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Abstract: Most approaches in forecasting merely try to predict the next value of the time se-

ries. In contrast, this paper presents a framework to predict the full probability distribution. It

is expressed as a mixture model: the dynamics of the individual states is modeled with so-called

\experts" (potentially nonlinear neural networks), and the dynamics between the states is modeled

using a hidden Markov approach. The full density predictions are obtained by a weighted superposi-

tion of the individual densities of each expert. This model class is called \hidden Markov experts".

Results are presented for daily S&P500 data. While the predictive accuracy of the mean does

not improve over simpler models, evaluating the prediction of the full density shows a clear out-of-

sample improvement both over a simple GARCH(1,1) model (which assumes Gaussian distributed

returns) and over a \gated experts" model (which expresses the weighting for each state non-

recursively as a function of external inputs). Several interpretations are given: the blending of

supervised and unsupervised learning, the discovery of hidden states, the combination of forecasts,

the specialization of experts, the removal of outliers, and the persistence of volatility.
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1 INTRODUCTION

The introduction reviews several approaches to density forecasting in time series, informally intro-

duces the model class of \hidden Markov experts" (HME), discusses methods for density evaluation,

and relates HME to previous work. A brief overview of the sections of the paper are given at the

end of the introduction.

1.1 Tasks in Time Series Prediction

A time series is a sequence of observations YT = fytjt = 1; : : : ; Tg. t enumerates the elements of

the sequence,and T is the total number of the observations. Our methodology is to split the entire

set of available data into at least two sets. The �rst part is used to estimate the parameters of the

model and is called the training set. The second part of the data is only used at the very end of

the entire modeling process to compute performance measures and referred to as the test set.1 The

test set thus serves as the out-of-sample set, since waiting for genuinely new observations would

just take too long for daily data.

Many forecasting methods (in particular almost all nonlinear forecasting methods) focus on

predicting the next value or point of the time series. Such point predictions are appropriate

on problems where the signal is only distorted with a small amount of noise, as typically the

case in nonlinear dynamics.2 However, in �nancial time series, the noise is often larger than the

signal itself, requiring methods that predict not just a point but a density. This paper focuses

on such density prediction, addresses the problems of a small signal to noise ratio, and includes

non-Gaussian density forecasts.

We start by brie
y discussing a path through various tasks for prediction.

(1) Model (1) uses the mean of the training set as point prediction. However, with suÆciently

precise experimental resolution, the exact value of the prediction is almost always wrong:

probability densities are needed.

(2) An interpretation of Model (1) is that of a single Gaussian (instead of a sharp point) whose

constant variance is that of the training set. We call this density implicit in the point forecast

Model (2) and use it as the baseline model in the empirical evaluations.

The two possible next steps are (a) to allow the mean to vary, or (b) to allow the variance to vary.

(3a) The predicted mean varies (i.e., it is a function of some inputs, x) but the variance remains

constant. The input variables can be other time series (exogenous variables), or they can

be lagged values of the series to be predicted (autoregression). The functional mapping

from these variables to the output (expected mean) is, in the simplest case, linear. Our

framework allows for general nonlinear functions, typically be expressed as neural networks.

The parameters of the model can be estimated by minimizing the squared error between

the prediction and the observed value. In machine learning, the observed value is called the

\target", and an input-output pair is called a \pattern".

(3b) Rather than varying the mean and keeping the variance constant, Model (3b) �xes the

mean (to the mean of the training set) but allows for conditional variance. Estimating the

parameters becomes more complicated than minimizing a squared error since, in contrast

to Model (3a), we here do not have a desired value or target for each pattern. In order to

estimate the parameters of the model, a more complicated statistical framework is needed.

1Additional sets can be set aside from periods earlier than the test set if there are meta-parameters, such as the
number of experts.

2This is not a coincidence. Many nonlinear systems can generate so-called chaotic behavior where the time series
continues in an \interesting" way forever. This is an important di�erence to linear systems that die out if they are
not driven by noise.
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We use a maximum likelihood approach: The predicted conditional variance is written as a

function of the inputs. The coeÆcients of this function are estimated such that the likelihood

of the observed data given the model and the inputs is maximized.

Model (3b)|mean �xed, variance varying|has important applications in �nance. While it

is very diÆcult to predict the once-di�erenced time series of prices (i.e., returns) better than

a constant (Model (1)), more accurate predictions of the variance than a constant are often

possible. This re
ects the well-known property of many �nancial time series called volatility

clustering or volatility persistence: There are time periods with large (positive and negative)

returns, which should be predicted with a larger variance, and there are time periods where

the market is quiet and the predicted variance should be smaller.

(4) The fourth level of complexity predicts Gaussian densities with conditional means and condi-

tional variances, combining the two degrees of freedom from Models (3a) and (3b).

So far, the form of the density in all the models has been Gaussian. Now we want to generate

density predictions that are non-Gaussian. To achieve this goal, there are two philosophies: using

expansions (e.g., Edgeworth expansion), and using mixture distributions. The expansion approach

has the advantage of orthogonality. The computation of increasing orders of approximation is

sequential; the term of order (n+1) is not e�ected by terms of order n and below. The corresponding

weakness is that the term of order (n+1) can only patch up problems the lower orders have left for it,

rather than all (n+1) terms joining together and trying to �nd a better overall solution. Another

aspect of the relationship between mixture models and moments is discussed in Timmermann

(1999).3

The mixture approach expresses the density P (yt+1) as a sum of M distributions:

P
�
y
t+1j information set at time t;model parameters

�
=

MX
j=1



t+1
j (�) P

�
y
t+1jxt+1; : : : ;model parameters

�
In the context of nonlinear sub-models for the mixture components, the sub-models are called \ex-

perts". This follows the notation introduced for mixture models to the neural network community

by Jacobs, Jordan, Nowlan and Hinton (1991) who applied it to a classi�cation problem, see also

Jordan and Jacobs (1994). Their choice of the term expert does not imply any connotations to

human experts. In the economics literature, the experts are called \states".

Several choices need to be made:

� How many experts should the model have? Hansen (1992) has developed a pseudo-likelihood

ratio criterion to determine this nuisance parameter, and Baxter (1996) has developed an

alternative based on the Minimum Message Length principle (Wallace and Boulton 1968).

This paper takes a more pragmatic approach: Since the ultimate goal is to predict densities

of �nancial time series, we evaluate the quality of the model on out-of-sample predictions.

We typically choose between three and ten mixture experts, estimate the model, convince

ourselves of its performance, and �nally analyze the resulting experts. Their interpretation

is part of the creativity of the modeling process and is hard to do automatically.

� What is the functional form of the individual densities each expert generates? It can be any

member of the exponential family, and this article keeps the theoretical derivations general.

However, when a speci�c distribution needs to be chosen (in the computer implementation

and the comparisons), we assume these individual distributions to be Gaussian.4

3A parallel can be drawn between the two philosophies for modeling densities (expansions vs. mixtures), and the
two philosophies for function approximation (polynomials vs. neural networks). Expansions and polynomials are
computationally cheap, have incremental updates, and are often amenable for an analytical treatment of convergence
properties. Mixtures and neural networks are computationally expensive, since the entire model needs to be re-
estimated when the number of components changes.

