set of 8,000 rules, in which case the Bonferroni bound on the P-value would be

obtained as 8,000 times the smallest nominal P-value. But this leads to meaningless

results: In sub-period 4, the Bonferroni bound simply states that the P-value is less than

1, while in fact the bootstrap P-value for the best trading rule selected from the full

universe is less than 0.002.

A further issue at stake is how a trader could have possibly determined the best technical

trading rule prior to committing money to a given rule.  Although it may be the case that

we are able to find the historically best-performing rule in our universe, there is no

indication that it is possible to find ex-ante the trading rule that will perform best in the

future.  To address this issue we consider a new trading strategy whereby on each day of

the experiment we first determine the best-performing trading rule to date.  That is, we

find the rule with the greatest cumulative wealth for each day in the 100-year sample, and

then follow the signal of that rule on the following day.  At each point in time only

historically available information is exploited so this trading rule could have been

implemented by an investor.

[Insert Table V]

The results of this experiment are provided in Table V, along with summary statistics for

the best-performing technical trading rule chosen with respect to the mean return
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criterion, the 5-day simple moving average.  Table V shows that the recursive cumulative

wealth trading rule described above out-performs the benchmark with a 14.9 percent

annualized average return, but lags behind the 5-day moving average by over 2

percentage points, reflecting the fact that investors could not have known ex-ante the

identity of the ex-post best- performing trading rule.  It is interesting to see that the

number of short and long trades is roughly balanced out and that the winning percentage

is much higher for the long than for the short trades.  Long trades are also associated with

average profits that are more than twice as large as those on the short trades.

B.  Results for the Sharpe Ratio Criterion

It is clear from Table II that the trading rules selected from the full universe by the

Sharpe ratio criterion again tend to be based on a relatively short sample using 2-20 days

of price information.  Table IV shows that, as in the case of the best model chosen by the

mean return criterion, the best model according to the Sharpe ratio criterion generates a

P-value well below 0.01 in all samples.  Also, the performance of the best rule in the full

universe increases substantially relative to the best rule considered by BLL.  Over the full

100-year sample on the Dow Jones Industrial Average, the Sharpe ratio for the buy-and-

hold strategy was 0.26, while the best-performing trading rule in the BLL and full

universe produced Sharpe ratios of 0.59 and 1.04, respectively.

For the first two sub-periods, Figure 3 and Figure 4 plot the sequence of Sharpe ratios

based on the full set of models in contention alongside the P-value for the null that the

highest Sharpe ratio equals zero.  The most interesting graph appears for the second sub-

period (Figure 4).  The maximum Sharpe ratio is initially a little above 0.5.  As the first

500 models get inspected, the P-value increases from 0.01 to above 0.10, only to fall well

below 0.01 after a superior trading rule is introduced around model number 550.

Towards the end of the universe of trading rules, the P-value increases from close to zero

to a level around 0.006, thus displaying the effects of data-snooping.
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V.  Out-of-Sample Results

The data used in the study by BLL finished in 1986.  This leaves us with a 10-year post-

sample period in which a genuine out-of-sample performance experiment can be

conducted.  We do so using the Dow Jones portfolio originally studied by BLL, and we

also use prices on the S&P 500 futures contract that has traded since 1984 and hence

covers a commensurate period.  Lo and MacKinlay (1990) recommend just such a 10-

year out-of-sample experiment as a way of purging the effects of data-snooping biases

from the analysis.

There is a distinct advantage associated with using the futures data set: the experiment on

the DJIA data ignores dividends (which are not available on a daily basis for the full 100-

year period), while these are not a concern for the futures contract.  Furthermore, while

the assumption that investors could have taken short positions in the DJIA contract

throughout the entire period 1897–1996 may not be realistic, it would have been very

easy for an investor to have gone short in the S&P 500 futures contract.  Finally, it is

possible that while the technical trading rules considered by BLL generated profits before

transaction costs, accounting for such costs and data-snooping effects could change their

findings.18  In the full universe and over the 100-year period 1897–1996, the best-

performing trading rule for the Dow Jones Industrial Average earned a mean annualized

return of 17.17 percent resulting from 6,310 trades (63.1 per year), giving a break-even

transaction cost level of 0.27 percent per trade.  We do not have historical series on

transaction costs, and these would also seem to depend on the size of the trade; so it

seems difficult to assess this number.  Transaction costs are likely to have been higher

than 0.27 percent at the beginning of the sample, but potentially less by the end of the

sample.  Ultimately, the transaction cost argument is best evaluated using a trading

strategy in a futures contract, such as the S&P 500, where transactions costs are quite

modest.

