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In financial marlets an rcess of hying tends to dvie prices up, and an
excess of selling tends to de them dan. This is called mast impact.
Based on a simplified model for matkmaking it is possible to dee a
unique functional form for maek impact. This can be used to formulate a
non-equilibrium theory for price formation. Commonly used trading strate-
gies such asalue irvesting and trend folleing induce characteristic
dynamics in the price. Although there is a tengeoc self-fulfilling
prophesies, this is notvedys the case; in particuJanary value irvesting
stratgies il to male prices reflectalues. When there is aversity of
perceved \alues, nonlinear strajes gve rise to gcess wlatility. Mary
market phenomena such as trends and temporal correlatiookimerand
volatility have simple gplanations. The theory is both simple argei-
mentally testable.

Under this theory there is an emphasis on the interrelationships of
stratgies that mads it natural to igard a markt as a financial ecologi
variety of éamples shw how diversity emeges automatically as we
stratgies eploit the ineficiencies of old stratges. This results in capital
reallocations thatwlve on longer timescales, and cause apparent nonsta-
tionarities on shorter timescales. Thevdiiovard marlet eficiency can be
studied in the dynamical comteof pattern eolution. The golution of the
capital of a stratgy is analogous to thev@ution of the population of a bio-
logical species. $eral diferent aguments suggest that the timescale for
market eficiengy is years to decades.
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1. Introduction

Modern financial mamts are not true auctions.ahsactions are made on an ongoing
basis. Mag agents by and sell simultaneouslysually at difierent prices. Prices are often
in a state of flux, and sometimesaihe subjectie impression of beingf from equilib-
rium. While it is possible to model price formation as a repeated series of auctions, this is
complicated and obscures the temporal dynamics of the price. It is also not an accurate
description of hav marlets really vork.

A principal motvation behind the ek presented here is to construct an inherently
non-equilibrium theory for price formation, in which dynamics egaeraturally and auto-
matically, and the price at one time is easily understood in terms of the price atcaupre
time. The idea behind this approachsanspired in part by Gegg Soros’ principle of
market reflivity [2]. He states that “Buy and sell decisions are basedpectations
about future prices, and future prices, in turn, are contingent on presesmd sell deci-
sions”. He agues that as a result, financial transactions and pricesaagsah flux.

| have corversed with hundreds of financial traders withvediity of diferent
approaches to making mgnén this remarkable assortment ofvde and contradictory
views, | noticed one precept that all agree on. It carxpeessed in the simple statement
that “buying tends to dvie the price up, and selling tends tovdrit davn.” This can be
viewed as a weaned statement of the usuaklaf supply and demandubwithout the
assumption of equilibrium. It suggests a dynamical feedback loop in which changes in the
price cause trading decisions, that cause changes in the price, that in turn cause trading
decisions... The natural \wy to describe this is in terms of a dynamical system.

Putting this into mathematical form presentgesal problems. Since fowery uyer
there is a selledoes the statement al@omale ary sense? Assuming it doesyhdoes
one choose from the infinite set of possible mathematgakssions that are consistent
with it? Answering these questions is in part the cause of a four year delay in the publica-
tion of this pape:

The goal here is not to formulate the most realistic possibleataidkking model,
rather to formulate the simplest model that is also reasonable. The purpose is o mak
canonical model around which other models can bgedeas refinements. One of the
major reasons fordeping this simple is to allotransparent analysis of complgues-
tions, such as whether prices refleaies, ho marlets @olve on longer timescales, and
whether markts are dicient. Once we understand the answers to these questions using
the simplest reasonable model, we can return to address possible modifications under
more accurate models. The theoryudtiin a manner that can be directly connected to
market data, and that can be refined as better measurements beadaidea

Under this theory the price dynamics are determined by the collection of trading strat-
egies that comprise the matk The price dynamics in turn determine whethewrargi
stratgyy will make profits or losses. Thus, the profits or losses ofengitratgy are deter-

1. See footnote on page 18.
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mined by the collection of stragres present in the mark A marlet can therefore be
viewed as an ecology of trading stigites, in which the fithess and swali of each strat-
egy are determined by its relationship to other striate

To determine whether this theorywes sensible results a series xdmples are del-
oped. Thesexamples are based on common trading grese such as trend follong
and \alue irvesting. The approach is empirical, similar to that used in population hiology
We describe some strgtes, with \arying levels of realism, and study theifedt on the
price. We start by studying strags one at a time and then study their interactions with
each otherBecause of the simplicity of this thepsgveral ekamples are easilyavked
analytically

One of the most surprising results concemse irvesting. Under the ceentional
wisdom that trading stragees create self-fulfilling prophesies, oneuld assume that
value irvesting stratgies should necessarily cause the pricevertdo \alue. This is
indeed true in some cases.\Wwer, there are alsoery reasonablealue irvesting strate-
gies that do not produce this betwa Interestinglyas we go from stragees that are
behaiorally unrealistic to those that are more realistic, we see that the price dynamics also
become more realistic. The desire void transaction costs leads to stggs that entrain
price to \alue in a manner qualitagly similar to that obseed in real maréts. & shov
that a collection of linearalue irvesting stratgies with a drersity of perceied \alues are
equialent to a singlealue stratgy with the meanalue. Havever, for nonlinear strate-
gies the situation is quite tBfent: A dversity of \alues leads toxeess wlatility in the
price, i.e. the price fluctuates more than thkeie.

We also study trend folaing stratgies. In addition to slwang that thg cause trends,
we see that thyealso cause oscillationsale irvesting stratgies tend to induce gative
autocorrelations in price returns, and trend feitg stratgies tend to induce posié
autocorrelations. In a population containing both trend ahe\stratgies we obser/
mary of the characteristics of a real matrkincluding long tailed price returnsx¢ess
kurtosis), autocorrelations irolume, correlations betweenlume and wolatility, and cor-
relations in wlatility. Even when the autocorrelation of price returns is zero, implying no
linear structure, there are periods in which trading is dominatedlbyg wrvestors, with
negative correlations, and periods in which the trading is dominated by trenddéodip
with positve correlations. Thus there is nonlinear structure that can potentially be
exploited to mak profits.

Again following an approach commonly used in population genetics, we can study the
emegence of drersity in financial ecologies. If the ecology is initially dominated by a
particular stratgy, other stratgies can imade if thg are profitable relate to the domi-
nant stratgy. For simple &amples we can compute the profitabilitye see that mamdif-
ferent irvasions are possible.@Mgue by &ample that we carxpect a succession ofwe
stratgies to emage, and that as a result financial ecologies spontaneously geneeate di
sity.

Although the perception that economics should be moeebidlogy has been present
at least since theark of Alfred Marshall [1], a perusal of historicabvk with this intent
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leaves the impression that this dream has yet to be realized (seargle the references
in [38]). Although the foundations of this theory shitie influences of ptsics, thg lead
to a transparent analogy between finance and biofotwading stratgy is analogous to
the phenotype. The capitaivested in a particular strage determines the scale of itgyb
ing and selling, and therefore the magnitude of fescebn the price dynamics, and is
analogous to the population. Under some assumptions the capital changyegdime
relative to the price; this can be used to separate the timescales and writegi@mtions
that are analogous to the Lotkalérra equations. Because statisticadrages eer
shorter timescales depend on the capitiations in the capitamMer longer timescales
causes apparent nonstationarity

Under the classic theory of matkeficiency, if there are anprofitable patterns in the
market they should disappear as thare eploited to mak a profit. V& investicate the
case of an isolated pattern. It is possible to compuwteancarbitrary pattern willelve as
the capital of the stragg exploiting it is increased. Wsee that patterns both spread and
evolve tovard earlier times, depending on the trading style that originally generated them.
If a pattern is ver-exploited it is pushed forard in time. This can happen either because
traders &il to understand their transaction costs, or becausg aggmts attempt to inhabit
the same niche, which results in anamfable competitie optimum. Some estimates of
timescales suggest that thekition of capital, and hence the approach tegiehgy, is
measured in timescales of years or decades. This analy&s tgzen the question of
whether markts are ultimately &tient, kut it provides some insight into koefficiency
occurs and what it depends on, and places it in a dynamicaktonte

Although there are mardifficulties to doing so in practice, if we kmehe collection
of stratgies, and the capital of each, the approach proposed here could be useel to mak
profits by making predictions. Since this requiresvdedge of all other stragges, such a
stratgy is generally more algorithmically comgléhan all other prgous stratgies com-
bined. One can imagine a succession of such gieateeach more compi¢han the
former. Although this is unrealistic, it may be that some crude approximation of such a
stratgic “arms race” is partially responsible for the trenddal greater compkdty in
real marlets.

This work has similar motiations to other recent studies using artificial ratgksuch
as the Santa Fe Stock MatK4, 5, 15]. These studiesveashevn interesting results illus-
trating marlet dynamics in anvelutionary contgt. The Santa Fe Stock matks based
on a traditional vier of the markt as a sequence of auctions, each of whiatives an
iteration of prices until loying and selling are matched. Each agent has a forecasting algo-
rithm; to translate the predictions of the algorithm into trading it is necessary to assume all
the agents empjoa given utility function. There can be situations in which it is impossi-
ble to match byers and sellers without temporarily freezing the price and incorporating
new information. The process is $iafently complicated that analysis of the results can be
difficult. The Santa Fe Stock Matkis based on standard principles in finance; the theory
presented here feffrs a nev approach that is simpleallowing mary problems to be
addressed analyticallfime will tell whether it is more or less realistic.
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The paper is dided into three substawé sections. The first, calleddfee”, derves
the marlet dynamics used here, outlines the connectiomateegtheoryand present se
eral background results that will be used latée nat section, “Ecology”, studies the
price dynamics of stragges both alone and in combination, and tries to demonstrate that
this approach ges some sensible results. In the final sectionofiEon”, we study the
profitability of stratgies, the emegence of diersity, and the eolution of capital through
time. This section addresses n&rk&ficiency and tries to gie some insight about wo
patterns eolve as thg are &ploited to mak profits.

One of the main aspirations of thi®mk is to preide a more corenient quantitate
forum to address the problems raised in the feld of beh&ioral economic$12].
Behavioral economists ha demonstrated that there are snegspects in which westors
are less than rational. Examples include tendenanesrtiborerconfidence, poor ability to
incorporate statistical analysis in decision making, and the intrusion of emotions on ratio-
nality. While it seems clear that such bebas contrilute to such mag& phenomena as
excess wlatility [7] or large marlket morements in the absence ofase[30], it can be dif-
ficult to translate empirically obsesst behgioral characteristics into utility functions and
equilibria. By making it possible to simply obsemvhich marlkt stratgies are actually
used, and compute matkdynamics without such intermediate assumptions, this theory
hopes to preide a comenient quantitatie framevork for behaioral economick

1. Note that with the theory presented here it is still possible to assume utility functiores sttatgies,
and then compute dynamics. Thdeli&nce is that assumptions about utility functions are not necessary if
the stratgies are already kmon.
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2. Force

In this section we delop a simple dynamical model for financial megdsk It is based
on the premise that trading has neriknpact, and changes in price can lgarded (at
least in part) as the aggede of the markt impacts of each trade. Based on certain plausi-
ble assumptions, it is possible to dera canonical model for makimpact. This model
makes seeral idealizations; the goal is to construct the simplest possible reasonable
model, rather than to construct the most accurate model. This section also presents some
background results that will be needed lagech as formulas relating to the profitability
of stratgies.

2.1 Market impact implies market dynamics

Trading has makt impact. Buying tends to push the price up and selling tends to push
it down. This goes under mamames, such as “slippage”, “matKriction”, or “price
impact”. For trading at lage size mardt friction is the dominant source of transaction
costs. It determines an upper bound on the profitability of tradinggest®©n gerage,
the lager the orderthe lager the mar&t impact.

For every luyer there must also be a sellw at first glance it is not wious that this
makes aly sense. If thelyer in a gien transaction dres the price up, whdoesnt the
seller on the opposite sideliit dovn by the same amount? The answer is that traders
usually difer in patience, which causes asymmetric price impact. A trader witlgantur
need to mak a transaction pays a premium to one who can be more patient. This is
referred to as the “cost of immedydi83]. The premium for getting an immediate trans-
action is often paid to market maler, who simultaneously @drs to luy at a lov price,
called thebid, and sell at a higher price, called tiker or theask The diference between
the ofer and the bid is called trspread The stratgy of the markt maler is to luy low
and sell high, and do this repeatedly by makingyrfesund-trip” transactions across the
spread. A pure markt maler is a patient trader who does notéa directional vie and
receves the spread as compensation fowaliag liquidity. This is contrast to direc-
tional trader, who at one time mayamt to luy, and at some other time maymt to sell,
but never wants to do both at once. Avgn marlet participant may play the role of matk
maker at some times and that of directional trader at othetr$obthe results presented
here we will assume that the roles aredix

Market making happens througtvdrse institutional structuresoFexample, in the
New York Stock Exchange, for each stock there is a designated specialist wiemis gi
special pwileges in return for prading liquidity. However, in most markts this niche is
simply filled informally often by competing maek malers. Of course, not all trading
involves a mar&t maler; if buy and sell orders of similar size are submitted at roughly the
same time, thecan simply be crossed with no net price impact. Nonetheless, some frac-
tion of the time directional traders find themsslwithout other directional traders togak

1. Around trip is circuit, i.e. a set ofiys and sells that cancel each other out.
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the opposite side, and a marknaler is irvolved. Thus onaerage directional traders
experience mart impact.

The situation is further complicated because there arg ditiarent kinds of orders.
The two most common ammarket oders, which are requests to transact immediately at
the best @ailable marlt price, andimit orders, which are requests to transact only if this
can be done at avgn price or betteA market order is alays filled, whereas a limit
order may go unfilled if the maekprice neer crosses the limit price. A limit price that is
close to the current magkprice has a relatly high probability of being filled, while one
far avay from the current price has aver probability of being filled. Limit orders pro-
vide a continuum of diérent levels of patience depending on thevhdose the limit price
is to the mar&t. A marlet maler may be thought of as someone who simultaneously sub-
mits limit orders both toudy and to sell, adjusting the limit prices to bretcthe current
price at which orders are being filled.

The price impact of an order can be measured by comparing prices before an order is
placed to those after it is filled. The resulting price shift may deperattors such as the
volume of trading or the identity of the tradStudies of mamt microstructure hae
devoted considerable fefrt to understanding the “information content” offerent types
of trades [8]. V& will ignore such complications.

A particularly importantdctor determining price impact is the order SiFer small
orders the price shift isavy noisy with the probability of an upard price shift for aly
order only slightly higher than that of awdaward shift for a sell ordeAs orders become
larger the systematic tendgnof the price to shift in the direction of the order becomes
more apparent.

It is important to distinguish twtypes of markt impact. There is thdirect impacof
each orderwhich alters the price of that particular transaction in relation to prices
obsered when the orderas placed. There is alswdirect impactinsofar as each order
alters the price, this may alter the placement of subsequent oraevéllWow develop a
simplified model for the direct magkimpact. In the section on “Ecology” we will study
indirect marlet impact, as manifested in the price dynamics.

2.2 Simple market making model

In this section we delop a simple model for magkmaking. Complications such as
competition between magkmalers, limit orders, or the information content of an order
based ondctors other than its size and direction will bgleeted. The resulting model
will be based on maek orders onlyand will assume that all trades are made with a single
market maler. The stratgy is to simplify the description of magkmaking in order to

1. Chan and Ladnishok [10] obserd that the identity of the trader is more important than the order size in
determining price impact. Heever, their sample consisted of trades from gndifferent institutions, with
heterogeneous trading styles andedlént levels of patience. Thevel of patience is clearlyery important

in determining mart impact -- there is a clear tradé-oétween getting a trade done soon vs. getting it
done at a good price. But for avgn level of patience, the order size should be the most impoeeturf
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study the complaty caused by directional trading. The purpose is to construct a theory
simple enough to answer filiult questions.

2.2.1 Dervation of basic model

Assume that all trading occurs via metrkrders filled by the magkmaler. Suppose a
directional trader places an orde(t) based on the midpoint pric€t) > 0. Buy (posi-
tive) orders are filled at pricgt) + s(t)/2, and sell (ngative) orders at price
X(t) —s(t)/2, wheres(t) > 0 is the spread. The wamidpoint price where the transaction
takes place at timé can be written

X(t) = X(x(t), w(t), S(t)), (Eq 1)

whereS(t) is the internal state of the matkmaler, which may depend on past trading
history Thepositionis the net holding of the asset, i.e. if the initial holding is zero, since
all orders are filled, the position is the sum of alivres orders.

In the spirit of getting the simplest model thateg reasonable markdynamics, we
will not attempt to model the temporal bglta of the spread. Inetct, unless otherwise
stated we will assums(t) = 0. This is unrealistic, Uit the ratio of the spread to the mid-
point price is usually small, and the midpoint price has a mughrlafect on the dynam-
ics. The main ééct of the spread is on the profits and losses, which mayahsignificant
impact on stratgy selection, as discussed in Section 4. Modeling the spread add
complications that are not crucial to the main results.

To develop a canonical model for price setting by the renkaler we impose the fol-
lowing conditions. The first four should not be couénsial:

1. The price is always positive

X(X, w, S) >0 for x>0.
2. The price is always finite

3. X is an inceasing function ofv. This means that price impact is in the direction of the
order and increases with order size.

4. If there ar no oders thee is no markt impact.

X(x,0,9) = X.

The first four conditions are already fstient to eliminate manpossibilities. Br
example, the relatiox = x(1+ aw®), wherea>0 andb is a positie odd intger;

can be eliminated because for dfisigntly negative w the price can become gadive.
Similarly, for the relatiork = x/(1—awP) the price can become infinite with a single
large positve order This indicates that must increase at least astfase®’, i.e as &st

as an eponential to a pwer of the order

We nav add some stronger assumptions.