4The idea of a mixture model can be traced back to Pearson (1894) who \mined" a data set consisting of
measurements of the forehead size of crabs with a mixture of two Gaussians, thus \discovering" two sub-populations.
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t+1
j is the weight given to Gaussian j for the prediction for time (t+ 1), with

PM

j=1 
j = 1.

What should 
(�) depend on?

Three possible answers to the last question form the basis for the remaining three model classes.

(5) In the simplest case of an unconditional density, the 
j 's do not depend on anything: a

mixture of Gaussians is �tted to the training set and all parameters are constants. The

parameters (the mixture weights 
j , and the means and variances of the individual Gaussians)

are estimated in a maximum likelihood framework using the EM algorithm (explained in

Section 2.5). This unconditional mixture will be one model in empirical comparisons.

(6) The mixture weights 
j depend on a set of external variables. Based on the performance of

all the experts on each pattern of the training set, a \gate" learns the mapping from its

inputs, the exogenous variables, to the 
j 's. This model class is called gated experts (GE)

(Weigend, Mangeas and Srivastava 1995) and represents a regression model. When used in

forecasting, the temporal structure of the time series enters only through the construction

of the patterns (the input-output pairs). Note that once these patterns have been generated

from the raw data, randomizing the order of the training data has no e�ect on the resulting

model. In the real world, there are time series problems where a regression approach is

appropriate. A successful application of this architecture is energy demand forecasting where

the inputs into the gate represent cloud coverage, temperature, special tari� days, and other

exogenous variables (Weigend et al. 1995). However, there are other time series problems

where the nature of the problem requires time to be taken into account in a more fundamental

way. One such example is given by the model class of HME.

(7) This model class is called hidden Markov experts (HME). It is best described by its

underlying assumptions:

� There are several discrete states. Their corresponding functional input-output mapping

can be expressed as feedforward networks. These sub-models are called experts.

� At each time step, a single expert is responsible for generating the corresponding obser-

vation. We do not know which of the experts actually generated the observation|the

probabilities of the experts for each time step need to be estimated from the data.

� Modeling the sequence of the hidden states, we assume that the dynamics of the hidden

states can be described by a �rst order Markov process, i.e., the next state depends only

on the current state. This is expressed as a matrix of transition probabilities between

the hidden states. We do not know these transition probabilities either; they also must

be estimated from the data.

Fortunately, the statistically solid framework of hidden Markov models (Baum and Eagon

1963, Hamilton 1989) provides algorithms to estimate the unknown quantities.

We combine this framework with connectionist techniques. We show how we can learn the

potentially nonlinear functions of each expert, the parameters of the transition matrix, and

the probability vector across the states at each time step.

The distinction made above emphasizes that GE and HME model time in a fundamentally

di�erent way. We now focus on the common aspects and consequences thereof. Both model classes

share the goal to generate non-Gaussian density forecasts, and both are based on mixture models.

The implications that hold for both cases include:

� Discovering hidden states. Conventional data analysis, data mining, and knowledge dis-

covery often do not have a clearly de�ned concept of what it means to \discover" \hidden"

\knowledge." This paper clearly de�nes hidden states as the components of the mixture

density. The solid statistical basis allows for a principled interpretation in terms of prob-

abilities, enabling the discovery of interesting relations. In the case of predicting �nancial
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returns, the hidden states can be related to volatilities. Methodologically, it is important

to clarify that the HME approach does not insert knowledge that volatilities are important

for characterizing regimes, but it does make statistical assumptions that in turn yield this

knowledge.

� Blending supervised with unsupervised learning. Approaches to learning from data

and computational intelligence are traditionally dichotomized into supervised learning (re-

gression and classi�cation where the desired outcome is known for the training data) and

unsupervised learning (clustering where no target is available and the goal is to discover the

underlying structure). Both GE and HME combine the strengths of supervised learning with

those of unsupervised learning: They build on the advantage of supervised learning that

allows for performance evaluation, while providing the 
exibility of unsupervised learning

that has the advantage of discovering and interpreting hidden states.

� Combining forecasts. The idea of combining forecasts, going back to (Bates and Granger

1969), has become increasingly important in areas ranging from applied forecasting (Clemen,

Murphy and Winkler 1995) to computational learning theory (Cesa-Bianchi, Freund, Helm-

bold, Haussler, Schapire and Warmuth 1997). Both GE and HME softly combine the fore-

casts of the experts. Also, the relative weights for each expert vary at each time step. These

weights are the estimates of the posterior probabilities. They re
ect the training set perfor-

mance for similar situations. For GE, the similarity is given through the gate, and for HME

through the previous state and the transition matrix.

� Becoming experts through competition. In most approaches to forecast combination,

the individual models give equal weight to all their training points. GE and HME use com-

petitive learning. For each training pattern, all experts compete. If one expert's prediction is

better than the predictions of the other experts, it receives a larger share of the data point

to update its parameters than the others. It thus learns to improve its predictions in areas

where it is already quite good, and learns to ignore areas where some of its competitors are

better. For both GE and HME, the experts become true experts and the algorithm learns

about their area of applicability. Since we use unconditional variances for each expert, one

delineation of the experts is according to the local noise level. Weigend et al. (1995) show that

the adaptation of each expert to its (overall) local noise level helps to avoid over�tting. The

standard assumption of constant variance often leads to local under�tting in some regions,

and to local over�tting in others. When predicting �nancial returns, the di�erent noise levels

correspond to di�erent volatility regimes. Given volatility clustering, this pulls the solution

in the same direction as the Markov assumption of staying in a regime rather than switching

to another one. In general, the grouping depends both on similar noise levels and on similar

functional forms of the experts.

� Modeling outliers. Many practical problems in data mining use some heuristic to remove

outliers. Given the strong e�ect outliers have on the model, the speci�c heuristic can de-

termine the resulting model. As an alternative to removing outliers, robust statistics uses

an in
uence function that downweighs patterns where the observation and prediction are

far apart. This practice can be dangerous in risk management, a new area of increasing

importance for �nancial �rms. Risk management focuses on rare events and on tails of dis-

tributions. Removing outliers or reducing their in
uence leads to an underestimation of risk

that can be detrimental. In contrast, GE and HME model outliers naturally. In our expe-

rience, one expert has a relatively large variance compared to the others. Its role is thus

to become the \garbage-collector", e�ectively removing the outliers and \explaining" them

much better than all of the other experts whose likelihoods vanish at that point. In turn, the

remaining experts have cleaner data which often allows the models to be interpreted more

easily.

� Saving inputs. When learning from data, one can never be sure that one has the \best" set

of inputs. In many cases there is no shortcut to the creative process of arguing for several sets
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of inputs, building the model, and then evaluating the out-of-sample performance to learn

which inputs are important. This paper does not address the problem of input selection.

However, once a set of inputs has been decided on, it is often possible to have di�erent experts

look at di�erent subsets of the full set of inputs. When linear experts suÆce, standard linear

theory helps determine the signi�cance of the inputs, which often leads to further reduction.

Individual experts can end up with only a fraction of the union of the inputs. This simpler

structure also lends clearer interpretations of the individual models. Note that the formalism

matches the noise level of each expert to the noise level of its corresponding data. This has

been shown to be an important aspect against over�tting of GE.

This part of the introduction showed several angles on the proposed architecture that complement

the rigorous evaluation of out-of-sample performance that any data driven modeling has to follow.