                                                
18 In the conclusion to their paper, BLL call for careful consideration of transaction costs and explicitly
recommend using futures data as a way of dealing with this issue.
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The S&P 500 futures data were provided by Pinnacle Data Corporation.  The prices from

the nearest futures contract are employed with a rollover date of the 9th of the delivery

month for the contract.  That is, any position maintained in the current contract is closed

out, and a new position is opened, according to the trading rule, on the 9th of March, June,

September, and December.  A series of returns is created from each of the contracts

which is linked together at the rollover dates.  Starting with the price of the S&P 500

futures contract at the beginning of the series, a new price series is generated from the

returns.

A quick first way of testing the merits of technical trading rules is by considering the

performance of the best trading rule, selected by the end of 1986, in the subsequent 10-

year trading period.  The 5-day moving average rule selected from the full universe

produced a mean return of 2.8 percent with a nominal P-value of 0.321 for the period

1987 to 1996, indicating that the best trading rule, as of the end of 1986, did not continue

to generate valuable economic signals in the subsequent 10-year period.

Figure 5 presents graphs for the evolution in the maximum performance statistic and the

Reality Check P-value across the 26 trading rules considered by BLL applied to the out-

of-sample period.  The third and fourth trading rules improve substantially on the

maximum mean return statistic and the addition of these rules leads to decreases in the P-

value.  By the end of the sample, the maximum mean return statistic is around 9 percent

per year.  The P-value starts out around 0.3, decreases to a level below 0.1, but then

slowly increases to 0.12.  Such increases in the P-value, in the absence of improvements

over the best performing trading rule, vividly illustrate the importance of jointly

considering all the trading rules when drawing conclusions about the performance of the

best performing trading rule.  The P-value for the best performing trading rule,

considered in isolation, was 0.04.  The evidence that the best trading rule can produce

superior performance is even weaker when the Sharpe ratio criterion is used to measure

performance.  For this criterion, the P-value of the best model chosen from the BLL

universe terminates at 0.25 when data-snooping is accounted for (see Figure 6) and it is

0.025 when the trading rule is naively considered in isolation.
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Consider next the full universe of 7,846 trading rules for the S&P 500 futures data over

the period 1984–1996.  Figure 7, for models selected by the mean return criterion,

demonstrates perhaps more clearly than any other graph the importance of controlling for

data-snooping.  After the first few trading rules are considered, the P-value lies around

0.5, but it gradually increases to around 0.6 as no improvement over the best-performing

trading rule occurs until after approximately 400 trading rules.  Then the P-value drops

back below 0.4 only to increase to a level around 0.9 by the point the final trading rule

has been evaluated.  As is clear from Figure 8, a very similar picture emerges for the

Sharpe ratio criterion, where the terminal data-snooping-adjusted P-value is 0.94.

Notice the very strong conclusion we can draw from this finding. Even though a

particular trading rule was capable of producing superior performance of almost 10

percent per year during this sample period and had a P-value of 0.05 when considered in

isolation, the fact that this trading rule was drawn from a wide universe of rules means

that its effective data-snooping adjusted P-value is only 0.9.  An even bigger contrast

occurs from using the Sharpe ratio criterion: here the snooping-adjusted and unadjusted

P-values were 0.94 and 0.000 (below 0.002), respectively.  Indeed, data-snooping effects

are very important in assessing economic performance.