November 30, 1998 9



5. The pricex(t) is a continuously valued variablth@t males discontinuous jumps
immediately when orders are placed). Though the quantization of transacéisnde
important for some problems, it is not important for those considered here.

6. Theke is no dependence on the internal statef the markt maler. This is clearly not
true for real mar&t malers. As the maet maler trades she tends to accumulate a net
long (positve) or short (ngative) position and mads price adjustments to compensate.
Alternatively, a real mar&t maler may act as a directional trader to unload the position,
and generate additional matkmpact. Bctors such as recerdlume and wlatility
may hae an influence in determining the steepness of the price response to an order of
a gien size. Nonetheless, including the nedinkalers’ state introduces complications
that we wish towoid at this point; this assumption will be neaenined in
Section2.3.1.

7. Itis not possible to makprofits by epeatedly tding though a cicuit. A circuit is a
sequence of trades that sum to zero, also called a “round-trip”. If a circuit does not
return the price to its originablue, it becomes possible to ¢s& net position and mak
arbitrarily lage profits by manipulating the price by repeatedabceating the circuit.
Any market maler who does not pvent this should go out otuBiness &ry quickly
We shav belaw that this leads to the conclusion tiahust satisfy thedditivity condi-
tion

X(X(X, @), 0,) = X(X, 0y + W,). (Eq 2)

This says that the direct matkmpact of two orders is the same as that of a single
order equal to their sum. It implies that the direct retikpact is independent of the
order of transactions and is ufeatted by order splitting or mging.

8. The mtio of the prices beferand after a &nsaction is a function @b alone

1 XX

v o(w). (Eq 3)

From (3),¢ must be an increasing function.

The last tvo assumptions uniquely determine the rearkpact function. Plugging
equation3 into equatior? gives

Py +w,) = Q) P(w,).

This functional equation has the solution
S = wew/A % - w
X = X€ or logx—logx = 3 (Eq 4)

A is a scaledctor that normalizes the order size, and will be calletighility. It deter-

mines hav much the price changes for an order ohegisize. The liquidity is measured

in the same units as orders, e.qg. if the orders are measured in dollars, the liquidity is in dol-
lars. If the liquidity is a billion dollars, an order of a billion dollars will cause the price to
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increase by aakctor ofe. For corvenience we will initially assume the liquidity is con-
stant, although we will also consider the case wherrigy in time later

We will now derive the additiity condition for markt impact, equatio, from
assumption (7). The simplest circuit is composed of alternatindp and selling, i.e. of
executing tradegw, —w) . If this results in a net increase in price then

X(X(X, W), —w) > X.

If this is true then it is possible to meakrbitrarily lage profits by taking a net long (posi-
tive) positiony, and ratcheting the price upvd by alternatelydying and selling. Simi-
larly, if buying and selling results in a net decrease in price, arbitrargg [anofits are
possible by taking a net short ¢adive) position and ratcheting the pricendovard. Thus
assumption (7) implies that

X(X(x, W), —w) = X.

Since by assumptiorx is an increasing function @b, for fixed x its inversex-1 exists
and we can takthe iverse of both sides of themession abee, which gves

X(X, W) = X1(x,—Ww). (Eq 5)
This says thatuying and selling hze inverse mar&t impact.

Now consider the more complicated circ(id,, w,, -(w; + w,)) . Under the same
reasoning used abe, arbitrarily lage profits are possible unless

X(X(X(X, Wy), W,), ~(w; + w,)) = X.

Taking the inerse of both sides and using equabagives equatior2. Since ayp sequence

of trades can be decomposed into a series of trades in this form, this implies that the net
price change from grcircuit is zero, and that the total direct netrkmpact due to arset

of orders is imariant under permutations. Bear in mind that this is only true for the direct
impact; since orders typically depend on the price, the orders that are actuallydolaced
depend ery much on the sequence, and thus the indirectenempact may be quite sen-
sitive to the sequence of orders.

The marlet maler can block profits from trading through a circuit by making the
spread lage enough. Suppose the metrkmpact satisfies the assumptionsvabaithout
satisfying equatio@. The spread must be greater than the fractional price change in mak-
ing a round trip, i.e.

5> X1 = o(y) o) {0y + 5)) 1]

for ary (w;, w,). This places a lwer bound on the spread that depends on order size.
Under the additity assumption this lwer bound is zero. Insaf as the spread is not zero
the additvity assumption may be violated.
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Note that the while the additty condition implies the direct magkimpact is addi-
tive, it does not imply that ther@rage transaction cost is additi We will refer to a mar-
ket impact function that increases moremjothan exponential as superaddiéi, and one
that increases more rapidly as subadejtas illustrated in Figure When g is additve or

r subadditive

additive

superadditive

FIGURE 1. A comparison of possible markt impact functions. The log-eturn of the
market impact is plotted vs. the order siz&y. The function derived here is additve and
linear with slope 1/ A . The market impact is superadditive if it increases shwer than
linearly, which implies that two small orders hare more impact than a single lage ordet
The market impact is sub-additve if it increases faster than linearlywhich implies two
small orders have less impact than a single order

subadditve, it is generally possible to reduce direct transaction cost by splitting orders.
This can be seen from the relation

X0 (W) + XW,P( W) P(ws)
Wy + 0,

S XQP(wy + wy,). (Eq 6)

When eitherw,; >0 andw, >0, or w; <0 andw, <0, the left side is the mean transac-
tion price for ordew; followed by ordemw, . The right side is the transaction price for a
single ordermw,; + w,. If @ is additve or subadditie this inequality is easy to cheet.

Thus order splitting results in moravbrable prices. This is consistent with what one
would expect: By being more patient it is possible to reduce direct transactionwost, b
only at the cost of delays ixecution and a possible increasendirectmarket impact.

1. Equation 6 can be deed by multiplying by, + W, and preing inequalities for th&y, andw,
terms separatelyor the W, term the inequality follws becausé is increasing, and for th@, term it
follows from the assumption of additly or subadditrity. For superadditie functions the inequality may go
either way depending onalues oft). One may ask whether there is a function that satisfies eqéa®an
equality; havever, expanding in a peer series shes that the only analytic solutions age= 0 and

@ = 1, which do not satisfy assumption)(
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Equality holds only ifp is additve and eitheo; = 0 or w, = 0. If ¢ were a superaddi-
tive function with the opposite inequalifyatience wuld be punished rather than
rewarded.

Because of the assumption of no state dependence, thistnmaplact function cannot
accurately model that of a real merknaler. However, under the assumptions aeat
should describe the maakimpact for a trader who is ignorant of the nearkaler’s state.
It provides a reasonable starting point foveleping a dynamical model, and is the nedrk
impact function that will be used throughout most of what vedlo

2.2.2 Relation to supply and demand

Under certain conditions this matkmpact function is related to supply and demand.
Assume an increasing supply functi8fz) and a decreasing demand functd(e) ,
wherez = logx. At equilibrium these are equal, i8(z,) = D(z,). If the demand
changes by)D and the supply changes b$, as shwn in Figure2, then to first order it

demand supply

p—

log price

FIGURE 2. A variation in supply and demand leads to a new equilibrium price. This is equal
to the market impact only when the liquidity A satisfies special conditions.

is easy to she that

_ _+(35-3D)
©  (S(z)-D'(z))

0z

If we setw = 8D —03S andA(z) = S(z,) —D'(z,) we see that this is consistent with
classical ayuments based on supply and demandvéder, in the contet of this model,
changes in supply minus demand are caused by impatient traders, while the liquidity is set
by the markt maler. They are diferent agents. Thus in Sectidr2.1 we will ague that
the condition forA is generally not satisfied. Whether this is a reasonable approximation
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depends on the whether the liquidity and capitalvave over the long term to makthe
market eficient.

2.2.3 Relationship to marlet making with limit orders

We can get some insight into the liquidity by comparing this to aeharikh limit
orders as well as magkorders. As before, let prices be continuous, and let the density of
the dollar alue of limit orders at diérent price leels bed(x) . When a marit orderw is
receved, it is crossed with unfilled limit orders that are of opposite sign to theetnark
ordet beginning with those closest to theigting price. The resulting shift in the price can
be found from the condition

X

W = Id(x’)dx‘. (Eq7)
X

A market maler can be thought of as patient trader with no directional wieo submits
both huy and sell limit orders symmetrically about the current briSince only relatie
price changes are important, and since the price has to begdbié density

d(x) = 1/(Ax) is a natural choice. Substituting this into equafiomplies equatiod.
Even if this density does not holdaetly, it may still be a good approximation whenis
sufficiently small and the limit order densit(x) is suficiently smootR. In a marlet
where most of the traders use limit orders and onlyaue markt orders, this shes
that the liquidity of marét orders is proportional to thelume of limit orders.

2.2.4 Relation to prior reseach in market making

There is a rich literature on matkmaking, which is n@ewed in O’Hara [8]. The
model presented here is in the spirit of Demsetz [33], who discussed the cost of immedi-
agy and manner in which magkmaking difers from a traditional \Alrasian auction, and
empirically irvesticated the size of the spread in relationdtumne. Current thinking clas-
sifies contrilntions to the spread and the dynamics of the midpoint price based on order
processing costs, aelise information [34], andwentory efects [16]. Order processing
costs are simply the clgs incurred for handling transactions; ede information
occurs because directional traders may possess information that mai&r malers do
not, and that tends to reduce their profitgemtory efects occur because of the meirk

1. This assumes that as netrkrders are filled the limit orders reved from the book will be immediately
replaced. This is consistent with the limit order tradevéngeno risk aersion and no directional vie If

there are time lags in replacing limit orders, filling of a readeder will leae a “hole” in the book, so that

if it is followed by another maét order of the opposite sign, it willve&to “jump the hole” to get filled.

Such beheor will cause mean kersion of the price and malprice changes dependent orvjires price
changes. This is consistent with results of Huang and Stoll [19], who analyzed tick by tick transaction data
from the NYSE and found a gative correlation to past price changes.

2. One potential problem is the correlation between etaniders and limit orders. This is particularly a
problem for limit orders near the current price. Such orders are placed by the least patient limit order traders,
who are most lie marlet order traders. Thealso hae the lagest efect on the gecution of markt orders.
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marker’s aversion to risk and their desire tedp their imentory (net position) aswas
possible.

Under the model dered here the price is manipulated in the direction of the net of
incoming orders. This can be matied both by the desire to deal with exbe informa-
tion and to reduce wentory The assumption of no state dependence means that there is no
explicit dependence on thevientory This is clearly an approximation that should be
regarded as a simple starting point. Extensions are discussed irxtisecigon.

2.3 Time varying liquidity

In the preceding dartion we made seral assumptions. The most important is that
that of no state dependence. The resulting solution has constant liquidity and symmetry
between bying and selling. In this section we discuss empirical approaches to relaxing
these assumptions.

We can allav the liquidity to \ary in time by making the ansatz tltdepends on
w = w/A(t) rather than omw. The markt impact is then

X = xeWw/ A1) (Eq 8)

Time variations in liquidity can be dren by fctors such as the matkmaler’s inventory
volume, vlatility, or asymmetries in the maak

2.3.1 Irventory effect

Without explicit risk aversion the mamrt maler will in some circumstancesiitd up a
substantial net position, awventory For example, if there is temporarily ameess of
buyers the mart maler will do an &cess of selling and accumulate gate/e position.
Real markt malers are typically highly riskverse and attempt to manipulate the price to
keep their positions small [16, 17, 18]. If the nedrnaler accumulates a gative posi-
tion, she will raise the price more than usual to encourage selling; similarly fgeatzs-
itive position she will laver the price more than usual to encouraggry. Assuming
equationg, this implies a liquidity function of the form

NOERXO) (Eq9)

where! is the markt maler’s inventory and\ is the liquidity when the irentory is zero,
andf is an increasing function with(0) = 1. As an @ample, let
)

(Eq 10)

b > 0 is a constant that must be chosen solthak A if we want to ensure that the mar-
ket impact is allays an increasing function af. The minus sign applies when the order
is positve, and the plus sign when the order igatge. This difers from the form used by

Huang and Stoll [19], in that | assume that tivemntory efect is felt only through changes
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in liquidity, whereas theassume that the matkmarler’s inventory causes the price to
change with or without trading. vill see later that when there are asymmetries in the
market the iventory efect is needed to ensure that the reatdehaes sensibly Recent
studies of markt data mad it clear that the wrentory efect is important [35].

Note that under anversion of the imentory efect the markt maler responds asym-
metrically to luy and sell orders. This can potentially Bpleited to mak profits by
repeatedly trading through a circuit as discussed under assumption (7) in 3gtfion
The marlet maler can preent this by raising the spread accordingligis suggests that if
the marlet impact depends on theséntory then the spread does also. Also, note that it is
not possible to makprofits this ey by manipulating the wentory only by self-trading.
That is, if a gven trader deelops a positie position by bying, the mar&t maler devel-
ops a corresponding gative position; under the wentory efect, trading through a circuit
drives the price dan, causing that trader losses. It is only possible to profit by trading
through a circuit if a trader is able to detect that the atarlaler has accumulated an
inventory due to the trading of others. lbuld be interesting to attempt to derithe
proper form off in equatior®, kut this is bgond the scope of this paper

2.3.2 Asymmetric markets

A market issymmetridf there is naa priori difference betweenuy and sell orders.
Currengy markets are a goodkample. The American stock matkin contrast, is an
asymmetric markt. There are tavkinds of asymmetries. The first comes from the ten-
deng of the markt to go up. The second comes fromulatory restrictions that may
make it easier to maka transaction in one direction than in the otlmethe dewation so
far, to keep things simple we assumed nedrkymmetry

Regulatory restrictions can be used to alter the liquidities féergiht types of orders.
For example, in the American stock matka sale is defined to be a short sale if the result-
ing position is net short (gative). Normal sales reass preferencever short sales, e.g.
short sales must go after normal sales at the same prateThis lavers the liquidity for
short sales relaté to normal sales. The assumption that profits cannot be made by trading
through a circuit places limitations on the refatiiquidities for lmying, normal sales, and
short sales. Since such profits could potentially be made from a long position by alternat-
ing buying and normal selling, the matiimpact for normal sales should be at least as
great as that ofdying (within the spread) togep the price from drifting up. Similarly
from a short position this requires alternatgibg and short selling; the matkimpact of
a luy should be at least as great as that of a short sadepalke price from drifting dm.

One could ague from a diferent point of viev that if the number oflyers and sellers
is roughly equal, theverall liquidity of tuying and selling should be equal, and to the
extent that short selling is made less liquid, normal selling becomes more liquid. In prac-
tice the spreads are probablygarnough to absorb flifences in magt impact and pre-
vent traders from profiting by trading through circuits. If there aferdifices in the
overall liquidity for uy and sell orders, under the ansatz of equ&tiae can gpect a
discontinuity in the devative of ¢ atw = 0. This was obsergd by Chan and Lak-
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ishok [10], who studied maek impact in the American stock matk Unless otherwise
stated we will assume the matks symmetric.

2.4 Dynamics

This section uses the matkimpact function deved so &r to deelop a dynamical
system that describes the feedback loop between the placement of orders and changes in
the price. Assume that there atedirectional traders who place ordes€)(t), wherei is
an inde labeling the tradeiThe function or algorithm that each trader uses to place orders
can be thought of as hisading stategy. Stratgies may depend on the price, price history
and eternal informationl (t) . The eternal information can be githing that is belieed to
be releant to forecasting the price, such as fundamental information for stocks, weather
for commodities, or purchasing\er parity for currencies. It also can be something as
simple as the day of the week or a random nun®iacel (t) can be random, the trading
stratgies can also va random componentk(t) may be tradespecific, in which case
we will write it 1()(t). Traderi in general cannot obsarthe orders of tradgrz i,
although it may be possible for him to infer or partially infer this from the pasvioeloh
the price. There may bevaral traders using the same stggidut unless otherwise stated
we will assume that the strgies of each trader are distinct. The styete may be arbi-
trarily comple, though in some cases it may be useful to decompose them into “sub-strat-
egies”, for xample if a gien trader uses didrent sub-stratges at diferent times.
Strat@gies must be causal, i.e thean only depend on present and past information.

In real marlets there is a characteristic time lag from when an order is submitted
until its efect on the price is obses®l. This means that detailed time ordering relation-
ships on timescalesgter than this are Bty to be violated. This mak it reasonable to
synchronize the trading, introducing atpkcit lag between when information is obseav
and when transactions &bklace. By choosing the units of time appropriat@lthout
loss of generality we can l&t = 1. At the bginning of a timestep, all the traders
obsere the pricex,, or equialently, log pricez,. Each trader submits ordess!) . The
market maler applies a magkt making algorithm, e.g. equatidnand publishes a we
price X, , , - All the orders are filled at this weprice.

The price setting of the makmaler may be influenced bwdtors other than order
flow. Information from outside the magkmay be receed that indicates the price should
be adjusted to anothealue. Examples of suclvents are n@s announcements or per-
ceived arbitrage possibilities with a related n&riSuch behaor can be ta&n into
account by adding a random tegnto the ne price. Alternatrely this term can be
thought of as “noise trading”, i.e. trading that is not priceesiriand occurs at random.