1.2 Evaluating Predictions

In the model comparison, GE (Model (6)) and HME (Model (7)) are chosen to have identical

assumptions whenever possible. They have the same number of experts, the same inputs, the

same functional form for the experts (e.g., linear or neural network), and, on the output side, the

same noise model and degrees of freedom (i.e., expert-speci�c variances, and expert and input-

dependent means). The only di�erence is the gate. Since many �nancial time series exhibit

volatility clustering, the gate inputs should include some volatility proxy such as exponentially

smoothed square returns.

In addition to the comparison between the mixture architectures HME and GE, we also com-

pare them with several simpler architectures: unconditional Gaussian (Model (1)), unconditional

mixture of Gaussians (Model (5)), and a simple GARCH(1,1) model (constant mean but varying

variance, Model (3b)). The main two questions the empirical evaluation tries to answer are:

� HME vs. GE: Are there hidden states in the market that cannot be observed directly?

The answer is positive if the assumption of an underlying hidden Markov process improves

predictive accuracy compared to conditioning on exogenous variables. Of course, any model

contains assumptions! Of particular importance here is the speci�c choice for the input

variables. It is always possible that there is yet another model with more suited inputs that

gives better out-of-sample performance. In our empirical study, however, we try to be as fair

as possible in comparing the two cases on the S&P500 returns.

� HME vs. GARCH: Do HME predicting non-Gaussian densities generate better forecasts than

a GARCH model predicting Gaussian densities?

To answer these questions, we compare the out-of-sample performance on a test set, i.e., data

from a time period after the end of the training period. No single measure suÆces: we use several

measures that capture di�erent aspects of the density prediction.

� The �rst measure focuses on the predicted probability density function (pdf) and computes

the average log-likelihood of the test data given the model. This measure, evaluated on test

data, allows us to compare the performance of di�erent architectures.

� The second measure focuses on the predicted cumulative density function (cdf). This integral

transform method was suggested by Diebold, Gunther and Tay (1998).

� In addition, we also provide the normalized mean squared error. Note that it only evaluates

the quality of the point forecast, but does not measure the quality of the density forecast,

thus missing the central goal of this paper.

While point forecasting is predominant in the forecasting literature, some studies discuss interval

forecasts (Chat�eld 1993, Christo�ersen 1997) and probability forecasts (Murphy and Winkler
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1992, Clemen et al. 1995). As Diebold et al. (1998) point out, the reasons for the relative neglect

of density forecasting and evaluation include: uncertainty about the speci�c distribution, diÆculty

in evaluation, and the lack of demands from practice. This has changed in the recent past: risk

management has become central for �nancial �rms, and trading and pricing models increasingly

depend on good density estimates.

1.3 Related Work

A hidden Markov model is a parametric stochastic probability model with which a time series can

be generated or analyzed. A hidden Markov model has two interrelated processes: a �nite-state

Markov chain that cannot be observed, and an emission model associated with each state. The

Markov chain is characterized by the matrix of transition probabilities between states. The output

probability densities given by the emission model can be characterized along two axes:

1. The output probability densities can be represented non-parametrically or parametrically.

2. The output probability densities may depend on an input (conditional) or they may be a

constant for each expert (unconditional).

The mathematical representation that describes the observation probabilities is called the emission

model. Viewed from the perspective of time series generation, the Markov chain generates a

sequence of discrete states that we call a path. Based on this path, the emission model generates

the probability density for each time step. The speci�c realization (the \observation") is then

generated from this probability density for each time step.

Viewed from the perspective of time series analysis, the output probabilities impose a \veil"

between the states and the observer of the time series (Ferguson 1980). The task is to lift that veil.

The term hidden is used because these states cannot be seen directly from the observed data. It is

called Markov since it assumes that the probability of the next state depends only on the current

state and the transition probabilities between the states. Both the states and the observed process

can be either discrete or continuous. In state space models, the states and the observations are both

continuous (Harvey 1989, Timmer and Weigend 1997). HME use discrete states (corresponding to

the experts) and continuous variables (corresponding to the observed time series).

Next, we need to address the question of how to estimate the parameters of the model from the

observed sequence. Baum and Eagon (1963) solved this problem for hidden Markov models with

discrete observation densities. Baum, Petrie, Soules andWeiss (1970) extend the algorithm to many

of the classical distributions. Hidden Markov models have been widely used in speech recognition.

In the neural network community, Bengio and Frasconi (1996) proposed the \Input-Output Markov

model" which allows for non-constant transition probabilities in addition to nonlinear emission

models. The concept of the transition among states can also be used to model the time dependency

of regime switching. Poritz (1982) �rst combined hidden Markov models with linear prediction.

Hamilton (1989) introduced switching models to economics and econometrics, spawning a large

body of research (Engel and Hamilton 1990, Hamilton 1990, Hansen 1992, Hamilton 1994, Lahiri

and Wang 1994).

Most of these applications focus on point predictions but not on densities. Fraser and Dimitri-

adis (1994), predicting one of the data sets of the Santa Fe Competition (Weigend and Gershenfeld

1994), used a hidden Markov model and generated non-Gaussian through a Monte Carlo approach

(generating many continuations and then essentially presenting a histogram for each time step.)

Hamilton and Susmel (1994) proposed an approach to model the conditional variances within

Markov switching framework, where they combined the regime switching process with an autore-

gressive conditional heteroskedasticity (ARCH) model by allowing the parameters of the ARCH

process to come from di�erent regimes. Gray (1996) proposed a more comprehensive method to

nest the generalized ARCH (GARCH) model into regime switching model. However, these two

models are limited to the �rst and second conditional moment of the distribution.
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None of these approaches focused on the prediction and evaluation of more general densities.

We emphasize the fact that the Markov switching models by their nature of being mixture mod-

els generate densities, and that these densities should be evaluated with appropriate measures.

Furthermore, we allow for nonlinear experts.

This paper is organized as follows: Section 2 explains the notation, describes the likelihood

function, and illustrates the Expectation Maximization (EM) algorithm used in HME. Section 3

explains how to generate density predictions using HME and describes methods to evaluate the

density. Section 4 shows what can be learned from computer generated data for the HME approach

to density forecasting. Section 5 presents the empirical results on comparing HME with GE,

GARCH, an unconditional mixture, and an unconditional Gaussian for the daily density forecasts

of S&P500 returns. Some conclusions are drawn in Section 6.

2 THE ASSUMPTIONS AND THE ALGORITHM

2.1 Notation

1. Observations. YT = fytjt = 1; :::; Tg refers to the observed time series data. T is the

number of the observations and t is the time index. Similarly, X T = fxtjt = 1; :::; Tg

represents the input to the emission model. x
t itself can be a vector or a scalar. In the

example of auto-regression, xt is given by the previous d values, xt = fyt�1; yt�2; :::; yt�dg;

where d is the dimension of the input. xt can also consist of exogenous variables.

2. States. S = f1; 2; : : : ; j; : : : ;Mg denotes the state. M is the number of states in the model

and j refers to a speci�c state. The analysis of the model usually provides interpretations for

the states in terms of physical signi�cance or economic meaning such as relations to market

sentiment, growth, recession, interest rates or volatility.

3. Transition probabilities. aij is the transition probability of switching from state i to j,

A = faij ; i; j �M; aij = P (st+1 = jjst = i)g

where aij > 0,
P

j aij = 1, and s
t describes the state at time t.5

4. Emission probabilities. btj is the probability of observing y
t given the state and the model.

In GE and HME this probability depends on the inputs xt into the experts at time t through

the conditional mean

B = fbtj ; j �M; t � T; b
t
j = P (ytjst = j; x

t)g :

5. Initial probabilities of each state. � = f�i; i = 1 : : :Mg, where the probabilities have to

sum to unity,
PM

i=1 �i = 1.