[Insert Table VI]

As a final exercise, we computed the out-of-sample performance of the recursive decision

rule described in section IV.  This rule follows the trading signal generated by the rule

that has produced the highest cumulative wealth as of the previous trading day.  Table VI

provides summary statistics for the best-performing rule and the cumulative wealth rule,

for both the out-of-sample Dow Jones Industrial Average (1987–1996) and the Standard

and Poor’s 500 Futures (1984–1996).  These rules are chosen with respect to the mean

return criterion.  It is interesting to note that in both of these out-of-sample periods the

cumulative wealth rule does not perform well.  In fact, the cumulative wealth rule applied

to the S&P 500 futures generates negative returns.  Also, note that the best rule for the
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Dow Jones Industrial Average results in only six trades, where each trade averages over

400 days.  This is considerably greater than the average of 4.3 days per trade resulting

from the best rule over the full 100-year sample.

VI .  Conclusion

This paper applies a new methodology that allows researchers to control for data-

snooping biases to compute the statistical significance of investment performance while

accounting for the dependencies resulting from investigating several investment rules.

We believe that this methodology deserves to be widely used in finance: there is an

obvious focus in finance on information and decision rules that can be used to predict

financial returns, but it is often forgotten that this predictability may be the result of a

large number of researchers’  joint search for a successful model specification with

predictive power.  Many researchers, such as Merton (1987), have called for a remedy to

control for data-snooping biases, and the methodology in this paper provides just such a

tool. It summarizes in a single statistic the significance of the best-performing model after

accounting for data-snooping.

Besides being important in assessing the importance of data-snooping bias in

performance measurement studies, the approach of this paper also has substantial value to

investors who are searching for successful investment strategies.  Suppose that, after

experimenting with a large number of decision rules, an investor comes up with what

appears to be a highly successful rule that outperforms the benchmark strategy.  The

investor is then left with the task of assessing just how much of the performance is a

result of data-snooping, and how much is due to genuine superior performance.  In the

presence of complicated dependencies across the rules being evaluated, this is a very

difficult question to answer, and only a bootstrap methodology such as the one offered in

this paper would appear to be feasible.  Furthermore, since the investor would know the

exact identity of the universe of investment rules from which the optimal rule was drawn,

the approach of this paper is eminently suited for such an assessment.
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Our analysis allows us to re-assess previous results on the performance of technical

trading rules.  We find that the results of BLL appear to be robust to data-snooping, and,

indeed, there are trading rules which performed even better than the ones considered by

BLL.  Hence their result that the best performing technical trading rule was capable of

generating profits when adopted to the Dow Jones Industrial Average, stands up to

inspection for data-snooping effects.  This finding is valid in all four sub-periods

considered by BLL.  However, we also find that the superior performance of the best

technical trading rule is not repeated in the out-of-sample experiment covering the 10-

year period 1987–1996.  In this sample the results are completely reversed and the best

performing trading rule is not even statistically significant at standard critical levels.  This

result is also borne out when data on a more readily tradable futures contract on the S&P

500 index is considered: again there is no evidence that any trading rule outperformed

over the sample period.

Two conclusions appear to be possible from these findings.  First, the out-of-sample

results may simply not be representative, possibly because of the unusually large one-day

movement occurring on October 19, 1987.  While this argument can never be rejected

outright, we want to emphasize that the out-of-sample trading period is rather long (3,291

days) which would seem to lend support to the claim that we can evaluate the trading

rules’  performance reasonably precisely in the post-sample period.  Also, the out-of-

sample results are robust to whether or not data on 1987 is included in the sample.  In a

finite sample, very large movements in stock prices such as those occurring on October

19, 1987 would, if anything, actually tend to improve the performance of the best trading

rule since some of the rules inevitably would have been short in the index on that date

and hence would have earned returns of 22 percent in a single day.19

                                                
19 Indeed, as shown in Table III, the best trading rule from the BLL universe under the mean return
criterion generates a mean return of 8.6 percent in the period from January 1987 through December 1996.
However, the best rule (200-day variable moving average with a 1 percent band) from the BLL universe in
the period January 1988 through December 1996 generates a mean return of only 5.6 percent.  Furthermore,
the large universe provides a best rule during sub-period 5 that generates a mean return of 14.4 percent,
where the best rule (20-day filter rule of 0.10) during the period beginning in 1988 provides a mean return
of only 13.9 percent.
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Second, it is possible that, historically, the best technical trading rule did indeed produce

superior performance, but that, more recently, the markets have become more efficient

and hence such opportunities have disappeared.  This conclusion certainly would seem to

match up well with the increased liquidity in the stock market which may have helped to

remove possible short-term patterns in stock returns.