The dynamics can be written:

1. For American stock magk data Chan and Lakishok [L0] report a discontinuity in maek impact

between hbying and selling. Thenote that this cannot be accounted for by the teydefnthie marlet to

drift upward. An alternate possibility is that this is caused by the short sale restrictions in the American stock
market, which also déct the liquidity of normal sales. If this is true, international ratkn which short

sale restrictions do not apply should notwlsaich a strong asymmetry in liquidity
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Feyq = logx ., —logx = z,,-2 =

>

N
Zw(i)(zt,zt_l,...,lt)ﬁﬁt. (Eq 11)
i=1

The dynamics of equation 11 arery general. Depending on the collection of stiate
w('), they can be stable or unstable, and contaiedigoints, limit gcles, or chaos. The
market is a blank slate on which the collection of trading girasewrite the dynami&s

The efective timescaleAt for the dynamics alve depends on the population of trad-
ing stratgies. If all the traders closely obserthe intraday data stream and place orders
very frequentlythe timescale for a single iteration can sensibly be as small asirie
utes. Maw traders, havever, obsere the dynamics only on timescales of a day or longer
Thus to model their bekeor it is sensible to gard the timescale for the dynamics as a
day or more. In reality there will be a mixture of stgae on diferent timescales and the
market dynamics will reflect this.

For some purposes it is c@mient to approximate this still further as a continuous
time differential equation. On a daily timescale it is typically the case that the log returns
are less than a percent, i.e. jigt< 0.01; on an intraday timescale the returns are corre-
spondingly smalledf we assume that price m@ments and noise terms are a continuous
time random process, we candake limit where the spacing between timesteps goes to
zero. In this case» must be interpreted as a continuous ordey, BmdA must be thought
of as the rate at which the matknaler adjusts the lagithm of the price. Equation 11
can be re-written

N
d'g?" - Tlt)% - %Z WD(X(), X(E=Ty), s X(=T,), (D)) +E(Y).  (Eq12)

i=1

wheret,, ..., 1,,> 0 are arbitrary time lags. Strictly speaking the continuous time model

is less accurate than the discrete time model, since trading is an inherently discontinuous
process, and in the limit @& — O there will rarely be anorders. Havever, continuous

time models are more cegnient for some purposes.

Thepositiony is the cumulatie sum of the orders,

1. While | conceied of this idea and wrote a preliminary manuscript in 1994ye taited four years to
publish. In part this &s because of other commitmentst &lso because at that time aswunable to ge

solid aguments for the correct form of the markmpact function. Since then dvwpapers hae appeared
presenting the basic idea of a dynamical system with a non-equilibeitgionr of supply and demand. One
of these, Bouchaud and Rama [28] (January 1998), graciouslyvelekiges an oral presentationavg in
Paris in June, 1997. Theirggopment in the first half of their paper parallels the one | presented at that
time, except that thg formulate the mart impact in terms of the price rather than itsatitgm. In the sec-
ond half of their paper tlggoresent interesting results suggesting toétility constraints may induce
crashes. Another paper by Caldarelli et al. [29] (1997) presents interesting resuhliesb are based on an
apparentlyad hocmarlet model. The models in these papers do not satisfy the conditions of Qeztlon
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t

Y = S @ +yg. (Eq13)
=1

For corvenience we will generally assurgg) = 0. Similarly the orders can be written in
terms of the positions as

W = Yi— Yo

One can think about a strgieeither in terms of its positions or in terms of its orders. The
orders determine the matkimpact, knt the positions determine the profits and losses.

An important property of a stragg is its scale. \&Wwill typically write stratgies in the
form

w® = cy®, (Eq 14)

wherew() is a fixed function andt() is a parameter that controls the scale. This implies
a similar relation for the positiory{') = c()y{l), wherey is defined as in equatid/3

with w replaced byw. Thusc() determines not just the size of the ordeus atso the
size of the positions, and is proportional to the capital at rmkaiy given lesel of risk
tolerance, it is also proportional to the “funds under managemegttdid impose an
arbitrary definition, for eample, by defining the capital as the timmerage of the absolute
value of the positions, and scalingaccordingly This would complicate things later on,
however, sincew() andy() generally depend on prices, which depend on othergiteate
as well. Br corvenience, we will simply refer to() as thecapital of theith stratey,
bearing in mind that since ondifferent fixed functionsw may hae different risk leels,
this is just a proportionality

In the studies of ecology in thextieection the stragges and their capital will be f&x
in ary given simulation. In the section oaadution we will investicate the longer term
dynamics that occur when the capital is\ald to \ary in time, e.g. under raiastment.

2.5 Profits, losses, and game theory

If we assume that the asset does notanlyments such asvatiends or coupons and
neglect the spread, the profit or 1dser thegain of theith stratey is

. AV A
of) = —y{, (Eq 15)
t—1

1. This includes both realized and unrealizanhg} i.e. it includes thealue of positions madd to the cur-

rent midpoint price. There are mamarlets, such as currencies and commodities, where there are no pay-
ments (such aswddends or coupons).ayments déct profits and lossesibdo not directly déct marlet
dynamics. Studying v payments alter the population of stgaés is an interesting problem that iyded

the scope of this paper
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whereAx, = x,—X,_; is the change in price, aryff) is the position taén by stratgy i
at timestept. Ax,/x;_, is commonly called theeturn, andr, = logx; —logx;_; is
called thdog-return When the returns are smalk,/x; _, =r, and

gD =ry{,. (Eq 16)

Substituting forr, from equatioril gives

N
. . O
gl = % z w{l) + zt%yt(gl_ (Eq 17)
i=1

If the noiseg is uncorrelated with the position taking time serages gies

N
0= )_1\ S Wy, 0+ pyic (Eq 18)

=1

0 C denotes a timevarage, angh = [£[ is the meanalue of the noise, often called the
drift term. If we define thegain matrix

G. =

ij BJL)’[(j)yt(Ql[

>

then the meanayn for stratgy i can be written

N
= Y GjtH L. (Eq 19)
=1

The @ain matrixGiJ- gives the approximate amount that siggte wins or loses due to the
price mavements induced by stratej . It is generally asymmetric. The last term corre-
sponds to profits that may be made from the long-term tepdéitice markt to mae up
or down.

The dynamics together with the definition of tle@ngmatrix define agme with con-
tinuous payds and continuous states, and discrete or continuous time (depending on
whether we use equatiddi or equatiori?). w is the “mwe”, andG is the paydfmatrix
(this is approximate for discrete time dynamics, atatefor continuous dynamics). Let-
ting

Gjj = + Doy, L,

>

wherew andy are scale-independergrgions of the stragges and positions as defined in
equationl4, we can write theagns in the form
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N
= GijcMcl) + uHMEd. (Eq 20)
j=1

This will be useful later when we study thekition of the markt.

The marlet can be viwed as a pure anticipatorame. The mast maler plays the
role of the casino. Each player attempts to forecast thegaggraction of the other play-
ers and bets accordingRlayers that makaccurate forecasts arevegded and those that
make poor forecasts are penalized. Thierage player tends to lose mgrie the markt
malker. However, if a player is good enough, under some circumstances it may be possible
to anticipate the other players well enoughuteroome the “house edge” and raak
profit.

2.6 Market friction

Market friction refers to theakct that uninformed transactions tend to produce losses
due to markt impact. Because of the tendgfar an order to push the matkavay from
it, this is true gen when the bid-ask spread is zero. Mafkiction corresponds to the
diagonal elements of thai matrix, which are generally gegive. To see this for core-
nience assumeyll= 0. The diagonal elements are

1 .y 1 , . _ 1
Gii = ¥ {0y, 0= Sy -y{0)y{),0= 3(py(1) - 1)o7, (Eq 21)

Wherepy(l) Is the first autocorrelation arnq, is the standard @&tion ofy. Since
p,(1) =1, the diagonal elements are less than or equal to zero.

For finite transactions maek friction is path dependent. As axaenple, consider the
case where there is only one traddr£ 1). Assume a starting position, = 0, and
suppose the tradeuys and then immediately sells, e, = w andw, = —w, with
w>0. In the absence of noise, from equation 15, sitcgx, , = €t—1, the @in is

For finite transactions the loss in theotaases is di€érent.

In fact, it is possible to skothat the path dependence of the mneafkiction for finite
size trades is generally incompatible witly &orm of the markt impact function that has
the properties that the matkimpact function increases with and that tw successe
trades that sum to zero return the price to its starahgev D prove this, compute theain
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for the sequencéw, —w) and set it equal to theap from (—w, w), wherew >0, assum-
ing the same finalalue x; for the price. Equation 1 and equati®imply

(Xg =X(X% @, 9))w  —(X; —X(X, —w, S))w
X(X, w, S) - X(X, —w, S)

A little algebra gves
(X(X, , S) + X(X, =0, §))X; = 2X(X, W, S)X(X, —w, S).

This equation is symmetric i@, so the solution must also be symmetriconThis is
incompatible with the requirement thatis an increasing function @b. Thus we see that
the path dependence of the nedrkiction is a ery general property

2.7 Other market forces

In general the price may change duevengs other than receipt of orders. A clear
example occurs in maets that hee arbitrage relationships, such as the cugrénitires
market in Chicago and the intrabank curngmearlet. Since a futures contract can be con-
verted into the underlying currenat necessarily maintains a relationship to tkehange
rate in the intrabank maek If a lage price change occurs in the intrabank rebglage
change will likely occur in the futures magk ezen without ag transactions taking place,
simply becauseveryone knavs this arbitrage is possible.ithin a range corresponding to
the transaction cost to perform the arbitrage, the futures price will tend to remain close to
the intrabank price. From the point of wi®f someone in the futures pit, the intrabank
market appears toxert an outside “force” on the futures price.

Another ekample is ness. If the probable impact of awse item on the price is clear in
adwance, receipt of mes can impact the priceven before aptransactions takplace. In
the futures pits a major ws ezent may cause trading to halt whikeeeyone attempts to
understand the impact of theweformation. The markt malers widen their spreads,
and trading maywentually resume at a price with a significaapdrom the preious
price. A@in, it is as though the ws eerted a “force” on the price that caused it to
change.

If we letf denote the agggate of ay such “forces”, the price change between time
t, and timet, can generally bexpressed as an equation of the form

t,

l0gx(t,) ~logx(ty) = [f(t X(), ...)dk.

ta

For example, with the approximationsvgn in Sectior®.2 the force caused by an order
w(t;) can be writtenf (t) = w(t;)d(t—t;), whered may be thought of as an infinitely
sharp pulse satisfying(z) = 0 for z# 0 and[d(z)dz = 1. Thus the change in price can
be called the “mart impact”, and thedenelf' causing the change in price the “metrk
force”. The force can be either deterministic or stochastic.
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2.8 Experimental \erification

One of the adantages of this approach is that the raankpact, which is the founda-
tion of the theoryis something that can be measured diretitig thus possible to deter-
mine hav closely the canonical magkmaking rule of equatiof describes real magtks,
and to modify it as needed. All of the analyses performed in this paper can be repeated, at
least numericallywith more general magk making rules. One of the goals of measuring
the marlet impact is not just to determine its shapg,diso the magnitude of itsfeft.
What fraction of price maéments can be accounted for as the agdeeof markt dynam-
ics?

Market impact can be measured directlyrbgasuring prices before an order is placed
and then measuring themaaig after a transaction based on the order has occurred. Some
attempts to measure this functiorv@already been made [9, 10, 11, 27, 13, 14]. The
results sodr male it clear that mas impact is an increasing function of order sizg, b
are too noisy to determine its functional form. While ultimately it should be possible to
measure this accuratetpere are seral problems in doing so:

* In public data sets the identity of the traders is generally umkn®his means that
the level of patience of the tavparties in the transaction is unkvro

» Data sets that gé orders as well as transaction prices are typically proprietary
Particular trading stratges may use maek timing rules that makthe results
atypical. If proprietary data sets are euxtogetherthe level of patience and order
tactics of diferent firms or dilerent traders may be quite feifent.

» Between when agen order is placed and when it is filled, mather orders may
be recered and filled. As a result the matkmpact of ay particular order looks
very noisy This obscures the basidext and mag&s it more dficult to estimate the
fraction of price changes that are accounted for by edamikpact. This can be
resohed by using data sets containing the orders and transactions of at mark
participants.

» A significant fraction of orders are limit orders. These alse maarlet impact.

* Many traders split lage orders to reduce transaction costs. Such order splitting can
be spread\er months [10]. Lage orders are the most useful for determining
market impact. Havever, large orders are precisely those that tend to get split, and
are most likely to be limit orders rather than matlorders.

» The total transaction cost, which includes the bid-ask spread, is easily confused
with market impact. It is generally necessary to either compare the prices before an
order is placed to those othertransactions after that order is filled, or to mak
adjustments for the bid-ask spread. In yndata sets, fon@mple futures,
individual transactions can be lumped together and itfisulifto distinguish one’
own transactions from those of others.fifst approximation the bid-ask spread is a
step function; when it is confused with mearkmpact, the result tends to be
sigmoidal.
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It is beyond the scope of this paper to measure the eharkpact function, bt | hope
that the theoretical implications of measuring this function accuratelywakged here
will stimulate more wrk in this area. This theory also predicts relationships betwaen v
atility and wlume on diferent timescales,ub this is a topic for future research.

2.9 Summary and discussion

The main result of this section is to shthat under plausible simplifying assumptions
it is possible to deve a unigue form of the magkimpact. Furthermore, this can be used
to male a dynamical formulation of price formationitit¥h this framevork it is natural to
regard the mar&t as a continuousagne with continuous payfst

This approach has the ahtage that the foundation of the thedng marlkt impact
function, can be measured directien if the form of the magk impact that | hae
derived turns out to be wrong, all the results presented here can be easilgdeat least
numerically with ary market impact function.
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3. Ecology

Under the model established in theyioeis section the magk dynamics are deter-
mined by the collection of trading strgtes that comprise the matk We bayin by study-
ing a fav representate trading stragges indvidually, and then study them in concert. On
its own each stratgy creates a characteristicluced markt dynamicswhich provides a
good starting point to understand the dynamics whenateetogether

The approach ta here is that of an ecologiste\Wbsere and classify the strafies
that eist from an empirical point of we and study their induced dynamics and their
interactions with each othekt the highest kel we will distinguish three types of strate-
gies:

* Value irvesting.
» Purely temporal (e.g. the Januarfeef).
» Trend follonving.

Although there arexeeptions, we will she that \alue irvesting stratgies typically

induce ngative autocorrelations in the log-returns, and trend fotlg stratgies induce
positive correlations. Purely temporal stigigss do not depend on prices, and are neutral in
this respect.

One of the main purposes of this section is to determine whether this the@y ayak
sense. What causes a n&irto be stable or unstable? Do prices reflakte? All the strat-
egies hae ragions of stability and instability; somalae stratgies help prices reflecal
ues, and some ddn’Commonly obsered marlet phenomena such as long tails in the
distribution of log-returns, correlate@lme and wlatility, and oscillations between price
and \alue, are natural consequences that occur for broad classes gfedrate

Throughout this section we will assume that the siraseare fied throughout a gen
simulation. Profits are not reiested. The consequences of vestment and other capital
reallocations will be studied in the section eolation.

3.1 Jnuary effect

The famous “January #&fct” is just one xample of a situation in whichgealarities in
cash flov causes temporal patterns in the price. Such cash ftay be layely indepen-
dent of price, foreample, if thg are drven by eternal rtythms of @ents such as tas or
annual bonuses. Because it is so simple the Jandecy &fres as a good firskample to
illustrate heov easy it is to mak calculations with this theary

Suppose there are avgroups of traders. In January the first group vesetash and
invests it in the mark. During the remaining elen months, theslowly withdraw this
investment, in uniform incrementgexry month. The second group of traders has less cash
flow constraints or more alternatiinvestments, andxploits the first group by taking up a
position in December and holding it for a month, in order to profit from the January rise in
price.
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To analyze this more quantitetly, let mod, (y) = y/x— floor (y/x), be the modulus
function, wherefloor (x) is the smallest ingeer less thax. Dividing the year into tweky
trading periods (where trading happens at the end of each month)pthedtgies can
be pressed as folles.

oD = E 1 mod,,(t) = 1
Y F1/12 0 mody(t) %1

0 mod,,(t) = 0,

O
w? = G mod,(t) = 1

EO mod,,(t) #0, 1

wherew is the size of the position held by the second group of traders during January

This pattern of trading induces mements in the price that are non-zero werage.
Using equatioril the mean log-returns caused by this tradind Brew)/ A in “Janu-
ary” (whenmod,,(t) = 1), (w—1/12)/A in “December” (whemmod,,(t) = 0), and
—1/(12)\) otherwise. If the mait has anverage upward drift termpu (e.g. caused by
another group of irestors), with the initial conditiog{") = y§» = 0, using equatiod7
it is straightforvard to sha that the annual profit for strage 2 is

of? = BH(1-w) + 1o,

This is positve as long aso <1+ pA and reaches its maximuralue when
w = (1+pA)/2. The @ins for stratgy 2 are

13 4
1) = =21
ofY = Fh-gx-

independent ofv.

This illustrates he constraints on maek participants may dré cash flavs, which in
turn may dwe patterns in the magks. W will return in Section 4 to discuss whether such
patterns can persist omatutionary timescales. It also illustrates that it is straightémdy
to male calculations about price mements using the simple dynamical model of
equationll.

3.2 \alue investors

Value irvestors trade based on an assessmeraioé vn relation to the price. If the
think the marlkt is underalued thg tend to loy, and if thg think it is overvalued thg
tend to sell. The assessment alue may imolve a complicated analysis of non-financial
or “fundamental” data, and d&rent traders may awe at quite diierent conclusions as to
correct alue. Een if we assume thealue for each trader isvg@n, there are marpossi-
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ble stratgies for &ploiting mispricings. & will begin by considering simpleaue strate-
gies that are easy to analyzailting up to more complicatedubmore realistic stratges
later.