For convenience, � = fA; B; �g denotes the entire set of parameters of the model. The

emission probability can thus be written as P (ytjst; xt; �):

2.2 The Likelihood Function

To de�ne the likelihood function, we impose the constraint that the probability of the current state

depends only on the previous state:

P (stjst�1; st�2; :::; s1;X t�1
;Yt�1) = P (stjst�1) : (1)

5This paper assumes that the transition probabilities are constant over time. This assumption can be relaxed,
allowing the transition probabilities to vary over time (Durland and McCurdy 1994, Filardo 1994, Shi and Weigend
1997).
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With q
T denoting a speci�c sequence or path of states from t = 1 to T , this �rst-order Markov

assumption enables us to write the probability of path q
T = (s1; s2; : : : ; sT ) as

P (qT ) = P (sT ; sT�1; : : : ; st; : : : ; s1)

= P (s1)

TY
t=2

P (stjst�1) : (2)

Given the current input xt and the previous state st�1; earlier values of s and y are irrelevant,

P (yt; stjqt�1;X t�1
;Yt�1) = P (yt; stjst�1; xt) : (3)

With Eq. 1 this expression can be transformed in the following way:

P (yt; stjst�1; xt) = P (ytjst; xt)P (stjst�1) : (4)

The central problem of hidden Markov models is to �nd the entire set of parameters of the model.

Using Eq. 3 and Eq. 4, the likelihood P (YT j�) is then given as

P (YT j�) =
X
qT

P (YT
; q

T j�)

=
X
qT

P (yT ; sT jqT�1;YT�1
; �)P (YT�1

; q
T�1j�) conditional probability

=
X
qT

P (yT ; sT jsT�1; xT ; �)P (YT�1
; q

T�1j�) using Eq. 3

=
X
qT

P (yT jsT ; xT ; �)P (sT jsT�1)P (YT�1
; q

T�1j�) using Eq. 4

=
X
qT

P (y1js1; x1; �)| {z }
b1

P (s1)| {z }
initial

TY
t=2

P (ytjst; xT ; �)| {z }
=:bt

j

P (stjst�1)| {z }
=:aij

: (5)

To obtain the probability P (YT j�), two probabilities need to be estimated. First, the emission

probability given the current state, P (ytjst; xT ; �); it varies at each time step. Second, the transition

probability P (stjst�1); it is a parameter of the model.

The product btjaij is at the heart of the hidden Markov framework. If there was no Markov

assumption, the second term aij was absent, and the observation at time t would be attributed to

state j with probability btj=
PM

i b
t
i. Model based clustering is (without Markov assumption, no aij)

the unconditional case (no input x). The presence of the second term, aij , however introduces the

trade-o� with the �rst term towards the entire likelihood. In most applications, the main diagonal

elements aii, describing the self-transitions (i.e., the probability of staying in a state) typically have

values above 0.9, corresponding to an average time of staying in the state of above ten steps. Only

if the next observation in the sequence can be explained much better by a state di�erent from the

current state does the model switch to the next state.

2.3 Modeling the Conditional Emission Probabilities: The Experts

� Independence. Given the input of the emission model, the likelihood of observing yt given

the current state and given the current input is btj = P (ytjst = j; x
t
; �). They are independent

for each t:We call each of the speci�ed emission models an expert, and each individual expert

corresponds to a state.

� Density Function. We can assume di�erent forms for the distribution of the \noise". In

the speci�c example of a Gaussian, the emission probability of expert j becomes

b
t
j = P (ytjst = j; x

t
; �)
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=
1q
2��2j

exp

 
�

�
y
t � bytj(xt)�2

2�2j

!

bytj(xt) is the conditional mean, and �
2
j is the variance of the predicted Gaussian density.

� Architecture. The functional dependence of the conditional mean bytj(xt) on its input (xt)

can potentially be nonlinear and is expressed through a feedforward neural network with

nonlinear hidden units and a linear output transfer function. Removing the hidden units

reduces the functional form of each expert to a linear relation. In the autoregressive case

with a single lag, byt is given by byt = k0 + k1x
t
: We can use linear autoregressive models as

well as nonlinear neural networks as experts. The emission probability, B, is determined by

the set of parameters, �j ; of expert j, according to the architecture of the emission model.

Di�erent experts can have di�erent sets of inputs. Typically, the number of inputs to each expert

is a subset of the full set of inputs that would be useful. When di�erent dynamics modeled by

the di�erent experts \live" on subsets of the full set of inputs, this approach can help reduce the

\curse of dimensionality".

2.4 Computing the Likelihood: The Forward-Backward Procedure

Rather than computing P (Yj�) directly using Eq. 5, Baum (1972) proposed an elegant algorithm

called the forward-backward procedure. Dempster, Laird and Rubin (1977) subsequently intro-

duced the so-called \Expectation Maximization" or EM algorithm to maximize this probability.

Let �t
i be the joint probability of having observed y from time 1 to time t and of being in state

i at time t,

�
t
i = P (y1; y2; :::; yt; st = ij�)

where 1 � t � T and � denotes the model parameters. The probability of the entire sequence of

observations is given by the sum over the states at the end of the sequence (at time T ):

P (Yj�) =
XM

i=1
�
T
i : (6)

The breakthrough of this idea is the computational complexity. Rather than being exponential

in T (as one might expect, given the consideration of paths), it is only linear in time: �T
i can be

computed recursively

�
t+1
j =

"
MX
i=1

�
t
iaij

#
b
t+1
j : (7)

At the beginning of the sequence, the �'s are initialized with probability �
1
i = �ib

1
i . This recursion

is called the forward procedure. Given initial estimates of �i and b
1
i ; Eq. 7 prescribes the compu-

tation of the probability P (Yj�), and, for t = T , the entire likelihood. Similarly, the backward

variable �ti is de�ned as the conditional probability of observing y from t+1 to T given state i at

time t (and, as always, the parameters):

�
t
i = P (yt+1; yt+2; :::; yT jst = i; �) :

The recursive induction for � starts at the end of the sequence (t = T ) and can be written as:

�
t
i =

MX
j=1

aijb
t+1
j �

t+1
j (8i) : (8)

With t = T � 1; T � 2; : : : ; 2; 1, we obtain the �'s for all t. Combining � and �, we now obtain

the important posterior probability of being in state i at time t given the entire set of observations

10



and parameters



t
i = P (st = ijY ; �)

=
P (Y ; st = ij�)

P (Yj�)

=
�
t
i�

t
iPM

k=1 P (Y ; s
t = kj�)

=
�
t
i�

t
iPM

k=1 �
t
k�

t
k

: (9)



t
i is a key quantity that will serve as the estimate for P (st = ij�).

Finally, the joint probability of the conjunction, �t;t+1ij = P (st = i; s
t+1 = jjY ; �), is also

computed from � and �:

�
t;t+1
ij =

P (st = i; s
t+1 = j;Yj�)

P (Yj�)

=
�
t
iaijb

t+1
j �

t+1
jPM

i=1

PM

j=1 �
t
iaijb

t+1
j �

t+1
j

: (10)

We have de�ned the important variable 

t
i , the probability of being in state I at time t, and showed

how it can be computed from �
t
i and �

t
i capturing the likelihoods of the beginning of the sequence

through t, and from t to the end of the sequence, respectively. The variable � will serve as an

auxiliary quantity in the computation of the transition probabilities, discussed in the next section

that discusses how the parameters of the model are estimated.