Appendix 1:  Trading Rule Parameters

This appendix describes the parameterizations of the 7,846 trading rules used to generate

the full universe of rules under consideration.

A.  Filter Rules

x  = change in security price (x × price) required to initiate a position

y  = change in security price (y × price) required to liquidate a position

e  = used for an alternative definition of extrema where a low (high) can be defined as

the most recent closing price that is less (greater) than the n previous closing prices

c  = number of days a position is held, ignoring all other signals during that time

x  = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09,

0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.25, 0.3, 0.4, 0.5  [24 values]

y  = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2  [12 values]

e  = 1, 2, 3, 4, 5, 10, 15, 20  [8 values]

c  = 5, 10, 25, 50  [4 values]

Noting that y must be less than x, there are 185 x-y combinations.

Number of filter rules  =  x + (x *  e) + (x *  c) + (x-y combinations)

=  24 + 192 + 96 + 185  =  497

B.  Moving Averages

n  = number of days in a moving average

m  = number of fast-slow combinations of n
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b  = fixed band multiplicative value

d  = number of days for the time delay filter

c  = number of days a position is held, ignoring all other signals during that time

n  = 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250  [15 values]

m  = i
i

n

=

−

∑
1

1

 =  105

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values]

d  = 2, 3, 4, 5  [4 values]

c  = 5, 10, 25, 50  [4 values]

Note that a 1 percent band filter and a 10-day holding period is applied to all

combinations of moving averages with a fast MA of 1, 2, and 5 days and a slow MA of

50, 150, and 200 days.  This addition of 9 rules allows our universe of trading rules to

encompass all of BLL’s trading rules.

Number of rules  =  n + m + (b *  (n + m)) + (d *  (n + m)) + (c *  (n + m)) + 9

=  15 + 105 + 960 + 480 + 480 + 9  =  2,049

C.  Support and Resistance

n  = number of days in the support and resistance range

e  = used for an alternative definition of extrema where a low (high) can be defined as

the most recent closing price that is less (greater) than the n previous closing prices

b  = fixed band multiplicative value

d  = number of days for the time delay filter

c  = number of days a position is held, ignoring all other signals during that time

n  = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250  [10 values]

e  = 2, 3, 4, 5, 10, 20, 25, 50, 100, 200  [10 values]

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values]

d  = 2, 3, 4, 5  [4 values]
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c  = 5, 10, 25, 50  [4 values]

Number of rules  =  [(1 + c) *  (n + e)]  +  [(b *  (n + e)) *  (1 + c)]  +  [d *  c *  (n + e)]

=  100 + 800 + 320  =  1,220

D.  Channel Break-Outs

n  = number of days for the channel

x  = difference between the high price and the low price (x × high price) required to

form a channel

b  = fixed band multiplicative value

c  = number of days a position is held, ignoring all other signals during that time

n  = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250  [10 values]

x  = 0.005, 0.01, 0.02, 0.03, 0.05, 0.075, 0.10, 0.15  [8 values]

b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values]

c  = 5, 10, 25, 50  [4 values]

Noting that b must be less than x, there are 43 x-b combinations.

Number of rules  =  (n *  x *  c) + [n *  b *  (x-b combinations)]

=  320 + 1,720  =  2,040

E.  On-Balance Volume Averages

n  = number of days in a moving average

m  = number of fast-slow combinations of n

b  = fixed band multiplicative value

d  = number of days for the time delay filter

c  = number of days a position is held, ignoring all other signals during that time

n  = 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250  [15 values]

m  = i
i

n

=

−

∑
1

1

 =  105
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b  = 0.001, 0.005, 0.01,  0.015,  0.02, 0.03, 0.04, 0.05  [8 values]

d  = 2, 3, 4, 5  [4 values]

c  = 5, 10, 25, 50  [4 values]

Number of rules  =  n + m + (b *  (n + m)) + (d *  (n + m)) + (c *  (n + m))

=  15 + 105 + 960 + 480 + 480  =  2,040

Appendix 2:  Reality Check Technical Results

For the convenience of the reader, we replicate the main results of White (1997) and

briefly interpret these.  In what follows, the notation corresponds to that of the text unless

otherwise noted.