Markets can be viged as an gan of societythat performs the function of resource
allocation. Marlets help set societygoals. If the price of pork bellies go up, people will
grow more pigs. One measure ofhavell society performs this function is thetent to
which prices reflect other measures aliue. \alue is inherently subjeg -- different
people may hae different opinions about what things arerth -- which is what dvies
trading. Nonetheless, to thetent that people agree aboalwe, prices should track it, at
least @er the long term. Because this theory emko assumptions about equlibrium this
is by no means gena priori -- it will happen only if the stragges actve in the markt
place orders that influence the price ¢ it near thealue. Evidence from magk data
strongly suggests that, while the price tends to roughly tracie vlage deviations are the
rule rather than thexeeption. This is referred to ascess volatility7]. As we will see,
this theory preides a naturalxplanation of &cess wlatility, and preides some under-
standing about whit occurs.

Here we will assume that the peraa \alues are gien. W will use the model that
they are gven by a random process of the form

Vier = Vet N (Eq 22)

where for simplicityn, is a normal, 1ID noise process with standardatéon o, and
meany, . Thus the logrithm of the alue follovs a random aik. e will begin by study-
ing the case where all traders pevedhe samealue, and return to study the case where
they perceve different \alues in Sectio.2.5.

The natural vay to quantify ha well the price tracks thealue is in terms of the the-
ory of cointgration [20]. A random process whos® time difference is stationary is
integrated of orden, or 1 (n). For example, in equatio@2 the walue follovs anl (1), or
unit root random process (“unit” because the &iognt in front ofv, is one). Wo vari-
ables with unit roots areointegratedif there is a linear combination of them that is sta-
tionary, i.e., that isl (0) . If the price tracks thealue, we wuld expect the diference
between price andalue to be coinggrated.

A value stratgy can be xpressed in terms of the positigp, ; = y(X;, ...), orin
terms of the ordersy, , ; = w(X,, ...). Of course, this really doesmhatter since it is
easy to covert from one to the other by the relatiap = y, —y,_, . But as we will see,
simple stratgies that one wuld naturally think of asalue stratgies hae very different
properties when tlyeare formulated in terms of orders vs. positione.Will also see that
these simple stragees produce mast behaior that is unrealistic in some respects; to get
more realistic behaor, we need to consider strgtes closer to those actually used by real
traders.
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3.2.1 Pue order-based \alue strategies and equilibrium economics

A pureorder based value sitegy is of the fornt
W4 1(Vp 2) = F(z—V)

wheref is a generally decreasing function witi0) = 0, V; is the logrithm of the per-
ceived presentalue, andz, is the logrithm of the price. “Generally decreasing” means
thatf either decreases or remains constant, and is not congtaywhere. Note that this
class of straggies hae no state dependence --ytlwaly depend on thenispricing

m, = z—V,. If we expand in a @ylor’s series and assume the first whive eists, then
to leading order this becomes

W = C(Z—V).

c >0 is a constant and will be called tbepital. Under this stratgy, as long as the magk
is underalued the trader continues toyband as long as it isver-valued the trader con-
tinues to sell. If this is the only stragteused in the maek, then from equatiobl the
dynamics can be written

Zii1 = Z—0(Z =) + &, (Eq 23)

wherea = c/A. Writing this in terms of the log-retum and the mispricing
m, = z -V, gives

Fepq = —OM+&; (Eq 24)

Sincery,q = z,1—2% = M1 —M +V,,{—V,, We can write this entirely in terms of
the mispricing, which gies

Myq = (I-a)m—n+&. (Eq 25)

Since we hee assumed in equati@2 thatv, is a unit root process, its time feifence

N, = Vi4q1—V; Iis stationaryand the second twerms may be garded as a combined
noise termn, = —n, +&;. The mispricing is therefore a stationary random process as
long asO < a <2, and the price kerts to the &lue, as illustrated in Figu

Multiplying both sides of equatia?b bym, , , , taking aerages, and assumingand
¢ are independent stvs that the mispricing haskance

2
0. + 0%

02 = "¢ Eq 26

m  a(2-a) (Eq 26)

1. Value stratgies could equally well v@ been geﬂned in terms adlue and price rather than their éog
rithms; since there is a @bmorphism betwee@ —X; andV; — IogXt this doesrt’ matter However,
since the term on the left side of equatidnis written in terms of the dérence of the logrithm of the
price, when gpanding the right side in a¥lor’s series it is more natural to do so in terms of tharldgn.
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FIGURE 3. The log-price (dashed line) and the logalue (solid line) br the linear
order-based \alue strategy of equatior23 with & = 0.8, o, = 0.01, and
Op = 0.01. The price is co-integrated to @lue, so gen when the alue changes
according to a random walk the price emains close to thealue.

wherec? and 052 are the griances ofy, and¢ . Without loss of generality we can
assume theare both zero mean, and the first autocorrelation of the mispricing is

0y, om0 _
e

Equation 26 mads it clear that the fefct of the &ternal noise; and the alue noise-n;
on the mispricing are equlent.

Pm(l) = 1-a. (Eq 27)

The basic statistics for the log-retums= z,—z _; can be computed similarly
Squaring both sides of equatidd and geraging gies

2 2
aon + 20E

2 = q202 + g2 =
07 = a%0f + 0F -~

(Eq 28)

The first autocorrelation of the log-returns can be found by multiplying equatibwpr,
averaging, and making use equathaain, which gves

2
Fry 0= o Onm,_O0-a g, 4L

The first term can bewitten in terms of equations 26 and 27, and in the seognzhn
be written in terms ofn, _; from equatior25. Some algebra then stothat

a(l—a)oﬁ —-00?
2 2 :
aog +2crE

r

(Eq 29)
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This shavs that for the log-returns (and hence the price) tteetedf the alue noise is
not equvalent to that of thexternal noise, . If the process is drén purely by changes in
value, i.e. wherg = 0, the first autocorrelation of log-returnsgis = 1 —a . However, if

it is driven purely by eternal noise, i.e. if thealue is constant, then the first autocorrela-
tionisp, = —0/2.

A correspondence to classical equilibrium economics occurs whenl. From
equation23, whena = 1

Zieg = Vit &

Except for the xternal noise (which i$(0)), the price tracks thealue eactly. The
sequence of mispricings is uncorrelated, and under changalsiantkie log-returns are
uncorrelated. Theariance of the mispricing is equal to the sum of gmgance of the
changes ina&lue and theariance of thexdernal noise, and there is noxtess wlatility”.

This is not surprising, as when = 1 and§ = 0 this can be understood as a classic
example of equilibrium supply and demand, as discussed in S€c8dh In particularet

S(z) —-D(z2) = c(z-V)

The \alue ofA that is consistent with maintaining equilibrium\is= ¢. Changes inalue
cause shifts in thg-intercept. The system remains at its classic equilibrium, and absent
external noise, the price tracks thelwe eactly.

Unless the parameters are adjusteatty right to maintain the system at the classic
supply-demand equilibrium, the price will not track tladue eactly. If a <1 there is a
market underreaction There is a posite autocorrelation in the mispricing, and for pure
value-noise, a posie autocorrelation in the log-returns. Similarfya > 1 there is a mar-
ketoverreaction,which induces ngative autocorrelations.

Is it reasonable toxpect that the parameters will adjust tovathe markt to equilib-
rium? For this to happen either the matkmaler needs to adjust the liquidityr the trad-
ers need to adjust their capital. In practice both of these will happen. Buatréhe
independent agents, and no one has completgl&dge of the uwerse of stratgies and
the capital allocated to eactorRRhe system to go to equilibrium requires an adjustment in
the capital of the inglidual stratgies and/or in the liquidity of the makmaler, which
must be drien by the profit-seeking goals of the widual agents, and occurs on longer
timescales. This will be studied further in Section 4.

Purely ordeibased stratges are patently unrealistic from a belaal point of viev
because their positions can grwithout bound. Orders are placed as long as there is a
mispricing, rgardless of the position. As a result, the position is strongly path-dependent;
the longer the mispricing goes without changing sign, tlyefahe position becomes.

Even when the mispricing goes to zero the trader is left with a position, which decreases
only as the mispricing persists with the opposite signad¢h Sincew; is proportional to

the mispricing, and the mispricing is bf0) process, it is clear that the positign which

is the accumulated sum of the orders through time, i$Bnprocess. This means that the
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position, and hence the risk, can become unbounded, anditiseage not well definéd
The tendeng of the position to increase without bound is illustrated in Figufiéhus, the

0.5

0.4

0.3

positions

0.2

0.1

0.0

0 100 200 300 400 500 600
time

FIGURE 4. The orders (solid line) and the positions (dashed linepif the linear
order based \alue strategy of equatior23. The position can gow arbitrarily
large.

simple ordetbased stratgy is unrealistic both because it doeésiwrrespond to what trad-
ers actually do, and because it leads to unbounded risk. Furthermore, making tipe strate
nonlinear will not fix these problems.

3.2.2 Pue position based strategies

Another natural class oflue stratgies that might gie hope for fixing the problems
with order based stragees are position basedlue stratgies, which are of the form

Yi+1(Vp Z) = 9(z—V)

where as beforg is a generally decreasing function wgf0) = 0. Expanding in a y-
lor series, to first order the position can be approximated as

Yi+1 = —C(z—V).

Sincew, = Yy, —Y,_4, the induced dynamics are

1. One might try to modify the ordbased stratgy so that the positions are bounded, f@reple by dis-
tributing the capital among d&rent traders, each of whom has bounds on his positions. This just creates a
new problem, havever; instead of the position gming without bound, the number of traders in the raark
grows without bound. Furthermore, one must postulate an additional mechanism to sigtratiees to

enter the mard.
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21-% = sV~ (27 1)) + &

As beforec is a positre constant proportional to the trading capital. Letting
r=12z-2_4,,0 =c/\,andn,_; = V;—V,_,, this can be written

Meg = —Orgtan,_;+&

(Eq 30)
Ziv1 = 4 Ten

This males it clear that there areveeal fundamental dérences between this and the
orderbased stratges of the préious section. The log-return does not depend on the price
explicitly -- it depends on the pveus return. Furthermore, it only depends on changes in
the log-\alue, rather than thealue itself. In addition, the dynamics are second oiger

the state depends on both the current price and thli®pseprice. The eigealues are
(1,—0a). Thus whem < 1 the dynamics are neutrally stable, and whenl they are
unstable. The first autocorrelation of the log-returrs iss —a, and the ariance of the
log-returns is

262 + g2
a202+0
2 -2 °n “¢
of T (Eq 31)

Position-based strajes do not generally co-irgeate the price to thealue. This is
already suggested by thect that to first order there is nepdicit dependence on price or
valuel. For the linearizedxample abwe, the lack of cointgration can be shn explicitly
by substitutingm, = z —v, into equatior80, to get

Amy,y = —aAm—n + &,

whereAm, = m,—m,_;. When the dynamics are stable|(< 1), Am, is anl(0) pro-

cess, anan, is anl (1) process, i.e. the mispricing is a randoalkvThis seems to be the
case een for more general nonlinear position basglde stratgiesz. The intuitve reason

is that, while the position-based sttaesists increases in the absolwkig of the mis-
pricing, once a mispricing occurs, it also resists decreases with equal infEmsgy

while the ngative autocorrelation induced by position-based sjratemalks the price

not wander from &lue as quickly as it @uld otherwise, this is not didient to keep the

price close to theatue. The lack of co-inggation is illustrated in Figurg. Note that

since the mispricing is unbounded, and the position is proportional to the mispricing, the
position is also unbounded. Numerical simulations indicate that these conclusions are not
altered if the markt maler males &plicit inventory-based adjustments using equation

1. Nonlinear position-based strgies generally do v explicit dependence on both price aradue. Hav-
ever, both numericalx@eriments and the gmment gien in the ngt footnote shar that the sufer from the
same problems as the linear styggte

2. In the general nonlinear case the mispricing can be written

Amy g = TA(9(M,, 1) —9(m,)) —n, + &, . Becausd is generally decreasing, this can be written
Am,,, = —c(m)Am, —n, + &, wherec(m,) = 0. It would seem that either this is a stable random
process, in which caga, is | (5.) , Or it is unstable, in which cad®; is also unstable.
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FIGURE 5. The log-price Z; (dashed line) and the log-alue V; (solid line) for the
linear position based walue strategy of equatior80 with o = 0.1. Unlike the

order based strategythe price is not co-integrated to the alue, and can wander
arbitrarily far away fr om it.

In contrast to the orddrased stratges, which correspond to a beglmal pattern that
is simply not follaved in the real wrld, real traders do use position-basellig stratgies.
However, as we see, in a warse consistingnly of position-basedalue stratgies, there
IS no cointgration of price andalue, leading to unbounded positions. In order t@ha
sensible behaor and bounded risk, position-baseaue stratgies depend on other strat-
egies to proide cointgration between price analue.

3.2.3 State-dependent theshold \alue strategies

The analysis of the simplelue stratgies abwe presents the question of whether
there aist stratgies that both coinggate price andalue and hée bounded positions. In
this section we discuss a class afue stratgies that are more complicatedt imonethe-
less commonly used, and demonstrate that $hésfy this property

From the point of vie of the indvidual tradeyone of the problems with the position-
based alue stratgies studied in the pv@us section is that tlygemay incur &cess transac-
tion costs. Tades are made/ery time the mispricing mes up or dan, and within a
short space of time fluctuations may cause alternatigiondy and selling with no net
change in the mispricing. One common approach to solving this problem is to use state
dependent stragges, with diferent conditions for entering vs<igng a position. Lile the
simpler \alue stratgies studied earliesuch straigies are based on the belief that the
price will revert to the alue. By only entering a position when the mispricing igdaand
only exiting when it is small, the trader hopes to profit by only trading when the price
movement tavard \alue is lage enough to beat transaction costs.
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An example of such a strag which is both nonlinear and state dependent, can be
constructed as folles: Assume that a short positien is entered when the mispricing
exceeds a threshol@l and &ited when it goes beloa threshold . Similarly, a long posi-
tion c is entered when the mispricing drops kebthreshold-T and &ited when it
exceeds-t. This is illustrated in Figuré. Since this stragy depends on itsan position

tau

-tau

c

FIGURE 6. Schematic view of a nonlinegrstate-dependent &lue strategy The trader enters a
short position —C when the mispricing exceeds a tteshold T, and holds it until the mispricing
goes belwr T. The reverse is true br long positions.

as well as the mispricing, it is a finite state machine, asrsimoFigure?.

In general difierent traders will choose fi#frent entry and»ét thresholds. Let tradear
have entry threshold@ () and ait thresholdt(") . For the simulations presented here we
will assume a uniform distrilion of entry thresholds ranging frofy,;, to T,,.,,, and a
uniform density of it thresholds ranging from,;,, to 1,,,,, with a random pairing of
entry and it thresholds. "lues ofc are assigned as= a(T —1), wherea is a positie
constant.

It is clear that to correspond to a sensildkig stratgy the entry threshold should be
positive and greater than thgiethreshold, i.eT >0 andT > 1. The choice of thexg
thresholdt is not as obious. Given the transaction cost of entering aritireg positions,
to be sure that the full return has begtaeted from the position, maraders will take
T <0. However, some traders may decide tateéheir positions before the mispricing is
zero, under the theory that once the price is nearatlue there is littlex@ected return
remaining. V& can simulate a mixture of thedwapproaches by making,;, <0 and

1. This assignment is natural because traders managing mong (wihdarger C) incur lager transaction
costs. Thexpected gin absent mask impact, hence theatn needed to beat transaction costs, is propor-
tionalto T —T.
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m>T @

FIGURE 7. The nonlinear state-dependent&lue strategy epresented as a finite-state machine.
From a zeo position a long-positionC is entered when the mispricingm drops belav the
threshold—T . This position is exited when the mispricing exceeds a #shold—T . Similarly, a
short position —C is enteled when the mispricing exceeds a teshold T and exited when it
drops belav a threshold T

Tmax > 0. However, to be a sensiblealue stratgy, a trader wuld not it a position at a
mispricing that is further from zero than where the positias anteredt ;,, should not
betoo negative, so we should e T <1< T and|t; | < T s

To achiee cointgration of price andalue it is clear that <0 is a desirable property
This gves the strongest coimggeation, since the price changes induced by tradingya
have the opposite sign of the mispricing for both entry adi] €0 the trading alays acts
to reduce the mispricing. A simulation of the price dynamics induced by thiggtrate

usingTt,,, = 0 andt;,<0 is shavn in Figure8. The price andalue are coingrated.
The behuior of the mispricing, and the coiggation of price andalue, are quite dif-

ferent for this gample than for the simple ordeased alue stratgy studied earliefThis

example corresponds much more closely to thevaehan real markts, namelythe mis-

pricing changes sign only infrequentind cointgration is much weat

Figure9 shavs a simulation with the range ofiethresholds chosen so thgf;, <0
but 1., > 0. The price andalue are still coingrated, bit wealer than before, as illus-
trated by the increased amplitude of the mispricing. In addition, there is a teholethe
price to “bounce” as it approaches tlaue. This is caused by thact that when the mis-
pricing approaches zero some tradetsistaeir positions, which pushes the pricesy
from the \alue. The alue becomes a “resistanced® for the price, and there is a ten-
deng for the mispricing to cross zero less frequently than it does wien 0 for all i .
Based on results from numericaperiments it appears that the price aabtlg can be
cointegrated as long ag,;,, < 0. Necessary and didient conditions for cointgration
desere further study.
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FIGURE 8. The induced price dynamics of a nonlinear state-dependenalue
strategy with 1000 traders using diffeent thresholds. The log- price is shen as a
solid line and the log-alue as a dashed linet 05,1 0,
Trin = 0.5 Ty, = 6N = 1000a—?)0010 % 01, and
o; = 0.01,andA = 1.
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FIGURE 9. Price (solid) and \alue (dashed) vs. timedr the nonlinear state-
dependent strategy of Figue 7. The parameters and random number seed ar
the same as Figue 8, except thatl,,, = —0.5and T, = 0.5

1. Problems can occur in the simulations if the cagitat a(T —1T) for each strawy is not assigned
reasonablyif a is too small the traders may not pide enough restoring force for the mispricing; once all
N traders are committed to a long or short position, price alue cease to be coigrated. Ifa is too big
instabilities can result because the kickvyided by a single trader creates oscillations between entry and
exit. Nonetheless, between thes®t@tremes there is a lge parameter range with reasonable tieina
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This demonstrates that there is at least one clasdu# stratgies that tends to cointe-
grated price andalue. It is interesting that coimgeation of price andalue should depend
on something as apparently indirect as state-dependence induced by viadondt
reduce transaction costs. Also, note that the nature of thegraitiba relationship is real-
istically weak; mispricings can persist for thousands of iterations.