2.5 The Baum-Welch Algorithm: EM Algorithm for Hidden Markov

Models

The likelihood as given by Eq. 5 cannot be maximized directly since the hidden states are not

known. The solution of this problem goes back to Baum et al. (1970), see also Liporace (1982)

and Juang (1984). Excellent tutorial expositions are Poritz (1988), Rabiner (1989) and the corre-

sponding chapter in the book Rabiner and Juang (1993)

Their main result is a re-estimation algorithm, called the Baum-Welch algorithm. Its key

idea is to go back and forth between two steps, the E-step and the M-step.

� The E-step (\Expectation Step") assumes that the parameters of the model are known,

and computes for each time step t the likelihoods �
t
i and �

t
i , and in turn, the posterior

probabilities 
ti and �
t;t+1
ij .

� TheM-step (\Maximization Step") takes the variables computed in the E-step and updates

the parameters of the model under the constraints
PM

i=1 �i = 1 and
PM

j=1 aij = 1.

The new transition probabilities are given by:

aij =
expected number of transitions from state i to state j

expected number of transitions from state i (to anywhere)
=

P
t �

t;t+1
ijP
t 


t
i

:

The new initial probabilities of state i are �i = 

1
i .

While the original work by Baum et al. (1970) estimated only the unconditional density for

each state, this paper allows for conditional densities. The formulae for the re-estimation of the

emission parameters depend both on the speci�c noise model and the speci�c functional form for

11



the parameters of the noise model (e.g., linear dependence, neural network) of the experts. For

each expert, the following function G is maximized (cf., Fraser and Dimitriadis, 1994):

G =

TX
t=1

MX
j=1



t
j logP (ytjxt; st = j; �j) : (11)

�j represents the parameters of the emission model of state j. Equation 11 can be interpreted

as the negative of a cost function for the emission model. The estimation of the parameter �j

depends on the speci�c form of the emission model. To be able to write down speci�c formulae for

updating the parameters, the errors are assumed to be Gaussian. We �rst discuss the update for

the variance of expert j, �2j . Assuming that �
2
j depends only depends only on the expert and not

on any inputs, the likelihood is maximized when

@G

@�2j

=

TX
t=1



t
j

1

P (ytjxt; st = j; �j)

@P (ytjxt; st = j; �j)

@�2j

takes the value of zero, yielding

�
2
j =

PT

t=1 

t
j

�
y
t � bytj�2PT

t=1 

t
j

: (12)

This is the 

t
j-weighted squared error between observation y

t and prediction bytj . It describes the
\local" noise level for expert j.6

The mean of expert j, bytj(xtj) is a function of the inputs into the expert, xtj . This (linear or

nonlinear) dependence is parameterized with �j . To maximize Eq. 11, its partial derivative with

respect to the parameters �j has to vanish:

@G

@�j
=

TX
t=1



t
j

1

P (ytjxt; st = j; �j)

@P (ytjxt; st = j; �j)

@�j

=

TX
t=1



t
j

y
t � bytj
�2j

@bytj
@�j

(13)

where the mean of the Gaussian of the jth expert is given by bytj = bytj(xtj ; �j). In the special

case where this functional form is linear, the parameters for expert j can be estimated directly by

regressing
q

tj y

t
j onto

q

tj x

t
j . In the general nonlinear case, each pattern still has the importance



t
j , but the parameters are to be estimated iteratively, as an additional inner loop within each M-

step.7 Interpreting it as a cost function for a neural network, each expert minimizes the weighted

squared error
TX
t=1



t
j

�
y
t � bytj(xtj ; �j)�2 :

The parameters �j can be estimated through weighted error backpropagation (local linearization

around �j and taking a small step towards a better solution). This justi�es viewing 

t
j as an

e�ective learning rate.

6The corresponding formulae for the case of vector-valued predictions are the 
t
j
-weighted covariances for dimen-

sion m and n:

1PT
t=1 


t
j

TX
t=1



t
j

�
y
t(m) � bytj(m)

� �
y
t(n) � bytj(n)� :

In many applications it is reasonable to consider only a diagonal covariance matrix. This implies that the noise is
drawn independently for the di�erent outputs, and can often be interpreted more easily than the general case that
allows for a rotation.

7The nonlinear case is sometimes called the generalized EM (or GEM) algorithm.
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3 PREDICTING AND EVALUATING DENSITIES

The previous section emphasized the underlying assumptions and algorithms for estimating the

model. This section discusses how density predictions are generated and evaluated.

3.1 Generating the Density Forecasts

To generate a predictive density from a given HME model, one might be tempted to use the state

as estimated by Eq. 9. This, however, is cheating: 

t
j is estimated using the entire sequence of

observations, including future information. However, given the sequence of observations through

time t, we can estimate the predictive probability of a state in terms of the transition probabilities

aij and the joint �
t
i probability of state s = j at time t+1 and the observations through time t; as

P (st+1 = jjYt
; �) =

P (Yt
; s

t+1 = jj�)

P (Ytj�)

=

PM

i=1 �
t
iaijPM

j=1(
PM

i=1 �
t
iaij)

=: gt+1j : (14)

Using the same notation for HME as for GE (Weigend et al. 1995), we use gt+1j as an abbreviation

for P (st+1 = jjYt
; �). Note that g is a causal version of the 
|it is based only on past information

(through �) but does not use any future information (that enters 
 through �).

The density for yt+1 is the linear gj-weighted superposition of the densities of the individual

experts:

P (yt+1jX t
;Yt

; �) =

MX
j=1

P (yt+1jX t
; s

t+1 = j; �j)P (s
t+1jYt

; �) (15)

=

MX
j=1

g
t+1
j P (yt+1jX t

; s
t+1 = j; �j) :

X t summarizes the set of exogenous variables that are available at time t. For the speci�c case

of Gaussian distributions for the individual noise models, the individual densities are described by

their conditional means byt+1j and the variances �2j . This completes the discussion of the ingredients

needed to generate the full distribution for yt+1:

Should one be interested in the overall mean of the predicted density at time t+ 1, due to its

linearity, it is the gj-weighted superposition of each individual mean:

byt+1 = MX
j=1

g
t+1
j byj t+1 : (16)

However, recall that the key goal is to generate a forecast of the density, and not just its mean.

The emphasis on densities requires special care in evaluating the forecasts. The next subsection

presents di�erent evaluation methods.

3.2 Evaluating the Density Forecasts

We use two di�erent methods to evaluate density forecasts that complement each other well. While

the �rst method is based on the probability density function itself (pdf), the second method is based

on the integral of the pdf, i.e., the cumulative distribution function (cdf).