Let  Po denote the probability measure governing the behavior of the time series { Zt} .

Also, ⇒ denotes convergence in distribution, while p →  denotes convergence in

probability.

Proposition 2.1: Suppose that P1/2( f – E( f )) ⇒  N(0, Ω ) for Ω  positive definite and

suppose that   E( f1 ) > E( fk ),  for all  k = 2, ..., l.  Then  Po [ f1 > fk   for all  k = 2, ..., l]

→ 1  as  T  →  ∞ .  If in addition  E( f1 ) > 0, then for any  0 ≤  c  <  E( f1),  Po [ f1 > c]

→ 1  as  T  →  ∞ .

The first conclusion guarantees that the best model eventually has the best estimated

performance relative to the benchmark, with probability approaching certainty. The

second conclusion ensures that if the best model beats the benchmark, then this is

eventually revealed by a positive estimated performance relative to the benchmark.  The

next result provides the basis for hypothesis tests of the null of no predictive superiority

over the benchmark, based on the predictive model selection criterion.
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Proposition 2.2: Suppose that  P1/2( f – E( f ) ) ⇒  N(0, Ω ) for Ω  positive definite.

Then

max
,...,k l=1

  P1/2 { fk  – E( fk )}   ⇒   V ≡  max
,...,k l=1

 {  Zk }

and

min
,...,k l=1

  P1/2 { fk  – E( fk )}   ⇒   W ≡   min
,...,k l=1

  {  Zk } ,

where  Z  is an  l x 1  vector with components  Zk,  k = 1, ..., l, distributed as  N(0, Ω ).

Corollary 2.4: Under the conditions of Theorem 2.3 of White (1997), we have

ρ ( L [ V *  |  Z1, ..., ZT+τ ],  L [ max
,...,k l=1

  P1/2 ( fk  – E( fk ) ) ] ) p →  0

and

ρ ( L [ W *  |  Z1, ..., ZT+τ ],  L [ min
,...,k l=1

  P1/2 ( fk  – E( fk ) ) ] ) p →  0,

where

W *  ≡  min
,...,k l=1

  P1/2 ( fk
* – fk ).

L denotes the probability law of the indicated random variable, and ρ is any metric on

the space of probability laws.

Thus, by comparing V  to the quantiles of a large sample of realizations of V * , we can

compute a P-value appropriate for testing Ho: max
,...,k l=1

 E( fk ) ≤  0, that is, that the best

model has no predictive superiority relative to the benchmark.  White (1997) calls this the

“Reality Check P-value.”

The level of the test can be driven to zero at the same time that the power approaches one

according to the next result, as the test statistic diverges to infinity at a rate P1/2 under the

alternative.
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Proposition 2.5: Suppose that conditions A.1(a) or A.1(b) of White’s (1997) Appendix

hold, and suppose that  E( f1 ) > 0 and E( f1 ) > E( fk ),    for all  k = 2, ..., l.

Then for any  0 < c <  E( f1 ),  Po [ V >  P1/2c ] → 1  as  T  →  ∞ .

Corollary 5.1: Let  g: U →  ℜ  (U ⊂  ℜ m
)  be continuously differentiable such that the

Jacobian of  g,  Dg, has full row rank 1 at  E[ hk ] ∈ U,  k = 0, ..., l.  Suppose that the

assumptions of White (1997, Corollary 5.1) hold.  If  H = 0 (the Jacobian of h) or  (P/R)

log log R → 0 then for f *   computed using P&R’s stationary bootstrap

ρ( L [ P1/2 ( f * – f )  |  Z1, ..., ZT+τ ],  L [ P1/2 ( f – µ )] )  p →  0,

where  ρ  and  L [ ⋅ ] are as previously defined.