3.2.4 Mixed technical and alue strategies

A technical trading straggy is one that bases decisions on pakias of the price.
Cointegration may also be helped by mitechnical andalue stratgies. A clear gam-
ple is a “\alue stratgy with a technical confirmation signal”. A trader may h&ign
value, lut decide to it until the price goes through a turning point teetakposition. The
reasoning behind such a stgtes to aoid risk by waiting until the mar&t indicates that
the other alue traders are starting to enter their positions and push the mispriaing do
For instance, consider the preceding sggtbut male the entry condition for a short
position of the fornm,>T andz,,,—z >D, i.e. the mispricing musixeeed a gien
level and the price must )& dropped from an earlier maximum (e.g. the maximuen o
the last thirty iterations) by at least a certain amount. Such agstraiiéaid the cause of
cointggration, since it produces a trade with the opposite sign of the mispricing at a point
where the traders using the threshold siiatee simply holding their positions. This
illustrates hw stratgies may act in concert to perform aeg function with the magk,
e.g. a purealue stratgy may bgin a price reersal and a technical strgtemay reinforce
it.

3.2.5 Dverse \alues and excessolatility

In general diferent traders will percee different \alues. er stratgies that are linear
in the \alue (or the logrithm of \alue) the induced dynamics will be identical to those of a
single stratgy with the meanalue and the combinedue. Havever, for nonlinear strat-
egies this will not be true -- ddrent perceptions ofalue can causexeess wlatility and
create opportunities for trend folers.

For example, consider the simple order based sjyaté Sectior8.2.1. Suppose there
is a group ofN different traders each pereigig valuev{") . The dynamics are

Letting

wherec = Zci , this becomes identical to equati®B, except that the logrithm of the
value is replaced by the weighted mean of tharitigms of the alue computed by each

November 30, 1998 37



trader Or in other wrds, the mandt is equialent to that of a single trader who bedéis
the correct alue is the weighted geometric mean of theviddial values. A similar rela-
tion will be true for ay stratgy that depends linearly on. Thus, for stratgies that
depend linearly on logalue, the dynamics are den solely by theollectivevaluation.

The situation can be quite fiifent when the stragees depend nonlinearly on the
value. for for the purposes of simulation it is eenient to assume that, althougHeliént
traders percee dverse alues, thg change in tandem. This can be modeled as a simple
“base” \alue process, that follovs equatior22, with a fixed random déet v() that is
different for each tradefhe \alue perceied by theith trader at time is

vi) = g, +vi),

In the simulations thealue ofsets are assigned uniformly betwegn,, andv, ., , where

Vmin = —Vmax- The range of perocegd \alues is2v

max’

min max *

We will define the xcess wlatility as

V = /03/(0% + 052), (Eq 32)

i.e. as the ratio of theplatility of the log-returns to theolatility of the noise terms.
Figurel0 and Figurd.l illustrate the ééct of a dversity of perceied \alues using the

excess volatility
10 12 14 16 18 20 22

0 5 10 15
range of perceived values

FIGURE 10. Excess wvlatility as the range of peceived values increases while the
capital is fixed at0.035. See equatior82. The other parameters ag the same as
those in Figure 8.

threshold alue stratgy of Sectior3.2.3. The mispricing is measured relatio the geo-
metric mean of the logalue. \\ see that thexeess wlatility increases with the range of
perceved \alues and the capital. Thigaess wlatility is generated by trading caused by
disagreements aboutlue. Extremes of the mispricing \e#imost traders to takeither
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FIGURE 11. Excess wlatility , defined as in the text, as the capitalries while the
range of perceived values is fixed at2, i.e. V., = =1 and V.o, = 1.
Parameters are as in Figue 8.

long or short positions, and causes c@rdédon, lut when the mispricing is close to the
value there is “noise trading” that generatesess wvlatility.

We may think of the magt as a machine whose function is &z the price near the
correct alue. If the machine were perfectlyieient price and alue would track eactly.
The inverse of thexcess wvlatility is one possible measure ofieiengy. By ary measure,
this marlet is a machine whosefiefengy is less than one.

3.3 Trends and tend followers

A trendoccurs when successi price meements are posiely correlated. This may
be episodic, i.e. the magkmay trend during one period of time and displayatiee cor-
relations during other periods of time. While tixeseence of trends has caused consider-
able debate in the literature, it is clear that trendviotig is a commonly used strate
[13]. Furthermore, there arevesal possible causes of trends that entliks behwaor
rational:

» To minimize transaction costs, ¢g@ positions are usually acquired gradualy
single institution may takweeks orwen months to taka position. Such positions
are sometimes a significant fraction of the neaghare, i.e. lge enough that the
transition into such a position mayveaa significant impact on the price [10].

» A stop is an order to flatten axigting position depending on the price, e.g. “sell all
my stock if the price drops belo$50”. If stops are placed at a range ofedént
price levels, as each stop is hit it induces a price change in the same direction,
which may in turn cause thextestop to be hit, creating a chain reaction.
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» Market undefreaction by walue irvestors can cause poséicorrelations in the
price.

* Information may difuse into the mamt gradually

* Inventory efects when a magt maler acquires a net long or short position may
cause correlated price maments.

* Induced price dynamics by trend fallers generates trends, creating a self-
fulfilling prophesy

We have already seen ama&mple of markt undesreaction. In this section we will discuss
information difusion and self-fulfilling prophesies. The causes listed@buay reinforce
each othere.q. if there is a maek undefreaction and trend folleers eploit it the trend
becomes\een stronger

3.3.1 Information diffusion and rumors

Gradual information difision may cause trendsoiFexample, if information is trans-
mitted via rumors it may enter the matlslavly. This can be a particularly strondesdt if
there is feedback between the rumor and trading. Once a trader has alreadyggiosi-
tion, it is to his adantage to encourage others to do the same. Someone with a “hot tip”
may huy, then encourage others toybetc., causing auying wave that generates a trend
in the price. Br example, assume that the rate at which such a rumor spreads is propor-
tional to the amount ofuying that it generates. Each unit &tess bying generates(t)
units on the ne, i.e. w, = c(t)w, _; . Such information will lose itsalue wer time; for
example, suppose it deades linearly with time until it become®sthless. Let

c(t) = co(1—kt) forO<t<1/k andc(t) = O fort>1/k. Solving forw,, from
equationll we hae

weht =t
7 —zl= ——[] (1 -ik)", (Eq 33)
i=0

for 0 <t <1/k. This a classic sigmoidal gmh pattern.

3.3.2 Tend followers

Trend followes are irvestors who ivest based on the belief that metktend to trend.
When thg perceve an upward trend the buy, and when theperceve a devnward trend,
they sell. To be more specific, a trading statas trend folleving on timescal® if the
net positiony, has a posite correlation with past price mements on timescalkg.
Assuming for covenience that botl and the log-returns are zero megnis a trend fol-
lowing stratgy if

wt+1(zt_zt—e)D>0'

Note that a gien stratgy may be trend folling on seeral diferent timescales, and may
be trend folleving on some timescalesitnot on others.
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We hare defined trend folleing stratgies in terms of their position. As foalie
stratgjies, one could define ordeased trend follwing stratgies. In &ct the position-
based alue stratgy can be rgarded as an orddrased trend stragg that also depends on
changes inalue. This is @ident in equatior80; this stratgy only depends on, and
noise terms. Orddrased trend strajees hae the same problem as theswve counter-
parts that their positions are unbounded, and will not be considered.further

An example of a simple linear trend folling stratgy is

Yir1 = C(z—2_g).

From equatioril, the dynamics induced by this strptare

C
Miv1 X(yt+l_yt)+Et

(Eq 34)
= a(ry—ri_g) +&;

wherea = c/A. These dynamics tend to induce trends, as illustrated in Figure

[o0]
,\ .
0
So
S
Lr).
q‘ A T T T T T
0 5000 10000 15000 20000
time

FIGURE 12. Log price vs. time 6r trend followers with ¢ = 0.2 and® = 10
in equation 34. This illustrates hav trend followers tend to induce tends.

The eigemalues are

_a(l-a)*J5-2a+a?

2

Both eigenalues hae absolute @lue less than one, and the dynamics are stable when
a < 1. The autocorrelation function can be sawy multiplying byr, _,, and aeraging,
which gvesp,,; = a(p,—pP,_g) - Doing this forn = 0, ..., 6 -1 gives a system
linear equations that can be smdvfor the first9 values of the autocorrelation function;
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the remainder can be found by iterating these relations for highexsvofn. Doing this
for several diferent \alues off illustrates the basic pattern fpf,: The first autocorrela-
tion p, is positve and of orden ; the remaining autocorrelation cteients oscillate and
reach a minimum at = 8; asn increases furthethey continue to decayvhile oscillat-
ing between posite and ngative values with a period a20. An example is shan for

8 = 10. The oscillation in the autocorrelation function corresponds to a tenttenc
induce oscillations in the price. It is a sidéeet of formulating the stragg in terms of the
position. There are mgrdifferent types of trend-folleing stratgies defined in the tech-
nical trading literature [21]. Tlyeall share the property of inducing trends; tkieet to
which the also induce oscillations depends on the sate

It is instructve to compare the simplicity andwer of this analysis to that of DeLong

et al. [6], who used equilibrium methods to point out that trendWells could create self-
fulfilling prophesies, and that\gn that others do this, trend fallolng becomes rational.

Series : ret

02 00 02°04 06 08 10

0 10 20 Lag 30 40 50

FIGURE 13. The autocorrelation function for equation 34 with a = 0.2 and
0 = 10. In addition to inducing tr ends, position based strategies tend to induce
oscillations.

Like value irvestors, trend folers often use thresholds to reduce transaction costs.
Given a trend indicatadr(z, ..., z, _g) , a nonlinear trend stragg can be defined as a finite
state machine, as shio in Figurel4. This will be used later

3.4 Market drift and inventory effects

As discussed already some netegk such as the stock markhae a tendencto drift
in one direction. If we assume this isvém by a systematic drift in the underlying per-
ceived \alues, we can model this by adding a constant drift term to the dynamics of the
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FIGURE 14. A nonlinear state-dependent tend strategy epresented as a finite-state machine.

value in equatior22. In this case, using a population of threshalde irvestors, the price
remains cointgrated to thealue as one wuld hope; een though there is nxglicit drift
term in the price, it locks on to the drift ialue.

log prices, log value
15 20 25

10

5

0 5000 10000 15000 20000
time

FIGURE 15. The induced price dynamics when a &nd term of magnitude 0.001
is added to the walue process. Thee are 1000 traders using theshold-\alue
strategies as in Figue 8. The parameters ae ¢ = 0.01, Of = 0.01,
On = 0.01,b = 0.3, Vv, = -1.2,and Vpp, = 1.2.

However, the resulting dynamics using the simple neairkaking rule of equatioh
are unrealistic in at least one respect. When there is avpaditit term in \alue, with the
passage of time the matkmaler tends to accumulate a net short position. Furthermore,

this position appears to gwvowithout bound.
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FIGURE 16. The positions br the simulation described abwoe.

This situation is one in which thevientory efect appears to be necessary to get realis-
tic behaior. In numerical simulations with a posgi drift term in the &lue, by using a
sufficiently large \alue ofb in equationlO it was possible to pvent the markt maler’s
position from graving. Having a dversity of \alues also helps, although this does not
seem to be sfi€ient to preent gravth in the markt maler’s position on itswn. This is
illustrated in Figurel5 and Figurd. 6.

3.5 \alue investors and tend followers together

So far we hae investicated homogeneous ecologies consisting of either single strate-
gies or closely related groups of stgaés. The price dynamics of homogeneous sjrase
tend to be unrealistic becauseytinave linear structure in the priceolFvalue irvesting
stratgies the autocorrelation of the log-returns is typicallyatiee, and for trend foll-
ing stratgies it is positre. For real price series, in contrast, the autocorrelation tends to be
very close to zero [22]. One simplewto achige this is to combinealue irvestors and
trend follavers in the proper ratio so that the linear structure disappeads. this we use
the threshold basedle and trend stragees of Figure/ and Figurel4. e beyin by
assigning the same thresholds to both the trendifetl®and alue irvestors, and adjust
the capital of the trend foleers by trial and error so that the autocorrelation of the log-
returns is close to zetoThis means the tradinglume of each group is roughly matched,
and there is no significant linear temporal structure in the price. There is significant non-

= 1200, o; = 0.35,

1. The parameters for the simulation hf‘lg\%ﬂ? f{? - |
e = ena — Tva u 0 2

Ttrend - Tvalue = 0.2, Ttrend -

;-‘n%ﬁd = rv%%]ge =0, avalue_ X 2.5x 10, 2%6x 18, v, = ~2, and
Vimax = min = 1.6, 100, b = 0. and)\ 1. The mean of the pereeid \alues as a

function of time were |mposed<ternally to match the American stock metrkas described on page 47.
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linear structure, hwever, as illustrated in Figuré7. This shws the smoothedoiume' of

0.015

0.010

smoothed volume

0.005

0.0

0 200 400 600 800 1000

FIGURE 17. Smoothed trading wlume of \value investors (solid line) and tend
followers (dashed line). The tw groups become actie at different times; when
the value investors dominate the log-eturns have a negatve autocorrelation, and
when the trend followers dominate thee is a positve autocorrelation. Even
though there is no linear temporal structure, there is stong nonlinear structure.
Parameters are as described in the text; this is only a short portion of the total
simulation.

value irvestors and trend foleers as a function of time. It mek it clear that the twv
groups of traders become aetiat diferent times. Since the trend follers induce posi-
tive autocorrelations and thalue irvestors ngative autocorrelations, for a trader who
understands the underlying dynamics there is predictable nonlinear strustatistical
analyses of theolume and prices display maof the characteristic properties of real
financial timeseries, as illustrated in Figd& The log-returns are more long-tailed than
those of a normal distnittion, i.e. there is a higher density @lwes at thex¢remes and in
the center with a deficit in between. This alg@ent in the size of the fourth moment.
The ecess kurtosis

r,—r.)40
{ry—Ty) |3

k =
4
Or

1. The smoothedolume is computed ¢y = BV;_; + (1 —P)V,, whereV, is the wlume and

B = 0.9.

2. The nonlinear structure can bglited by ay trader that knas the underlying generating process. It
also is possible toxéract the nonlinear structure directly from the time seriesdbe to statistical estima-
tion problems this may not be ea3ye forecasting accunadepends strongly on howell the model
matches the true dynamics. This dessriurther imestigation.
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FIGURE 18. An illustration that an ecology of threshold based &lue investors and tend followers
shows statistical properties that are typical of real financial time series. The upper left panel is a
“g-q” plot, gi ving the ratio of the quantiles of the cumulatve probability distrib ution for the log-
returns to those of a normal distritution. If the distrib ution were normal this would be a straight
line; since it is “long tailed” the slope is flatter in the middle and steeper at the exdmes. The
upper right panel shavs a histogram of the wlume. It is heavily positively skewed. The laver left
panel shavs the autocoreelation of the vwolume, and the laver right panel shows the
autocorrelation of the \olatility . These vary based on parameters, bt long tails and temporal
autocorrelation of wolume and wolatility ar e typical.

is roughlyk =9, in contrast to thexpected aluek = 0 for a normal distribtion. The
histogram of wlumes is peadd near zero with a heapositive slew®. The wlume and

1. For the threshold stragees used here there is a fraction of iterations with no trading at all. This is no
longer the case when linear stgaés are included, which also results in a more realistic difisibof trad-
ing volumes.
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volatility both have strong positie autocorrelations. Thus if there is higher than usoial v
ume or wlatility on a gven daythere tends to be higher than usu@dliine or wlatility on
subsequent days. The intensity of the long-tails and correlatopsomehat as the
parameters are changed or sgas are altered, foxample if linear trend follwers are
substituted for threshold trend folers. Havever, the basic properties of long tails and
autocorrelatedalume and wlatility are rotust'.

The «istence of long tails and autocorrelations afuvne and wlatility have been a
topic of debate from a theoretical point ofwid he dynamical formulation presented here
offers a simplexplanation. Ier a broad class of strgies, under the dynamicsvgn in
equationll, a lager than @erage change in price at one time wilvdrlager than aer-
age trading @lume at the nd time. To the etent that the trading is unbalanced, this will
acain drive a lager than gerage change in price. When this occurs temporal correlations
in volume and wvlatility are to be xpected. This is clearly true of trend fallmg strate-
gies. The results of this section reakclear that nonlinear trend analwe stratgies do
not just cancel each other out. Thus it is possible\te hdage autocorrelation inolatil-
ity at the same time that there is zero autocorrelation in the log returns. Note that temporal
variations in wlatility imply that the distribtion of log-returns can begarded as a super-
position of normal distrilitions with diferent standard detions. Such a distriliion is
generally long-tailed. Thisyipothesis desees more quantitate study [31]. Thispla-
nation seems more natural and straightéoohthan may of the other alternates.