� For each time step in the test set, the pdf-based evaluation records logP (yt+1jX t
;Yt

; �),

the value of the logarithm of the predicted density at the corresponding observation y
t+1.
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The average of these logP over the test set is used as measure for evaluation.8 This average

(or \per-pattern") likelihood of out-of-sample data given the density predictions of the model

allows direct comparison between di�erent model classes. Since the value on a speci�c test

set is only an estimate for the true value, it is important to use identical training and test

sets in the comparisons.9

� The cdf-based evaluation computes for each time step the cumulative probability distri-

bution from the predicted density and records the value of the cdf at the observed data point

for each day. This probability integral transform was recently used by Diebold et al. (1998)

and goes back at least to Rosenblatt (1952). Zt+1 denotes the value that the predicted cdf

takes at the observation y
t+1:

Z
t+1 =

Z yt+1

�1

P (�t+1jX t
;Yt

; �)d�

� is the integration variable. The key idea is that these values of Z should be uniformly

distributed. Diebold et al. (1998) point out that standard procedures (e.g., Kolmogorov-

Smirnov) test jointly for uniformity and independence. If the test is rejected, it is not clear

what conclusions should be drawn. We follow their suggestion and �rst evaluate unconditional

uniformity using a simple histogram. Second, to evaluate whether Z is iid, we show the

correlogram of the centered (Z � Z); where Z is the mean of Z. To explore dependencies

beyond linearity, we also show the correlogram of the powers of (Z � Z):

For completeness, we also give the normalized mean squared error de�ned as

ENMS =

P
t

�
observationt � predictiont

�2P
t

�
observationt �meantrain

�2 =

P
t (y

t � byt)2P
t (y

t �meantrain)
2

(17)

where t usually enumerates the points in the withheld test set. ENMS compares the model's point

predictions to simply predicting the mean of the training set. Note, however, that the normalized

mean squared error only evaluates the point prediction and thus requires that we collapse the

density prediction for each time step onto its mean. When predicting �nancial returns, many

people do not expect a signi�cant improvement over predicting the mean of past data. When the

mean of the time series shifts, ENMS can actually be larger than unity. This is also the case when

the daily S&P500 forecasts are reduced to the mean and evaluated with ENMS. However, the �rst

two methods, using the pdf and the cdf, both evaluating the density, exhibit strong di�erences

between the model classes.

4 EXAMPLE 1: COMPUTER GENERATED DATA

For complicated model classes, it is important to understand the behavior of the model and to

build up some intuitions about what happens when the model assumptions deviate from those

of the generating process. Since mixture models contain an unsupervised part in learning, this

section investigates whether the states found by the model actually correspond to the true hidden

8To avoid possible confusion, it might be worth pointing out that there are two very di�erent likelihood functions
in estimation and in evaluation. The likelihood function maximized in the model estimation or search, Eq. 6,
considers the likelihood of the sequence|this includes the trade-o� between staying in a regime and allowing for
somewhat worse predictions vs. changing regimes and obtaining better predictions. Note that this likelihood includes
the transition matrix (Eq. 7). In contrast, the likelihood function used for evaluation does not take transitions into
account but only measures for each time step how well the observation was predicted by the pdf. It is important
that this likelihood does not contain aspects of the sequence or the transition probabilities, but only the predicted
densities. This allows for clean comparisons between approaches to density prediction.

9We thank Art Owen for pointing out that average log-likelihood can be very sensitive to a few extreme values.
We computed trimmed means, but it turns out that outliers in log-likelihood are not a problem in the experiments
reported here.
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states.10 We generate data from a hidden Markov model with two states, and analyze these data

with HME, GE and, as a naive sanity check, an unconditional Gaussian.

4.1 Generation and Recognition Models

The data generation consists of two distinct and di�erent processes: the Markov chain of the

hidden states, and the dynamics of the individual experts.

� Dynamics of the Markov model. The transition probabilities are given by the matrix

A =

�
0:98 0:02

0:03 0:97

�
:

This allows us to generate a realization for the time series of the hidden states.

� Dynamics of the individual experts. With �nancial processes in mind, we pick the �rst

process as trending, and the second process as mean reverting:

y
t+1 =

�
0:5 y

t + 0:8 "
t+1 if in state 1

�0:3 y
t + 0:5 �

t+1 if in state 2
:

" and � are N(0; 1) iid.

We �rst generated a sequence of length 15,000 of the (eventually hidden) states. This sequence

determined which of the two processes was used for each time step to generate an \observation".

From the generated data, we use the �rst 10,000 points as the training set, and the remaining

5,000 points as the test set.

The recognition models are HME, GE and the unconditional Gaussian, de�ned by the mean

and variance of the training set. In the case of HME, it is possible to choose the recognition process

to perfectly match the data generating process by using two experts that are linear autoregressive

models with one lag, AR(1).

The GE model used for the comparison also has two linear AR(1) experts, chosen to be as

similar to the HME model as possible. The di�erence is that the probability of being in state j

at time t in the GE model is learned as a feed-forward function of some variables, as opposed to

recursively from the series itself using the hidden Markov assumption. One of the two gate inputs

is the input that is also used in the experts, i.e., the current value of the time series, yt. The other

gate-input is an exponential moving average of the squared values of the observations (yt)
2

�
t = � �

t�1 + (1� �)
�
y
t
�2

(18)

with a decay constant � = 0:95. The gate is implemented as a nonlinear neural network with three

hidden units (tanh transfer function) and two outputs. The outputs are constrained to be positive

and to sum to unity, using the \softmax" architecture as discussed in Weigend et al. (1995).

4.2 Results and Interpretation

We present selected results on the computer generated data for several purposes:

� Illustrate to what degree HME recover the hidden regimes on these fairly noisy time series.

Note that true regimes are known in the computer generated example, but not in real world

examples.

10In the real world, such as when modeling S&P500 densities (Section 5), we do not know the true model. This
problem is particularly serious in �nance for two reasons. First, while in the sciences experiments are usually carried
out under carefully controlled conditions, �nance does not allow for carefully controlled experiments. Second, the
high amount of noise tends to mask subtle di�erences between competing models. This is again quite di�erent to,
say, physics, where some predictions are made with incredible accuracy and the data can distinguish between two
models that make almost the same predictions.
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Figure 1: Time series of the computer generated data modeled with HME. From top to bottom, the

panels display 1,000 true values of the out-of-sample data, the point forecasts, and the probability

of one expert, gt1. It sums with the other expert (not shown) to unity for each time step. The true

regime used in the generation of the test data is indicated in the bottom panel as dash-dotted line.

� Show how the partitioning of the gate-input space performed by the GE di�ers from the

segmentation of the HME. For real applications, it is important to recognize signatures that

indicate the wrong model class.

� Build up some intuitions for interpreting results of the analysis based on the probability

integral evaluation proposed by Diebold et al. (1998).

Figures 1 and 2 show in the time domain the same 1,000 points of the test set for HME and

for GE, respectively. In both �gures, the top panel shows the true data. The bottom panel shows

the probability that the model predicts for one of the two experts. The probability of the other

expert is not shown but corresponds to the di�erence between unity and the probability shown.

The dash-dotted line indicates the true regimes used in the generation of the test data. Despite

the high noise level in both training and test data, HME discover the regimes adequately.

The corresponding results for GE are shown in Fig. 2. The training and test data are identical

to those used for the HME. The GE architecture is chosen to be as similar to the HME architecture

as possible, as discussed in Section 4.1. The main di�erence is in the segmentation. Comparing

the bottom panels of Figs. 1 and 2, note that the regime assignments are cleaner for HME than for

GE. This can be explained by the di�erent likelihood functions: while GE represent a feedforward

architecture that necessarily produces solutions that are invariant under re-shu�ing of the input-

output patterns, HME \know" about the sequence of the patterns through the assumption of the

hidden Markov structure. HME can be said to trade-o� the switching with the likelihood of the

observation.