Maintaining the original definitions of V *  and W *  in terms of fk  and fk
* , we have

Corollary 5.2: Under the conditions of  Corollary 5.1, we have

ρ ( L [ V *  |  Z1, ..., ZT+τ ],  L [ max
,...,k l=1

  P1/2 ( fk  –  µk ) ] ) p →  0

and

ρ ( L [ W *  |  Z1, ..., ZT+τ ],  L [ min
,...,k l=1

  P1/2 ( fk  –  µk ) ] ) 
p →  0 .

The test is performed by imposing the element of the null least favorable to the

alternative,  i.e.,  µk = 0,  k = 1, ..., l; thus the Reality Check P-value is obtained by

comparing  V  to the Reality Check order statistics, obtained as described in Section II.

As before, the test statistic diverges to infinity at the rate P1/2 under the alternative.

Proposition 5.3: Suppose the conditions of Corollary 5.1 hold, and suppose that E( f1 ) >

0  and  E( f1 ) > E( fk ),  for all  k = 2, ..., l.
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Then for any  0 < c <  E( f1 ),  Po [ V > P1/2c ] → 1  as  T  →  ∞ .

Note that it is reasonable to expect the conditions required for the above results to hold

for the data we are examining.  As pointed out by BLL, while stock prices do not seem to

be drawn from a stationary distribution, the compounded daily returns (log-differenced

prices) can plausibly be assumed to satisfy the stationarity and dependence conditions

sufficient for the bootstrap to yield valid results.  It is possible to imagine time series for

returns with highly persistent dependencies in the higher order moments that might

violate the mixing conditions of White (1997), but the standard models for stock returns

do not exhibit such persistence.
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Table I

Best Technical Trading Rules under the Mean Return Cr iter ion

This table reports the historically best-performing trading rule, chosen with respect to the mean return

criterion, in each sample period for both of the trading rule universes: the BLL universe with 26 rules and

our full universe with 7,846 rules.

Sample BLL Universe of Trading Rules Full Universe of Trading Rules

Sub-Period 1
(1897-1914)

50-day variable moving average, 0.01 
band

5-day support &  resistance, 0.005 
band, 5-day holding period

Sub-Period 2
(1915-1938)

50-day variable moving average, 0.01 
band

5-day moving average

Sub-Period 3
(1939-1962)

50-day variable moving average, 0.01 
band

2-day on-balance volume

Sub-Period 4
(1962-1986)

150-day variable moving average 2-day on-balance volume

90 Years
(1897-1986)

50-day variable moving average, 0.01 
band

5-day moving average

100 Years
(1897-1996)

50-day variable moving average, 0.01 
band

5-day moving average

Sub-Period 5
(1987-1996)

200-day variable moving average, 
0.01 band

filter rule, x=0.12, y=0.10

S&P 500 Futures
(1984-1996)

200-day variable moving average 30 and 75-day on-balance volume

Out-of-Sample
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Table I I

Best Technical Trading Rules under the Sharpe Ratio Cr iter ion

This table reports the historically best-performing trading rule, chosen with respect to the Sharpe ratio

criterion, in each sample period for both of the trading rule universes: the BLL universe with 26 rules and

our full universe with 7,846 rules.

Sample BLL Universe of Trading Rules Full Universe of Trading Rules

Sub-Period 1
(1897-1914)

50-day variable moving average, 0.01 
band

20-day channel rule, 0.075 width, 5-
day holding period

Sub-Period 2
(1915-1938)

50-day variable moving average, 0.01 
band

5-day moving average, 0.001 band

Sub-Period 3
(1939-1962)

50-day variable moving average, 0.01 
band

2-day moving average, 0.001 band

Sub-Period 4
(1962-1986)

2 and 200-day fixed moving average, 
10-day holding period

2-day moving average, 0.001 band

90 Years
(1897-1986)

50-day variable moving average, 0.01 
band

5-day moving average, 0.001 band

100 Years
(1897-1996)

50-day variable moving average, 0.01 
band

5-day moving average, 0.001 band

Sub-Period 5
(1987-1996)