The simulations abe@ differ from those presented preusly in an important respect.
Rather than randomly generatingwes using equatia2l, the alues were imposedier-
nally. This was done in an attempt to nea& qualitatie comparison to a real price series.
Though the details may @&, all of the properties abe are also obsesd, in mag cases
more stronglyusing randomly generatedlues.

As our point of comparison we use annual prices andatids for the S&P incé
from 1889 to 1984. Both series are adjusted for inflatieugé the didends as a crude
measure of &lue. W\ somwhat arbitrarily assume that the simulations are on a daily
timescale andx@and the diidend series to alle this. This is done by linearly interpolat-
ing 250 surrogtes between each annualue of the logrithm of the dridends; 250 is
chosen because it is roughly the number of trading days in .alyesrthe log-alue
series used as an input to the simulation contains a ta28i0of 95 = 23, 750 numbers
that \ary linearly &cept for a discontinuous change in the e esery 250 alues. As
mentioned abee, the main criterion for choosing the parameters of the simulatieriov
adjust the capital of the trend faNers to ensure that the autocorrelation of the price is
zero; a secondary criteriora@ to adjust thexéernal noise to match thehatility in the
mispricing. The real series of American prices aaldes are shvan in Figurel9 and the

1. The inclusion of trend folleers in the mix is important; the autocorrelationsatatility are much

wealer for a population of purealue irvestors. But all the simulations thatwkahe autocorrelation of log-
returns near zero siwahese properties, albeit tanying dgree. Understanding the dependence on the mix-
ture of trading stratges is an interesting topic for further research.

2. We would like Robert Shiller for making these dataiéable on his web site. See Campbell and Shiller
[36] and references [3, 7].
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FIGURE 19. Inflation-adjusted annual prices (solid) and dridends for the S&P
index of American stock prices.
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FIGURE 20. The price fr a simulation consisting of alue investors and tend
followers using linearly interpolated dividend series fom Figure 19 as inputs.
The price was aeraged wer periods of 250 iterations to simulate theeduction of
a series of this many trading days to annual data. Therwas some limited
adjustment of parameters, as described in the text,ub no attempt was made to
match initial conditions. There is qualitative agreement in that the price
fluctuates amund the value in a similar manner
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simulation results are stva in Figure20. While these diér in detail, there is a certain
gualitatve correspondence. In both series the price fluctuates aralug] &nd mispric-
ing persist for periods that are sometimes measured in decades.

This comparison should elously not be ta&n too seriouslyNo real attempt has been
made to fit the parameters of the simulation. Furthermore, no atteaaphade to match
initial conditions. © do this it is necessary to initialize the states of the trenavietand
value irvestors, which for state-dependent sgae is not twvial. Furthermore, the
detailed price series generated by the simulation depends on the realization of the random
process for thexternal noise. While | behe that all these problems can be sdlwsing
models of this type for forecasting isyload the scope of this paper [31].

The collection of stratges used in the American stock metris certainly &r more
comple that the simplexamples used in the simulation. Nonetheless, the results in this
section demonstrate an encouraging capability to reproduce quelfesiures of the
market, both in the long-term dynamics of the mispricing and in the temporal statistical
properties of daily data.

3.6 Summary and discussion

The examples wrked in this section demonstrate that the dynamiesldped here is
capable of producing sensible results. The gir@sestudied in this section are only a
small subsample of those actually used in real etard’here are a lge¢ number of possi-
ble variations, combinations, and alternas. The wrk here is just a first step and only
begins to &plore the compbety of real stratgies. For example, the range of possible
technical stragies goesdr beg/ond the simple trend strapg explored here [21]. Most
traders do not foll simple formulas. fiading has emotional components, such as fear
and greed. While this may befttlilt to tale into account analyticallyn some cases it
may be possible.d¥ example, for @alue stratgies a feardctor can be incorporated by
adding an enhanced willingness to sell on signs of hadgitility when the marét is
strongly wenalued; this may ge rise to crashes. It isy@nd the scope of this paper to
explore a broader range of strgiees and their corresponding dynamical hetrs. \\e
have demonstrated thaven for the simple stragges studied here, obseds marlet phe-
nomena such as correlatealume and wvlatility and long tails in price returns ergernat-
urally, indeed are difcult to avoid.

Based on the nonequilibrium theorywdtped in the prgous section, there is reo
priori reason to assume coigtation between price an@he. This depends on the col-
lection of stratgies that comprise the matk This depends on human belba as
reflected in the choice of trading stigitss. Marlet impact may be only one ofveal
market forces that influence price formatior key question for future research will be to
understand the deee to which dierent forces contrilte to markt dynamics. This the-
ory males it clear that only certain trading stgags are useful in causing coigtation;
insofar as mar&ts are coingrated, we should obserthese stratges in use. It is encour-
aging that the results in this section are qualghtirealistic, in that price andalue track
each otherbut only weakly with deviations on one side or the other for long periods of
time. There is somevience in the literature that price aralue are more closely cointe-
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grated in some maeks than others; this model prdes a good conx¢ for further study of
this questioh.

Another interesting feature of the results in this section is that the dynamics can
become unstable. In each case the dynamics become unstable if the capitzosa af-
egy exceeds a threshold. This raises the possibility that realatsarkay become unstable.
To the atent that real magds are stable, it suggests that theveeleparameters, which
depend on liquidity and capitala@ve to ensure this. This is studied in more detail in the
next section.

In biology, ecology can be defined as “the study of the interrelationshipgafisms
with their ewironment and each other”. In an analogy to bioJ@gyindvidual agent can
be thought of as anganism and a stragg as the phenotype of a species. In this section
we hare demonstrated that this approach to miadynamics focuses on the interrelation-
ships between strggies and naturally fosters an ecological point ofwiBhe dversity of
views generate an ecology of feifent stratgies, each causing tbfent efects that con-
tribute to the werall dynamics. In the mésection we will ague that the emgence of a
diversity of complg stratgies is natural in financial ecologies.

1. If the direct marit impact of the order flodue to alue stratgies does not pxéde a mechanism to coin-
tegrate price andalue, the main altern&i appears to be an information process in which etanlalers
receive information that may come from sources other than orders, and adjust prieep tbdm near
value. An gample might be the “force of arbitrage” alluded to earlier: Prices may chamgewehout
trading, simply becausereryone knws that arbitrage is possible. While | beéahat such éécts mak a
contribution to price dynamics, particularly in illiquid maits, | think it would be disturbing if there were
not mechanisms that coigi@te price andatue directly through trading.

1. The series of price andlue for stock maws studied by Campbell and Shiller [36] appears to be cointe-
grated. Br curreng marlets, in contrast, thesielence for cointgration of &change rates and purchasing
price parity is contreersial, with @idence both for and agnst [37]. This is naturally predicted from this
theory Holding stocks or bonds produce ongoingeraies, while currencies do not. Thus omell expect

a higher ratio of &lue irvestors, and stronger coigtation for stocks and bonds. It may be possible to pre-
dict the ratio of mlue irvestors to technical traders based on the velatiportance of the venue stream.
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4. Ewlution

In the discussion s@f we hae assumed that the capital of each trading glydse
fixed. In reality the capitalaries as profits are reested, stratges change in popularjty
and nev stratgies are disogered. In addition, magk malers adjust the liquidity and the
spread. All of theseaftors alter the financial ecology and change its dynamics. Adjust-
ments in capital and liquidity are an important componemartet evolution. This
includes the emgence of ne stratgies (when the capital changes from zero to a finite
value). Marlet evolution occurs on longer timescales, causing nonstationarity in the day to
day marlet dynamics. There is feedback between thetimescales: The day to day
dynamics determine profits, whicHedt capital reallocations owv@utionary timescales,
which in turn affect the day to day dynamics.

Under the classic theory of matikeficiengy, nav stratgies should appear and capital
should rapidly adjust toxgloit ary opportunities for profit making, in such awthat
“abnormal profits” are impossible. Makeficiengy, if it occurs, is an outcome of matk
evolution. This theory pnades a comenient dynamical framveork in which to ivesticate
this question.

4.1 Mechanisms of financial eolution

4.1.1 Capital reallocation and separation of timescales

The capital determines the influence of each gjyade the dynamics. The capital of a
stratgy sets the scale of its influence on the ecqlagg is analogous to the population of
a species in biologyltimately decisions about capital allocation are entirely in the hands
of human beings, and Bkmost decision-making processes arkcdit to model. None-
theless, there aregelarities in hav capital is allocated. Threadtors that influence this
are:

* Reirvestment of earning$he profits or losses of a strgyeare added toxesting
capital.

» Attracting capital because people b&kea statgyy is pofitable Funds are
organized that pool mogdrom different irvestors, and capital is allocated by
individuals or within oganizations.

» Restricting capital due to capacity limitatiorith excessve capital profits will
decrease due to transaction costs. Competent traders attempt to understand this and
maximize their profits by limiting capital accordinglunds close, and
occasionally capital isven returned.

The reirvestment of earnings is straightfawd to model. Let be the fraction of
profits that are reirested, wher® < a< 1. The rate of change of the capitd) is

Ac) = ¢V —c{); = ag{).
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If reinvestment is stitiently slav then the capital will ary slavly in comparison to sin-
gle time period returns. As long asis suficiently small it is reasonable to approximate
the @qains using equatio®0, which gves

N
. o ~ R
Act(l) = aDZ Gijc(l)c(J) + U Q/(')D‘;(')E_ (Eq 35)
=1

G and )T generally depend on. Equation 35 gies an approximation for thieplica-
tor dynamicof financial stratgies. It is similar to the Lotkaélterra equations, and
makes precise the analogy to predgiogy systems and population biology [26].

Because it depends on human wétrathe process of attracting capital is mordi-dif
cult to model. The rate at which mgnigows in or out of a fund depends on mdactors,
such as adtising and salesmanship. Capital allocations insidevastiment bank may
depend on internal politics,gelatory restrictions, or t&s. Fads may dictate arverall
preference for alue stratgies vs. trend stragees based on fluctuations in cultural mythol-
ogy. Some people are more riskease than others. Statistical fluctuations may cause prof-
its purely by chance, and people sometimesentcisions based on statistically
insignificant results. There are clearly mdactors that influence capital allocation, such
as the opportunities forvesting in other assets. Nonetheless, it seems reasonable to
assume that capital tends toAflto stratgies that people belre will be profitable, and
that this belief has at least some correlation with actual profitabilitghis case we can
use equatio®5 as a model, with the alteration that it becomes possibla that An
obvious and importantéension vould be to assume that capital reallocations arevelati
to the mean performance of all the stgats in the mant, including those in other asset
classes. Other enhancements such asxteasaon to multiple asset classes are clearly
possible, bt are bgond the scope of this pager

As the capital of a stragg increases so does marlfriction. The capitalventually
reaches a el where profits are at a maximum and the ggsakes reached its capacity
the traders using awgn stratgy understand this, once thisdtis reached thewill cease
to increase the capital of the stgateWhen this occurs equati@® becomes inoperaé.
Capital adjustments from then on only depend on changes in the profitability of the strat-
egy, i.e. impravements in its capacityhis efect can be modeled in terms of a stopping
condition. When this condition is met, the capital ceases to be modeled by eg6ation
and from then on is based on optimizing profits for each traties introduces dependen-

1. Animportant gception are trading stragies that are matated by reduction of risk or consumption
rather than profit. Amxample is adrmer who hys a futures contract to lock in a price, or an agent who
buys a good to to mark it up and distrie to consumers . Such stgigs are fundamental and can bevéad
as drvers for more speculag stratgies that seek to makprofits.

2. Note that with the assumption of separation of timescales the ratevekteiant is based on the
expected profitabilitywhich is a gren numberrather than on past or pensail profitability which are sub-
ject to statistical fluctuations and human erRypspectie investors often consider other measures, such as
trailing return/risk ratio, or backtests based on historical data.
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cies on the number of traders using\aegistratgy, which are discussed in more detail in
Sectiord.5.

Because of statistical fluctuations and estimation problems it is offeuldifo distin-
guish between profitable and unprofitable sgiig® Understanding transaction costs is
also challenging, aviglenced by thedct that the mark impact function is still not well
described in the published literature. Thus we cqeet that mayinvestors will follov
stratgies that are not profitable, and mdraders will &il to understand their magk
impacts, ramping the capital of their stgags until thg case to be profitable. This will be
studied in Sectiod.4

4.1.2 Long term adjustments in liquidity

Although the main focus of this paper is on trading sjres &olutionary changes in
the dynamics also occur due to the adjustment of liquidity or the spread by tlet mark
malker. From the point of v of the dynamics, increasing the liquidity is aglent to
increasing the capital of all the strgies. An @ample of hav the profits of the magk
maker depend on the liquidity is sha in Figure21.

0  5%10°5

mean gains

-5*107-5

-107-4

0.0 0.001  0.002 0.003 0.004  0.005
capital

FIGURE 21. Mean profits of value investors as a goup vs. the capital of
individual traders. There are 1000 traders with entry thr esholds unibrmly
distrib uted between(0.3 and 7 and exit thresholds unibrmly distrib uted
between—0.3 and0.0; = 0, = 0.02,v,, = -1,V =1

N Tmin ' TMmax !
b=02ad\=1" "

In a marlet consisting only ofalue irvestors all using the threshold-baseadlie strat-
egy of SectiorB.2.3, thg male a profit as a group when the capital idicightly low, and
take losses as a group when the capital iBcsemtly high. Because the position of the
market maler is the ngative of the position of thealue irvestors as a group, the profits of
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the marlet maler are also the gative of their profits. Similarlythe liquidity is iversely
proportional to the capital. Thus this figure demonstrates that thetmaaler profits
when the liquidity is lay, and taks losses when the liquidity is high. This realkt clear
that marlet malers hae an incentie to keep the liquidity lav to male profits. Havever,
market making profits are proportional tolume, and with more realistic strgtes, if the
liquidity is too lov we would expect the wlume to decrease. This suggests that theahark
maker will lower the liquidity to ma& a profit, lnt not male it too lav. The marlkt maler
can also mak adjustments in the spread; thiteefs profits and lossesitddoes not
directly afect the dynamics of the midpoint of the price. Competition will tend teedri
the marlet maler profits near the threshold. This reakt clear that liquidity and capital
co-e/olve.Gien the demonstration in equatidh that markt friction generally causes
losses, it may seem surprising that there are conditions wélereiwestors can maka
profit as a group. My conjecture is that this is becausectbiectively alter the dynamics;
even though the diagonal terms in trergmatrix of ag given trader are still mative, the
off-diagonal terms are such thatyhsan mak a profit. This deseeg further inestica-
tion.

4.2 Competition and dversity in financial ecologies

How diverse are financial ecologies? If there were a single optimalgstrdten we
should e&pect to find only that stragg in the markt. Hovever, it is clear that financial
markets are etremely dverse. In practice mardifferent stratgies are used [13]. In this
section we demonstrate wluch dversity comes about.

4.2.1 Competition between diffeent classes of strategies

When do diferent stratgies co-&ist? To investicate this question we use a standard
technique from population genetics. Assume a gretiag set of stratges. If we intro-
duce a ne stratgy does it ma& a profit? If it does, then according to equa8ént will
invadethe population. Such calculations are easy to perform because we can use the
approximation that the capital of thevaling stratgy is small, which means that it has a
negligible efect on the price dynamics. The ability of a stygtéo invade a population
does not necessarily mean that thediity increaseswver the long term, U it does imply
that it will increase in the short term. (@vthe long term it may coxist with the other
stratgies, or it may dvie some of themxéinct, which might gen cause the mestratgy
to become dinct as well).

For instance, consider the position based giraseof Sectior3.2.2 in a marét that is
dominated by traders using the order based gies®f Sectior8.2.1. Consider the case
that the position-based trader pevesia diferent \alue than the consensus of the order
based traders, so the position is

y{P), = —c(z,—V,) = —cm, +cdv (Eq 36)
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whereV, = v, +dv is the \alue perceied by the position-based trader ands the con-
sensus alue of the order based tradersr Eorvenience the diérencedv is assumed to
be constant in time.

Substituting equations 24 and 36 into equatiénto first order irc the @quins of the
position-based trader are approximately

Ors1= e V(P = (—am + &) (—cm,_; +cdv). (Eq 37)
Taking arerages implies that

c(1-0a)(a? +0f)
(2-a)

[9, . ;{= camm,_,0= cap(1)o3 =

Thus the position-based strgyeis generally able towade the ordebased stratgy when
a < 1. Similarly, by flipping the sign (so that it is an “an&due” stratgy), its opposite
can irvade the ordebased stragy whena > 1.

The mean gins do not depend on whether the position-based tsagiimate ofalue
matches the consensus estimatevéer, it is clear from equatio87 that &iling to match
the \alue, i.e.dv # 0, increases the risk. Since traders are generally vesise, this cre-
ates an incente to match oneg’percered \alue to the consensus estimate. Note that it is
irrelevant whether the consensus perediwalue is actually corrett

A similar calculation is possible for the simple trend feiloy stratgy of
Section3.3.2 irvading order or position-basedlue stratgies. The results are summa-
rized in Table 1. There is no resultvgn for a position-basedue stratgy invading itself,
since the position and thus thairgs are non-stationary

From Tablel we see that in the appropriate parameter ranges both the simple position-
based alue stratgy and the trend stragg with 8 = 1 are able to wade the ordebased
stratgy. This depends both am (the ratio of capital to liquidity) and on the relati
importance of changes imle and eternal noise as drers of the stochastic part of the
dynamics. Not surprisinglyeither of them are able tovade wherma = 1. However,
whena # 1, if these strages cannot ivade, then the “anti-stragg” with the reverse
sign can.