Although this paper focuses on density prediction, we included the mean of each one-step-ahead

prediction as the middle panels. For these point predictions, the normalized mean squared errors
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Figure 2: Time series of the computer generated data modeled with GE. The top panel shows

1,000 points of the test set, the middle panel the one-step-ahead point predictions of the GE for

the same period, and the bottom panel the probability g
t
1. These probabilities are not as clean as

those found by HME since GE ignore the di�erence between adjacent and distant patterns in time.

(de�ned in Eq. 17) on a 5,000 point test set are for the two model classes ENMS(HME)= 0:826 and

ENMS(GE)= 0:886 with the ratio (squared error(HME))/(squared error(GE)) = 0:93 .

We now turn to the evaluation of the densities, �rst using the predicted probability densities

directly. On the same test set as above, the log-likelihood ratios are:

log-likelihood(HME)

log-likelihood(GE)
= 0:96 and

log-likelihood(HME)

log-likelihood(Gaussian)
= 0:57 :

While there is a clear improvement of the conditional mixtures over the unconditional Gaussian,

the di�erence between the mixtures is not signi�cant.

This second approach uses the cdf-based integral transform (Diebold et al. 1998). This analysis

focuses on Z
t, the area of the pdf to the left of the observation, i.e., the probability that a value

below the observation was predicted. The qualitative aspects of the density forecasts are exposed

in Figs. 3, 4, and 5 for HME, GE and the naive unconditional Gaussian, respectively. In these

�gures, the top panels give the histogram of Z on the test set. As discussed in Section 3.2, Z

should be uniformly distributed between 0 and 1. The remaining four panels in each �gure show

the correlograms of powers of the mean-subtracted Z-series, i.e., the empirical autocorrelations of

(Z � Z), (Z � Z)2, (Z � Z)3, and (Z � Z)4.

Analyzing the density predictions obtained with HME, Fig. 3 indicates that the histogram

of the Z series is consistent with a uniform distribution. Furthermore, there are no signi�cant

autocorrelations in the powers of the mean-subtraced Z-series. These good density forecasts are

reassuring|but not surprising since the structure of the HME recognition model was chosen to be

identical to that of the generating process.
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Figure 3: Evaluation using the integral transform, Z, of the probability density predictions gen-

erated by HME. The histogram of Z indicates that the distribution of Z is uniformly distributed

between 0 and 1, indicating good density predictions. The absence of autocorrelations indicates

that there is no residual time structure in the mean corrected Z and its powers. The horizontal

lines indicate two standard deviations.

Figure 4 shows the e�ect of a misspeci�ed model. While the structure of the emission models

(the experts) is still identical to the data generating process, GE cannot model correctly the

underlying Markov structure of the sequence. In comparison to HME (Fig. 3), the histogram

for GE is less uniform, and there are some short but signi�cant autocorrelations in (Z � Z) and

(Z � Z)3.

To put the qualitative aspects of the HME and GE predictions into perspective, Fig. 5 presents

the histogram and the correlograms of Z when the model is a single unconditional Gaussian. In this

model, more observations occur than were predicted in the central region of the histogram of about

one standard deviation, and fewer observations in the areas around the 10 and 90 percentiles.11

Furthermore, there are long autocorrelation dependencies in the Z-series. The non-uniformity

of the histogram and the Z-autocorrelations are consistent with the poor performance on the

quantitative measures of squared errors and of the log-likelihood.

Knowing the true model in this �rst example of computer generated data allows us to compare

the estimated parameters with the true parameters: the diagonal elements of transition probability

matrix A, the autoregressive coeÆcients ki, and the noise level �i. Table 1 gives the true values

of the parameter and the estimates of the models. The correctly speci�ed HME found the correct

parameters. In contrast, the estimation of the corresponding GE experts is signi�cantly worse

than that of HME. In this speci�c run, the second expert does not even learn the mean-reverting

dynamics but predicts an essentially unconditional Gaussian.

11The histogram focuses on the central part of the distribution since each bin has roughly the same number of
points. The histogram can be viewed as expanding the center and compressing the tails. To focus on the tails of the
distribution, a quantile-quantile plot (qq-plot) is more appropriate. It shows that there are too many observations
in the extreme tails.
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Figure 4: Evaluation of density predictions using GE on the computer generated data. Note the

appearance of signi�cant autocorrelations for the odd powers of (Z�Z) compared to the correctly

speci�ed HME.
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Figure 5: Evaluation of density predictions using an unconditional Gaussian on the computer

generated data. The model mismatch is indicated by both the non-uniformity of the histogram

and the signi�cant autocorrelations in the correlograms.

5 EXAMPLE 2: S&P500 RETURNS

This section applies HME to the real-world problem of forecasting the density of daily S&P500

returns. To provide a perspective and a deeper understanding of HME, comparisons are carried out

to several other model classes: an unconditional Gaussian, an unconditional mixture of Gaussians,
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Table 1: Estimated parameters for HME and GE along with the true values used in the data
generating process. aii denotes the self-transition probabilities of staying in regime i; the o�-
diagonal terms are the complements to unity. ki denotes the autoregressive coeÆcients of the
individual experts, and �i the noise levels of the individual experts.

a11 a22 k1 k2 �1 �2

true value 0.980 0.970 0.500 -0.300 0.800 0.500

HME 0.976 0.969 0.507 -0.269 0.808 0.492

GE N/A N/A 0.466 0.003 0.867 0.528

a generalized autoregressive conditional heteroskedastic GARCH(1,1) model, and the GE model

that is as similar as possible to the HME model.

We �rst describe the data and models and analyze the estimated HME model. We then present

the segmentation obtained by HME and by GE and explain the di�erence. Among the performance

comparisons, the most important metric is the direct evaluation of the out-of-sample likelihood

of the test data given each of the models. We also include the graphs of the probability integral

transform evaluation of the density forecasts.

5.1 Data and Model Classes

For the data, we start with 21 years of daily S&P500 prices, pt, and compute the series we try to

predict, yt, by taking the di�erence between the logarithms of the prices at adjacent days

y
t = log pt � log pt�1 = log

p
t

pt�1
�

p
t � p

t�1

pt�1
:

The Taylor expansion used in the last step, log(1 + �) � �, gives the interpretation of yt as the

relative price change, i.e., as the di�erence between today's and yesterday's price with respect to

yesterday's price. This series corresponds to continuously compounded returns.

We use the �rst ten years (from 3 Jan 1977 to 31 Dec 1986) of the data as the training set,

and the last ten years (from 2 Mar 1988 to 31 Dec 1997) as the test set. To avoid possible artifacts

of the Oct 1987 crash, we do not use the data from 3 Jan 1987 to 1 Mar 1988 in this study. No

further transformation or preprocessing is performed.

Both HME and GE have four experts. We chose that number based on the predictive perfor-

mance of the resulting model and the interpretability. The experts are simple linear autoregressive

models that predict the mean based on the values of the previous seven lagged returns. (In other

studies, not reported here, di�erent sets of inputs, and di�erent neural networks architectures are

chosen.)

For GE, we need to also specify the structure of the gate: we use a nonlinear neural network

with �ve tanh hidden units and four \softmax" outputs. The inputs into the gate include the

seven lagged values of the returns given to the experts, in addition to seven lagged values of the

exponential moving average of the squared returns (Eq. 18).