200-day variable moving average, 
0.01 band

200-day channel rule, 0.150 width, 50-
day holding period

S&P 500 Futures
(1984-1996)

200-day fixed moving average, 0.01 
band, 10-day holding period

20-day channel rule, 0.01 width, 10-
day holding period

Out-of-Sample
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Table I I I

Performance of the Best Technical Trading Rules under the Mean Return Cr iter ion

This table presents the performance results of the best technical trading rule, chosen with respect to the

mean return criterion, in each of the sample periods.  Results are provided for both the BLL universe of

technical trading rules and our full universe of rules.  The table reports the performance measure (i.e., the

annualized mean return) along with White’s Reality Check P-value and the nominal P-value.  The nominal

P-value is that which results from applying the Reality Check methodology to the best trading rule only,

thereby ignoring the effects of the data-snooping.

Sample Mean White's Nominal Mean White's Nominal
Return P-value P-value Return P-value P-value

Sub-Period 1
(1897-1914)

9.52 0.0155 0.0000 16.48 0.0006 0.0000

Sub-Period 2
(1915-1938)

13.90 0.0000 0.0000 20.12 0.0017 0.0000

Sub-Period 3
(1939-1962)

9.46 0.0010 0.0000 25.51 0.0000 0.0000

Sub-Period 4
(1962-1986)

7.87 0.0110 0.0027 23.82 0.0000 0.0000

90 Years
(1897-1986)

10.11 0.0000 0.0000 18.65 0.0000 0.0000

100 Years
(1897-1996)

9.39 0.0000 0.0000 17.17 0.0000 0.0000

Sub-Period 5
(1987-1996)

8.63 0.1188 0.0395 14.41 0.3007 0.0009

S&P 500 Futures
(1984-1996)

4.25 0.4342 0.2037 9.43 0.8999 0.0561

BLL Universe of Trading Rules Full Universe of Trading Rules

Out-of-Sample
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Table IV

Performance of the Best Technical Trading Rules under the Sharpe Ratio Cr iter ion

This table presents the performance results of the best technical trading rule, chosen with respect to the

Sharpe ratio criterion, in each of the sample periods.  Results are provided for both the BLL universe of

technical trading rules and our full universe of rules.  The table reports the performance measure (i.e., the

Sharpe ratio) along with White’s Reality Check P-value and the nominal P-value.  The nominal P-value is

that which results from applying the Reality Check methodology to the best trading rule only, thereby

ignoring the effects of the data-snooping.

Sample Sharpe White's Nominal Sharpe White's Nominal
Ratio P-value P-value Ratio P-value P-value

Sub-Period 1
(1897-1914)

0.65 0.0167 0.0000 1.30 0.0000 0.0000

Sub-Period 2
(1915-1938)

0.63 0.0034 0.0000 0.88 0.0058 0.0000

Sub-Period 3
(1939-1962)

0.87 0.0004 0.0000 2.26 0.0000 0.0000

Sub-Period 4
(1962-1986)

0.70 0.0177 0.0000 1.87 0.0000 0.0000

90 Years
(1897-1986)

0.64 0.0000 0.0000 1.12 0.0000 0.0000

100 Years
(1897-1996)

0.59 0.0000 0.0000 1.04 0.0000 0.0000

Sub-Period 5
(1987-1996)

0.52 0.2526 0.0247 1.11 0.2642 0.0000

S&P 500 Futures
(1984-1996)

0.28 0.5872 0.0995 0.71 0.9399 0.0000

BLL Universe of Trading Rules Full Universe of Trading Rules

Out-of-Sample



Data-Snooping, Technical Trading Rule Performance, and the Bootstrap

- 38 -

Table V

Technical Trading Rule Summary Statistics:  100-Year Dow Jones Industr ial
Average Sample (1897–1996) with the Mean Return Cr iter ion

This table provides summary statistics for the best-performing rule (the simple 5-day moving average),

chosen with respect to the mean return criterion, and the recursive cumulative wealth rule, over the full

100-year sample of the Dow Jones Industrial Average.  The cumulative wealth trading rule bases today’s

signal on the best trading rule as of yesterday, according to total accumulated wealth.