Since the position-basedlue stratgy induces ngative autocorrelations in the
returns, it may be surprising at first glance that the trendgyra@ble to iwade it. The
reason has to do with the time-lags inherent in taking a position and taking profitss It tak
two timesteps to obsexva markt morzement, tak a position, and profit from itoF the
simple trend stragy with 8 = 1 invading another stragg with autocorrelatiorp, and
standard daation o, the mean gins are generally

[0+ 1= (O, 0= Oy 414 0= cp,(2)07).

1. This conclusion may change in maikwhere there are payments, e.gidéinds.
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position-based alue strategy trend following strategy with T = 1

cap,(1)o?, c(l-a)p,(1)c?
order-based _ C(l_a)(o'% +022) _ (1—a)(a(1—0()0%—0(052)
) - ° 2-a)
—cap,(1)o?
ition-based - 2g2 + o2
position-base _ Cdzﬂ] of +0fn

TABLE 1. Mean gain to first order in C when the strategy listed in the columns wades the
strategy listed in the ows. In each case& is the capital of the irvading strategy and d is the ratio
of the capital of the strategy being imaded to the liquidity. When the gain is positie it implies that
the strategy will be able to ivade.

Thus, because of the lag needed te tafx a position and ope&ausality the gins of this
stratgy depend on the second autocorrelation.

These calculations are easiktended to second ordein c. To do this assume that
the log-return is the sum of the log-returns induced by each of thsttatgies. for
example, when the position-based stggteéwvades the orddvased stratgy the result is

c(l-a —c/)\)(o% +0%)

= (2-a)

This expression is quadratic in. The added term comes about because of the self-interac-
tion of the ivading stratgy. The profits grav linearly whenc is small and reach a maxi-
mum atc = (1—a)/2. This behsior is generic -- as a function of capital, trerg of a
profitable stratgy will go through a quadratic maximum and then decline. Simulation
results illustrating this result arevgn in Figure22

4.2.2 Competition within a gven class of strategies

We can also ask whether one member @fnailly of stratgies can imade other mem-
bers of the samainily. For exkample, consider thamily of simple trend follwing strate-
gies of Sectior8.3.2. Can a trend stratehaving delay parameted, invade another with
delay paramete, ? The position of the wading stratgy is

1. These simple stragies are linearso it is possible to sadvfor the @ins eactly, even when thg are com-
bined. Nonetheless, the easy calculation done here is all that is needed to illustrate the point.
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capital of the position-based value strategy

mean gains of the position-based value strategy

FIGURE 22. The gains to the position-basedalue strategy as it ivades the
order-based alue strategy The capital of the orderbased strategy is fixed at 0.9.
The noise terms ér price and value have standard deviation 0.01. Data was
averaged aer 20,000 time steps.

9,
Vi = C(Z_1—-2Z_g,-1) = CZ Fe_i-

i=1
To first order the dynamics arevgn by equatiod4 with® = 6,. The mean gins are

0
U 2 N
O £ 0
0,
=caa” Y (p(i)—p(6;-i))

i=1

p ando are the autocorrelation and standardateon of the dynamics wit® = 6, .

The autocorrelation function is symmetric, idn) = p(—n). Furthermorep(0) = 1
andp(1) >p(n) for n>1. To simplify the notation, lek = cac”™. Enumerating a fe
examples demonstrates that short term trendvi@ts are able to wade longer term trend
followers. (Note that taking the spread into account may alter this conclusion, as the
spread &vors longer term stragges).
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6, 0, mean gain 0, invades0,?

1 1 k(p(1)-1) <0 no
2 1 k(p(1)-p(1)) = 0 no
n>2 1 k(p(1) —p(n)) >0 yes
1 m>1 k(p(m)—1)<0 no

TABLE 2. Can a trend following strategy with timescale® = 0., invade another with timescale

6 = 0,2 The third column shavs the mean gain under the appsximation that the capital of the
invader is small. When the gain is positie the invader makes profits, and will invade. This shavs

that short term tr end followers can profit from longer term trend followers.

For a nev strat@y to eploit an old stratgy, an olvious way to tale adwantage of tem-
poral structure is through technical trading, i.e. making the gyraependent on past
price walues. Thexamples wrked in this section suggest that the natural patiard
market eficiengy is through increased\airsification.

4.3 Efficiency

4.3.1 Definition of an efficient marlet

The basic idea of the theory ofiefent marlets is that the act okploiting patterns to
make a profit alters the magkand causes the original patterns to disappear [22, 23]. Ef
cieng is essentially anvelutionary question, i.e., we can only hope th&tieingy will
happen as a result of the introduction ofirstratgies and the readjustment of capital and
liquidity. In their introductory tetbook, Sharpe et al. define matleficiency as follovs
[25]:

“A market is eficient with espect to a particular set of information if it is
impossible to makabnormal pofits by using this set of information to formulate
buying and selling decisiofis.

The caeat about “abnormal profits” deals with situations where profits are normal, for
example, the tendegyof the stock mamt to rise, or the ability of magk malers to profit
by taking the spread. Abnormal profits correspond to making risk-adjusted profits in
excess of a broad magkinde, or a markt maler who malks profits abee and bgond
what is needed to pay empées, cuer costs, and maka lving. Clearly there is room for
interpretation in what is considered “abnormal’itih the cont&t of this model we will
define “normal” profits as those of the mairknaler, or those of alyy-and-hold straggy
driven by a positie drift term. Wth these tw exceptions, a mask is eficient if no one
malkes profits on\erage, i.e. if
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y()0< 0.

for everyi (notincluding the maed maler). Note that since theps areg, =r,y,_,, the
ability to male a profit implies gatternT,, defined as thexpectation of the return condi-
tioned on information\ailable two timesteps earlier.e.

m = Dt|zt_2,...,lt_2D¢O. (Eq 38)

The lag of tvo takes into account tha€t that the gins depend on the position at the pre-
vious timestep, and the position depends on information from the timestep before that.
The information set is the history of past prices and possibly ottesnal information ,

e.g. which might be used to asseaskig. The information set does not normally include a
record of the past trades of the other playevstfie purposes of this paper we are gener-
ally ngglecting the spread. This means that for pattern there is a profitable stigyehat

can &ploit it. In fact, spread implies there is a threshold Wweldich a pattern cannot be
exploited; once a pattern is beldhis threshold it can be considered irvelat.

Efficiency hinges on whether patterns in pricgse and if thg do «ist, whether the
persist when theare eploited to mak profits. The logic dving early aguments for mar-
ket eficiengy is represented in the follang statement by Cootner [24] in 1964.

“If any substantial grup of luyers thought that prices weitoo low their kuying
would force up the prices. Theverse would be true for seller. the only price
changes that would occur arthose thatasult flom nev information. Since theris
no reason to epect that information to be nomsrdom in appeamnce the period-
to-period price banges of a stdcshould beandom mueements, statistically
independent of one anottier

Cootners starting fipotheis that bying forces up prices is the basis for the theowele
oped in Sectio2. The understanding of matkeficiency has @olved considerably since
1964, lut his statement mak it clear wi the theory presented here yires a simple
context in which to irvesticate it.

It is useful to distinguish between principle and practice. If thest Bo profitable
stratgies, then we will say that the matksefficient in principle If there eist profitable
stratgies, lut such stratgies are unlikly to be found by anreasonable algorithm, then
we will say that it ieefficient in pactice Efficiencgy in principle has the adwtage that it is
clearcut and easy to studifficiengy in practice is more rebant, lut sufers from the
vagueness of conceptsdikunlikely” and reasonable”. @will mainly investicate efi-
cieng in principle, only making a fe speculations aboutfedfiency in practice.

4.3.2 Efficiency via complexity

A market is ineficient if there are predictable trade imbalances creating mean price
movements that are Iger than the spread. When a naris composed of enough inde-
pendent stratges, under certain assumptions trade imbalances will becomeeigiati
smaller according to thevieof large numbers. This depends on the coxiptieand dgree
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of independence of the strgieln this section we construct axaenple of a mankt con-
sisting of independent straies. In the limit that the number of stigites is suiciently
large, the tend to cancel each otherharlet impact, creating anfefient marlet.

Consider a set of randomly chosen “binary” technical trading gtestéhat depend on
the signs of théVl previous returns. The space of possible inputs can be represented as a
bit string of lengthM . A given stratgy can be constructed as a look-up table by randomly
assigning a oy or a sell ordet-c to each of theM possible inputs. (There a8 ™" dis-
tinct stratgies that can be constructed in thesyywnote that this number gets huge quickly
asM grows lage.) Suppose we choose a seNostratgies in this vay. How efficient is
the resulting markt?

WhenN is laige, from equatiodl the deterministic component alatility (the stan-
dard deiation of the deterministic part of the log-returns) is roudleiyA)./2N/ 11 and
the wolume iscN, so the ratio of ®atility to volume is

volatility _ 1 | 2
volume ~ ANTIN' (Ea 39)

If we assume that a fxl fraction of the @lume is random “noise trading”, the relatisize
of the deterministic price vements decreases &5/N . As the number of derse trad-
ing stratgies increases the matkdbecomes relately more dficient.

This example illustrates that for a maxtkto be dicient the stratgies must ceer their
space of inputs uniformlyeach possible state of the mairknust generate a balancexv
ume of luy and sell orders. In contrast, if the input conditions for the gtest@re clus-
tered, there will bedrsts of net bying or selling actiity. This implies not only clustered
volatility and wlume, lut also potentially xploitable patterns.df the marlkt to become
efficient the population of strajees must eolve so that their inputs argenly distrituted
throughout the space of possibilities.

It is clear that a compkespace of stratpes maks a mar&t more dicient in practice,
even if it is not eficient in principle. Suppose you wish to fit a nonlinear timeseries model
to predict future price m@ments for thexample abwe. The goodness of fit will depend
on the signal to noise ratio, which aswhan equatiorB9 decreases witN . In addition,
since the deterministic structure in thi@mple is random by construction, the fit will suf-
fer the classic “curse of dimensionality”, and the number of data points needed to get a fit
with a gven error lgel will increase gponentially withM . In general, it is wrth noting
that nonlinear estimation problems require a considerablee®f skill; we canx@ect
that some traders will perform this task better than others.

4.4 Rattern evolution

Do patterns in the magk disappear once thare disceered? © profit from a pattern
requires trading that otherwiseuld not hae occurred. The magkimpact of this trading
alters prices, which in turn alters the original pattern. In this section we illustrate this for
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the simple case of a temporally isolated pattern, i.e. one that is concentrated at a particular
time. An isolated pattern is of the form

n=(.,0m,,0,..),

wherety, , ; = [fy,4|Z_4, ..., 1;_1[# 0. This pattern might be generated by a trader or
group of traders whouy or sell contingent on a particulareat, e.g. at a particular time
of year or in response to a particular mispricing or trenelldf the pattern is recurrent
we can think of this as a timeexage; alternately, it is perhaps more useful to consider
an ensemblevarage of the form

s1|Zeg oo loa0= Irt+1p(rt+1|zt—1’ o by g,

whereP(rt+1|zt_l, ..., I1_4) is the conditional probability density of , ; given prices
and other informationvailable at timet —1. The diferentialdr,, ; may be complicated
because it depends on the ndige_;, &;) and possibly(n,_,, n;) (or in a more general
context other random information that might alter the trading at titreesdt — 1). Rather
than doing this calculatiorxactly, we will just male an approximation.

To understand thevelution of the pattern we need to state what originally caused it.
To simplify the notation, let

Qz,..) = Y (g, ...),
|
Assume the original pattern is caused by a net order imbalance,

My = 0= $0(, .00

The assumptions, = 0 andm,,, = 0 imply that

Q(z_4,...)0=10
Q(z,4...)0=0

A new trader can profit from this pattern by taking up a positiaat timet of the
same sign as, , ;. Assuming his position is initially zero, to enter this position he needs
to male a tradec, and to &it he needs to maka trade-c. Under the simple canonical
market model of equatiohl, assuming there are no other nearby patterns it is natural to
enter the position at timeand «it at timet + 1, as this minimizes risk. The werading
only alters prices only for timesor greater

We can compare the wepattern, including the metrading, to the original pattern.
Quantities inolving the nev trading will be denoted by “~". Theselved pattern

0= (o T, Ty g ool
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T 1= T4y

T, E’ft|zt_2, ..0= }—(fq

fuy = Fraafzy 0= (DR, ..)0-0).

- 1, e =
Mo = Oz ..0= 50z 1,2 )0
Thyg = ..

The first equality simply states thatygmattern at times less thans unafected by trading
at timest or greaterTo a trader who knes with certainty that the tradeat timet will
happen the e patternt, = ¢/ ; however, in general this may not be kmn. The &ctor
0<q<1 takes into account theatt that the informationvailable about this trade
depends on the informatiomailable about the original pattern and tixeeat to which the
tradec might be telgraphed by something else.

To simplify matters, in computing theaved prices it is corenient to assume the
same sequence of noise fluctuations with and without therades. This is in the spirit
of comparing what wuld have happened with the wetrades to what auld have hap-
pened without them. The log-price can be computed by summing the log-returns, making
use of thedct that the price is unaltered at titnel.

~

417 41
2= 7ty
A : (Eq 40)

~

1, .~
21 = 21+ 5(QF ) -z, )
Note that at time + 1 the direct markt impact of the ne tradesc and—c cancels out,

but there is indirect magt impact as reflected in a possible change in the net of the orders,
which can alter the price.

If Q is a smooth function whose detives &ist then preiding ¢ is small enough
we can approximat@(z, ...) using Bylor's theorem.

) .1 Q
Moy = e300, 0 %&tmcg

fup = Froe iHR( 2 )0 Eg%ézmm Eﬁ%‘;&t%

where the devatives are ealuated at the original prices, e(@, , 1, %, ...), and
dz, = z,—z,. By assumption

(Eq 41)
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Q(z, ... )X A
0(z,1:%, ... )N =0

LTS
Tiy2

Furthermore, from equatict0, dz, = ¢/A and using &ylor's theorem agin,

%01 = (A ) -0z ) =5 0%

To simplify the notation let

C_ 0z 190
yg = %D— X%(Zﬁq_l, )l:

Collecting these relations together and substituting into equétiomales it possible to
get a simple estimate for theodved patterns.

~ - 9
T =34
~ C
Ttt+1=ﬂt+1—(1—vt°))—\ : (Eq 42)

~ C
o= (YOr Y0 + Vi )y

where the last@ression also requires the further approximation that

Q 09Q
0= v2, ,Y0.
G Ve

Similar expressions are possible fiy, 3, T, 4, etc., it as long agy]| « 1 the distur-
bance to the original pattern diminishes with increasing time.

The quantityy] describes the sensitiy of the price at one time to changes in the
price at an earlier time. &Will call it theprice sensitivityValue irvesting stratgies tend
to have neyative price sensitity y° <0, and trend follaving stratgies tend to ha posi-
tive price sensitity y9>0. In the &ample abwe, praiding y2 <1, T, ; will dimin-
ishl. It is also the case that the price dynamics are linearly unstableyheh. Thus,
providing the dynamics are linearly stable, as a pattern that is entirely concentrated at one
time is exploited, it will evolve into one that is smoothed out in time, frgl.> 0 and
|ﬁt+ 1| < |T[t+ 1| . The atent to which the patterrvelves depends on the capital used to
exploit it. We can naturally assume that the capital will be increased in an attempieto mak
more profits. There are danatural possibilities to consider:

1. The &ct that the pattern diminishes at tifné 1 whenyto <1 can be seen bykaminingdTT, , 4, and
recalling thatTt, , ; andC are of the same sign.
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* The capital is increased until thaigs are maximized.

* The capital is increased until thaigs go to zero.

The first case assumes that the tragplodting the pattern understands his transaction
costs, and stops increasing the capital when the profits are maximized. The second case is
what would occur if profits are simply blindly revasted.

The mean gins from &ploiting the pattern are

9(¢) = 110 = Hia 1 - (L-VFF-

Assumingy < 1, the @ins as a function af are approximately anverted parabola with
maximum determined b§g/dc = 0. The maximum occurs when

¢ = ATe1
2(1-vD)

The mean gins at the maximum are approximately

2
9. = ATG, g
max 4(1_ytO)’

and the golved pattern is approximately

~ qu'“_l
T 21—y
Mg = T[t2+1

- VYR )T,
ez 201-v9)

In contrast, if the trader simplekps reimesting and increasing the capital until tlaeng
go to zero, the pattern wilvelve until it is approximately

~ _ YTy
T Ay
M,y =0
_ (Vo 1YE+ Vi DT o
"2 (1-vD)
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This is illustrated in Figur@3. We see that as the capital is increased the pattern
evolves earlier in time. At the point where thergs are a maximum, assuming the
dynamics are stable, the pattern at timel is half its preious size. If the tradewer-
capitalizes the stragg so that thegns go all the &y to zero, the pattern is entirely
shifted to the pngous timestep.

Original pattern

t t+1 t+1

Evolved pattern: ¢ = 0.1

Evolved pattern: maximum gain

t t+1 t+1

Evolved pattern: over-capitalized, gains=0

t t+1 t+1

FIGURE 23. The e/olution of an isolated patten as it is exploited with
increasing capital. The price sensitities are y? = y2, ; = —0.1 and

yi, 1 = O throughout, andgq = 1. As the capital is inceased toc = 0.1,
the pattern is diminished at timet + 1 and enhanced at timet. AsC is
increased this tend continues. The gains & maximized atC = 0.45, and the
pattern is spread betweent andt + 1. If the strategy is wer-capitalized to
the point that the gains go to zes, the original pattem is entirely shifted to the
previous timestep. It is typically diminished in size depending ol and the
price sensitiity.