Summary Statistics Best Rule Cumulative Wealth Rule

Annualized average return 17.2% 14.9%

Nominal P-value 0.000 0.000

White's Reality Check P-value 0.000 n/a*

Total number of trades 6,310 6,160

Number of winning trades 2,501 2,476

Number of losing trades 3,809 3,684

Average number of days per trade 4.3 4.2

Average return per trade 0.29% 0.26%

Number of long trades 3,155 3,103

Number of long winning trades 1,389 1,372

Number of long losing trades 1,766 1,731

Average number of days per long trade 4.7 4.2

Average return per long trade 0.39% 0.35%

Number of short trades 3,155 3,057

Number of short winning trades 1,112 1,104

Number of short losing trades 2,043 1,953

Average number of days per short trade 3.9 3.8

Average return per short trade 0.19% 0.16%

* The recursive cumulative wealth rule is not the best trading rule ex-post, thus the Reality Check P-value
does not apply.
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Table VI

Technical Trading Rule Summary Statistics:  Out-of-Sample Dow Jones Industr ial
Average (1987–1996) and the Standard and Poor ’s 500 Futures (1984–1996) with

the Mean Return Cr iter ion

This table provides summary statistics for the best-performing rule, chosen with respect to the mean return

criterion, and the recursive cumulative wealth rule, for both the out-of-sample Dow Jones Industrial

Average (1987–1996) and the Standard and Poor’s 500 Futures (1984–1996).  The cumulative wealth

trading rule bases today’s signal on the best trading rule as of yesterday, according to total accumulated

wealth.

Summary Statistics Best Rule
Cumulative 
Wealth Rule

Best Rule
Cumulative 
Wealth Rule

Annualized average return 14.4% 2.8% 9.4% -5.5%

Nominal P-value 0.001 0.271 0.056 0.867

White's Reality Check P-value 0.301 n/a* 0.900 n/a*

Total number of trades 6 676 43 210

Number of winning trades 4 234 22 55

Number of losing trades 2 442 21 155

Average number of days per trade 411.7 3.7 76.5 14.3

Average return per trade 34.38% 0.04% 3.00% -0.33%

Number of long trades 4 338 22 104

Number of long winning trades 3 140 12 31

Number of long losing trades 1 198 10 73

Average number of days per long trade 598.0 4.3 98.6 17.1

Average return per long trade 48.16% 0.24% 5.76% 0.16%

Number of short trades 2 338 21 106

Number of short winning trades 1 94 10 24

Number of short losing trades 1 244 11 82

Average number of days per short trade 39.0 3.2 53.4 11.6

Average return per short trade 6.82% -0.16% 0.12% -0.82%

Dow Jones Industrial Avg S&P 500 Futures

* The recursive cumulative wealth rule is not the best trading rule ex-post, thus the Reality Check P-value
does not apply.



Data-Snooping, Technical Trading Rule Performance, and the Bootstrap

- 40 -

Figure 1.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Mean Return Criterion:  Sub-Period 1 (1897–1914)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 2.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Mean Return Criterion:  Sub-Period 2 (1915–1938)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 3.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Sharpe Ratio Criterion:  Sub-Period 1 (1897–1914)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 4.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Sharpe Ratio Criterion:  Sub-Period 2 (1915–1938)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 5.  Economic and Statistical Performance of the Best Model Chosen from the

BLL Universe According to the Mean Return Criterion:  Out-of-Sample, Sub-Period 5

(1987–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 6.  Economic and Statistical Performance of the Best Model Chosen from the

BLL Universe According to the Sharpe Ratio Criterion:  Out-of-Sample, Sub-Period 5

(1987–1996)
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For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 7.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Mean Return Criterion:  S&P 500 Futures (1984–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 8.  Economic and Statistical Performance of the Best Model Chosen from the Full

Universe According to the Sharpe Ratio Criterion:  S&P 500 Futures (1984–1996)

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the highest Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.