Figure24 shavs the efiect of the price sensifity in the case where thaigs are max-
imized. If the ne trader adjusts his trades to maximize lamg, the eolved pattern at
time t + 1 is half as big as it as before, independent of the price sersds. Hovever,
the size of the e pattern at timeé and timet + 2 both depend on the price sensiyi. If
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the price sensitity is zero,T, is also half the size of the original pattern wisger 1, but
it is greater than half if the price senaily is positve, and less than half if it is gative.

Original pattern

t t+1 t+2

Evolved pattern: negative price sensitivity

- ]

t t+1 t+2

Evolved pattern: zero price sensitivity

t t+1 t+2

Evolved pattern: positive price sensitivity

I

R
t t+1 t+2

FIGURE 24. The effect of the price sensiity on pattern evolution. Assume
the trader adjusts his capital to maximize his gains. The patterat time t + 1
evolves to half its original size, independent of the price sensitiy. When

g = 1 attimet itis less than, equal to, or geater than half the size of the
original, depending on whether the price sensiity is negative, zeo, or
positive; since typicallyq < 1 it is diminished accordingly.

4.5 Seeral traders in the same niche

Suppose more than one trader di&ea pattern. If theall maximize their wn prof-
its, what is the ééct on the original pattern? If there are a totaNafraders, each of
whom male tradeq(c;, —c;) , from equatiom2 the meanajn to trader is

10 (-y) o O

0 = )_\Er[ul T_Zlcj%bi-
l:
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Given that all the others makrades(cj, —cj) , the maximum gin for traden occurs
when

(=%

o (1-y)ot 0
I = = — . .
ac, 07T TR B2 GOg

5

Applying this to each trader= 1, ..., N, the solution to the resulting set of equations is

c = AT g .
OIN+FD)(-YD)

The nev pattern at time + 1 is

~ _Thyg
Tivq = [\T’

and the resulting mearam for each trader is

AT,
g = o
N(N+1)(1-vyy)

Thus asN grows lager the original pattern rapidly disappears. This is in B@dontrast
to what would occur if the agents were to cooperate, and limit their trading so that

o= M1
LO2N(L-yD)
In this case their indidual cains are
g = AT,
AN(1-y?)

They are clearly much betterfokhen thg cooperate.

This is a classicxample of a competite vs. a cooperat optimum. This mads it
clear wty traders are so secnatiabout what thedo -- profits diminish rapidly as others
discover the same niche. As niches become inhabited by agents the strajg
becomes wercapitalized and the original pattern disappears. Assihhothe preious
section, hwever, overcapitalization creates aweearlier pattern, which is diminished
providing g/ (1 -y?) < 1.

4.6 Timescale br efficiency

One of the ky questions about magkeficiency is the timescale on which it occurs (if
it occurs). This depends on the characteristic time for major capital reallocations. While
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there are manuncertainties, byxamining the &ctors for maré&t evolution discussed in
Sectiord.1.1 it is possible to at least neatarder of magnitude estimates of the timescale.

Pure reimestment is the simplest case. Annual returns from the stoclethaaigon
the order of 10-15% per yeand an eerage of 25%\er maly years is considereceep-
tional. With a 25% annual return under re@stment it taks roughly 10 years to increase
the funds under management by an order of magnitude. Naturally the capital adjustment
needed to optimize profits fromyagiven starting point depends on the size of that start-
ing point; nonetheless, it seems reasonablegect that adjustments in capital of orders
of magnitude are generally needec ¥én gpect that, een considering full reiestment
(a = 1 in equatior35), the timescale to optimize profits is measured in decades.

The rate at which capital can be attracted from outside sourcedasiglip much
more \ariable and dffcult to analyze. In principle capital can be raised instantaneously to
increase funds to thevel where profits are maximized. In practice this is highly unusual.
In fund management the rule of thumb is that @ f®ar track record is needed to attract
serious mong Once such a track record is obtained it typicallgsakag years to reach
capacity In investment banks capital may be allocated more raphititiyever, even in
banks nes stratgjies are usually tested forveeal years at lwer levels of capital.

As shavn in the preious section, the otheadtor that has significant impact on the
capital allocations to a stragigis the number of traders pursuing 2egi stratgy. As the
number of independent agents becomegeland each of them aches the optimal capi-
tal level, the stratgy as a whole becomes only miaally profitable. Hav quickly will this
happen?

There are tw main sources for the creation ofanstratgjies: Information ditision
and independent diseery. These interact, in that independent discg may be stimu-
lated by information dftision. For some types of trading strgtes, such as options pric-
ing, there is a considerableaslap with academia. There are published papers,
conferences, and other interactions thateriakormation difusion a strong ééct. For
other types of trading strages, havever, there is a great deal of segreand information
diffusion about successful strgtes is slov at best. In this case, one of the principalf
tors driving information difusion is the migration of empjees from firm to firm. Since
employees typically spend at leastveeal years at a gen firm -- it usually ta&s this long
just to learn the usiness properly -- once @g, the timescale is measured in years to
decades. Independent digeoy is olviously more dificult to evaluate; my wn impres-
sion based on anecdotaid@ence, is that to disger a nontwial stratgy that is not
already knan requires either a Ige scale ébrt consuming manyears, or a great deal of
luck.

Another fictor that should be noted is the time requirecetdythe profitability of a
stratgy at a statistically significant confidencede One vay to ealuate this is in terms
of the return/risk ratio. This is often computed based on the ratio of the annual return to
the annual standardvation of returns, called the Sharpe ratio. Assuming &esgare
normally distriluted, consider a stragg whose true Sharpe ratio$s The &pected statis-
tical significance after trading faryears isS./t. A Sharpe ratio of one is generally con-
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sidered quite good. In this case four years is typical to\ahiestatistically significant
track record. (This is the rational basis behind thee year rule of thumb mentioned ear-
lier). The task of selecting betweenfeient stratgies males this much warse, because of
the “millionth monley” effect, i.e. the odds that one of the stgate will perform well
purely at random.

For all of the &ctors discussed, thegaments abee suggest that in grgiven niche
the evolution to marlet eficiency typically requires years to decades. It is hard to imagine
how it can tale place in less than a yeand 5-10 is more Iédy. | believe that if someone
were to study the diswery of the Black-Scholes option pricing formula and tadion
of the profit magins through time, it wuld provide a good illustration that these times-
cales are roughly correct.

4.7 Ewlution toward higher complexity?

In the twentieth century it isr&lent that markts hae become more compleThis is
true of the number of assets, the number of transactions, the timescale on whagethe
ate, and the sophistication of the stg&te used for trading. It is a challenge to understand
this from a theoretical point of we

Stratgies can madk profits by anticipating other strgtes. Thus onexpects that as
successie stratgies are added the standards go up -- giegd&e to be better and better
just to stay een. This suggests that comytg also goes up. One scenario through which
this can occur is suggested by equafidnlif the set of stratges in the markt and the
capital allocated to each of them can be estimated, it is possible to forecapieittec
price. A trading stratgy can be constructing using dynamical programming [27]. If the
market indeed follavs equatioril, and the stragges are indeed accurately kvig this is
an optimal stratgy. Since it ivolves simulating all other strafies in the marndt, the algo-
rithmic compleity of this stratgy is equal to that of all other strgtes in the mant com-
bined. Once such a strgteenters the maet and adjusts its capital to optimize profits, it
creates an opportunity for awer stratgy, which knavs about all other stragees, includ-
ing the n&v stratgy. In this succession each stgtés more compbethan all preious
strateies.

The scenario alve is unrealistic -- gen the secregeof traders, no one ki all their
stratgjies eactly. However, it may occur in an approximate senser. & stratgy to male
profits it must hae some ability to anticipate the ordemflof other stratgies. It must
therefore contain some of the conyite of the other stratges in the mart. It will be
interesting to study this in simulations that incorporate the generatiowaintemore
comple stratgies.

4.8 Summary and discussion

The evolution of marlets can be thought of in terms of adjustments in the capital of
stratgies, which is analogous to the population of biological species. By separating times-
cales this can be modeled by equations that are analogous to the bléea\équations.
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Although it is dificult to model the dynamics of the capital, which ultimateWypivne
human decision making, under the assumption that people are/katietelligent and
are motvated to mag& profits it is possible to makan approximate model. This will be
explored further in a future paper [31].

One of the main points of this section is thaedsity is a natural outcome of the\ari
of individual traders to makprofits. This is demonstrated throughaaety of worked
examples. Drersity comes about because narikeficiencies are multigceted, and
their is a dversity of possible stragges that canxloit ary given marlet inefiency. Tech-
nical stratgies are a goockkample. The generation ofwdirsity desergs further studye.qg.
in simulations that do not def from the limitations of the analytic calculations presented
here.

While this paper does not ptide a final answer concerning matleficiengy, it does
suggest a dynamical comten which to address the question. Apes of what is possi-
ble is eident in the calculation of thevelution of an isolated pattern. This can be
extended to a continuous setting. Ariety of diferent order of magnitudegurments sug-
gest that the timescale for matleficiengy is measured in years or decades. W pat-
terns are generated on an ongoing basis, this suggests that there is Xiph@ttthem
before thg disappearAs in biological golution, fitness and sumal are meing tagets.
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5. Conclusions

The premisexplored here is that impatient trading impacts the price, and price forma-
tion can be understood as the aggte of the impacts of all the trading in the nedrK he
main result of the first section is that, based on plausible simplifying assumptions, it is
possible to deve a unique mark impact function. This can be wed as a nonequilib-
rium generalization of supply and demand. Alten&yi it comes from the fundamental
assumption of mask friction. Marlet friction is shavn to be path dependent. Price forma-
tion can be modeled as a dynamical system that depends on tradirggestra#hin this
framework it is natural to rgard the mar&t as a continuousagne with a continuous pay-
off matrix. The goal is to makprofits by anticipating the mes of other players. The
market can be vieed as a casino in which the merknaler plays the role of the house. |
believe this framwork is a quantitatie expression of the mental model that madraders
use to think about maeks.

The derelopment here only treats matlorders, allwing only one lgel of patience; it
would be ‘ery interesting toxdend this model to include other types of orders, such as
limit orders, which allw different levels of patience. In addition, itomld be interesting to
extend the theory by generalizing the netrimpact function to takthe markt maler’s
state properly into account.

This approach can be contrasted to other recéort®fsuch as the Santa Fe Stock
Market [4, 5, 15]. The focus on matkdynamics and the understanding of the role of dif-
ferent stratgies are similarbut the underlying assumptions are quitéeddnt. The SFI
Stock Marlet assumes a common utility function for allestors, and assumes that an
auction occurs atvery timestep. This sometimes causes probleorsed@mple, when the
market doesrt’ clear because of a lack afyers or sellers, tlyehave to shut dan the mar-
ket and update the strgtes. The approach proposed here, in contrast, guarantees an
orderly marlet as long as the dynamics are stable. It is also much simplerfargdzof
clear @ame theoretic coréin which the interactions between staés are easy to
understand. Further study is needed to determine to wigaitehese tw approaches
coincide, and which is more realistic.

The section on ecologyxplores the consequences of the postulated dyndroiosan
empirical point of viev. Since there is no assumption of equilibrium, it is nei@isa
priori that the price dynamics are sensibleve®al basic stratpes are imesticated, first
one at a time and then in combination. These are chosen becgusethienple xamples
with varying lesels of realism. On itsvan each of these strafies induces characteristic
dynamics in the price.Wo typical classes aralue irvesting stratgies, which usually
induce ngative correlations, and trend folling stratgies, which induce posie correla-
tions. Conentional wisdom says that trading stogaés cause self-fulfilling prophesies.
For mary value irvesting stratgies this is not the case. While sonadue irvesting strate-
gies support coinggation of price andalue, mag popular ones do not. In contrast, it
appears that trend follong stratgies alvays tend to create trends. Wkver, there can
also be side-é&cts, such as price oscillations. This is due todloethat the maek
impact is caused by orderatlihe trading straty is formulated in terms of positions.
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It is a truism that marks reflect the consensuswigHowever, depending on the non-
linearity of the stratgies, the dynamics under a plurality offeient vievs may be quite
different than the dynamics with a singlewi&Vhen all the trading strajees depend lin-
early on the logrithm of \alue the marét behaes just as it wuld for a single stratgy
based on the mean. But when the stjiggedepend nonlinearly on the &sghm of \alue,
simulations she that the situation is quite f#irent. The additional trading generated by
disagreements aboutliue leads toxeess wlatility in the price. If we vier the marlet as
a machine that has the function of making prices tratikey unless all participantsuea
the same perception ole, the markt performs this function infé€iently. The markt
reflects the consensus wigout it behaes diferently than it vould under a single we

The worked examples and simulation results demonstrate that whether or not the price
behaes sensibly depends on the trading striatein the mart. While each stragg pro-
duces stable price dynamics for a range of paramaleey, if the ratio of capital to
liquidity exceeds a threshold, ivery example studied the magkbecomes unstableoi-
tunately at the gtremes there are incevitis to preent this. If the capital of a strape
becomes too lge excessve transaction costs makt unprofitable. Liquidity is dven up
by competition and the dependence of rearkaking profits on tradingolume. Liquidity
and capital coxmlve. Nonetheless, it remains an open question whether this guarantees
market stability Competition between magkmalers within this model desess further
study

This model suggests that theetisification of stratgies is natural in financial maets.
Diversification is druen by the quest to malprofits. Rtterns in order fle can be
exploited by the creation of mestratgies. Through manworked examples we she that
there are mansituations in which a mestratgy can ivade pre-gisting stratgies; the
suggestion is that @ersity tends to increaseedhnical components of the stigitss play
an important part. As a westratgy invades and increases its capital, its profits tend to rise
to a maximum and then decline as it mskosses due to matkfriction. Under certain
assumptions the dynamics of capital can be modeled in terms of equations similar to the
Lotka-\blterra equations of population biologyhanges in capital are @en by \aria-
tions in price, bt occur on much longer timescales; from a short term point wfthis
may cause apparent nonstationarities. There arg quastions about the generation of
diversity and thewlutionary dynamics of the capital and liquidity that desdurther
investication, such as whether or not this model suppedkigonarily stable stratpes
[26]. The importance of dersity has been greatly emphasized in biology; it deserv
more study in economics.

By placing an emphasis on the interrelationships betweengséstéhis approach fos-
ters the viev of a marlet as a financial ecologyThe emironment for each trading strat-
egy consists of the magk maler and the other strages. The success @ilure of a gien
stratgy depends on the collection of other sijats in the mardt. The stratgies studied

1. The ecological vig may gve insight into rgulatory poliy; for example, there hee recently been pro-
posals to limit speculation. There is a sense in which speculators play a role in financial ecologies that is
analogous to that of caxures. Suppressing them mighwBalangerous and unintendetkefs, just as it

has had in biological ecosystems.
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here form only a tip subsample of those in real mark More wrk is needed to thor-
oughly classify real stragges, and to westicate the interaction of strafies using a richer
palette than that studied here. The stia® studied here are all simple enough that their
deterministic dynamics are also simple; a more coxgsé of stratgies may display
richer dynamics, such as chaotic beba

In biology there has been debate as to whether the prepépfeselection is the
genome or the indidual oganism. In the conié of this model, we see that most ques-
tions are naturally answered by thinking in terms of gjrage(analogous to the genome
level). Howvever, as demonstrated in Sectidrb, for some purposes we mugue at the
level of individual agents (which are analogous tgamisms). Both leels of selection are
useful depending on the corte

Even though the trading strgies studied here are simple, commonly obsgmarlet
phenomena such as time correlationsalume and wlatility and long tails seem dii€ult
to avoid. The gplanation is natural: Lge price mgements generate more thaeiage
trading, which tends to generate additionajdaprice mgements. Long tails come about
because highatlatility is episodic. This deseeg further research; with this approach it
should be possible to get a more quantigatinderstanding of these phenomena. By
studying more compiestratgies that better incorporate the human emotions of fear and
greed, interesting bewiar should appear

While this paper gies no final answer concerning metrkeficiency, it does suggest a
method to address this question in a dynamical garf@e rough calculation of the@
lution of an isolated pattern in Sectid gves a preiew of what is possible. This can be
extended to more general patterns, taking the change in the information set properly into
account. These computations suggest that ea&ficiency is inherently similar to the
increase of entrgp The drie to eficiengy occurs through an increase inalisity, which
almost by definition imolves an increase in compgig. Thus self-oganization and the
second lev are intervaven in much the sameay the are in nature. @en its simplicity
this model mayentually help to clarify this in a more general cahte

A variety of diferent order of magnitudegurments as discussed in Sectoé sug-
gest that the timescale for matleficiency is measured in years to decades. W pat-
terns are generated on an ongoing basis, this shouldtatite to exploit them on the road
to eficiengy. Efficiengy is seen as a question that is naturally discussesblat®nary
terms.

This paper presents ame@pproach to understanding the dynamics of financial mar-
kets. It only bgins to &plore the consequences. It has the desirable features of being sim-
ple, xperimentally testable, anatensible. The foundation of the theory is the netirk
impact function, which can be measured directly based on appropriate data. The theory
must be true on somevid. That is, there is clearly matkimpact, it is clearly an increas-
ing function of order size, and it is clear that it is felt in the price. The important questions
are the precise form of the matkmpact and the magnitude of its role in price formation.
| have made a rather specific proposal for the form of this functigreven if this turns
out to wrong, it is straightforard to reisit all the results presented here, at least numeri-
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cally, with ary empirically measured function. Once this foundation is clarified, by study-
ing the trading stratges used in real maeks and the process of generating them and
allocating capital, it should be possible to understand the ecology@nti@n of marlets

in quantitatve detail.
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