5.2 Results

After discussing the data and the models, we now turn to the results. We �rst inspect the seg-

mentation obtained with HME and GE, then discuss the estimated parameters and their meaning,

and �nally turn to the evaluation of the densities, using the pdf and the cdf methods.
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Figure 6: Time series of S&P500 returns modeled with HME. The returns (top panel) have been

normalized to zero mean and unit variance. The four plots at the bottom show the probabilities

of the experts for each time step. The experts are arranged by decreasing noise level: the expert

with the lowest noise level is at the bottom of the �gure. (For completeness, the mean of each

day's density is shown in the remaining panel, labeled \Predictions".)

21



0

0.5

1

Segmentation of GEs on SP500

0

0.5

1

0

0.5

1

May79 Feb82 Nov84 Aug87 May90 Jan93 Oct95
0

0.5

1

−5

0

5

Returns of SP500 (from 01/02/77 to 12/31/97)

T
ru

e 
re

tu
rn

s

−2

0

2

P
re

di
ct

io
ns

training set crash test settraining set crash test set

Figure 7: Time series of S&P500 returns modeled with GE. The description of the panels is the

same as in the preceding �gure. Note the poorer and more noisy segmentation in comparison with

the previous �gure.
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5.2.1 Segmentation of the S&P500 Series

Figures 6 and 7 respectively show HME and GE models for daily S&P500 returns. Training and

test periods are indicated by the arrows in the center of the �gure. The lower half characterizes

the importance of the individual experts for each day. The top panel shows the time series yt, the

daily S&P500 returns for the period from 1977 through 1997. The bottom four panels give the

probability g
t
i for each expert i(i = 1 : : : 4). The experts are ordered in terms of decreasing �i. The

expert with the lowest noise level corresponds to the lowest panel.

Figure 7 indicates that GE cannot generate clear regimes. Note, for example, that the proba-

bility of the expert with the second smallest variance (the second plot from the bottom) hardly ever

leaves the range between 0.1 and 0.4. One reason for this poor segmentation is that the smoothed

squared returns (Eq. 18) as gate-inputs do not characterize volatility as well as the recursively

computed HME variances, �2j . Another interpretation for the very noisy nature of the regimes is

the absence of regime information from the neighboring pattern for GE, in contrast to HME.

5.2.2 Estimated Parameters and Interpretation

The dynamics of the hidden Markov process is characterized by the matrix of transition prob-

abilities between the states. For the four states assumed in our model of the S&P returns, we

obtain

A =

0BB@
0:904 0:031 0:023 0:042

0:014 0:950 0:029 0:007

0:011 0:014 0:969 0:007

0:011 0:002 0:004 0:983

1CCA :

The elements of this matrix are averages over 200 runs with di�erent initializations. To make the

averaging meaningful, we sort in each run the states by decreasing �i, i.e., the �rst state becomes

the one with the largest noise level, etc., and the fourth state the one with the smallest noise level.

For example, a11 = 0:904 is the average of the self-transitions of the expert with the largest noise

level. Note that a11 is the smallest of all the self-transitions (the elements on the diagonal): on

average, the system stays uses expert 1 for only ten days. Looking back to Fig. 6, we can see that

this expert takes responsibility for some of the large returns in the training set, as well as for the

region of high volatility in late 1982.

Table 2 lists the noise levels of the experts for both HME and GE. For each run, the experts

were ordered in terms of decreasing noise levels, and means and standard deviations of the square

roots of the variances of the Gaussians are shown.

Table 2: The average noise levels �i of the individual experts for HME and GE for the S&P500
density predictions. In each run, i.e., for each set of initial conditions, the expert with the largest
variance is assigned the label \Expert 1", etc. The table gives the means of the square roots of
the variances of the Gaussians. The standard deviations are indicated in parentheses. High-noise
experts have more relative variation in the noise levels than the low-noise experts than in those of
high-noise experts. Furthermore, GEs are more sensitive to initial conditions than HMEs.

�i Expert 1 Expert 2 Expert 3 Expert 4

HME 1.37 0.92 0.74 0.61

(0.05) (0.12) (0.04) (0.01)

GE 2.18 0.98 0.52 0.33

(1.10) (0.44) (0.16) (0.07)
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5.2.3 Evaluation of the S&P500 Density Predictions

The function optimized in training is signi�cantly di�erent for HME and GE|we have emphasized

that HMEs include the transitions between states, whereas GEs do not. For prediction, we are

ultimately interested in how well the next day's density is predicted. This function can indeed be

di�erent from the one optimized in the estimation of the model. We compare all architectures with

the same measure: the likelihood of the observations of the test set given the predicted densities. In

our comparison, we do not take any uncertainty of the observed values into account, i.e., we assume

a delta distribution whose integral is unity on in�nitesimally small support. For each pattern in

the test set, we compute the log-likelihood, and show in Fig. 8 the average over the test set.
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Figure 8: S&P500 density forecasts evaluated for several models based on the predicted pdf. The

horizontal axis gives the log-likelihood averaged over the test set. For HME and GE the empirical

cumulative distribution of 200 runs each is plotted. For comparison, we also indicate the log-

likelihood averaged over the same test set for a single Gaussian, an unconditional mixture of four

Gaussians, and a GARCH(1,1) model. Note that the GEs do not give an acceptable solution for

this hard learning problem since the resulting models show a large variance in performance. In

contrast, the distribution of quality of the HME is relatively sharp, indicated by a relatively steep

curve. Considering only the uncertainty stemming from the initialization, about 98 percent of the

HME have a better out-of-sample likelihood than the GARCH model and than the unconditional

mixture model. This indicates that all of HME's aspects (conditional model and mixture model

and hidden Markov model) are needed for the improvement.

On the bottom of Fig. 8 three benchmark log-likelihoods are shown: (i) of a single Gaussian,

(ii) of an unconditional mixture of four Gaussians, and (iii) of a GARCH(1,1) model. All models

are estimated on the same training set as HME and GE, and averaged over the same test set as

HME and GE. The �gure shows that the single Gaussian, representing the hypothesis of a random

walk with �xed variance, is worst. The unconditional mixture is better, and the GARCH(1,1)

model is again slightly better.

For HME and GE, any speci�c solution depends on the initialization. Rather than only showing

the \typical" performance of one run, Fig. 8 gives the individual results of 200 runs for HME and

GE each. For both architectures, it displays the cumulative probability distribution of the 200
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runs. The medians correspond to the locations where the dashed line (GEs) and solid line (HMEs)

intersect with the horizontal line. Note that GEs have an unacceptable large range of performance

variation, ranging from worse than a single Gaussian to better than the best model. In contrast,

the log-likelihood of HME is better behaved. Only about 2 percent of the runs are worse than the

unconditional mixture or the GARCH(1,1) model, and the mean and median performance is clearly

above the benchmark models. This indicates that the combination of the conditional variance and

the mixture aspect is needed for the improvement of the quality of the density predictions.

To rule out the possibility that the results are due to a few outliers, we analyzed the trimmed

means of the log-likelihood. The ranking of the di�erent methods remains the same when the

means are trimmed; we removed up to two percent on each side. This establishes that HME give

better predictions than the alternatives we considered when comparing the out-of-sample likelihood

of new data.

We now turn from the analysis based on the predicted probability distributions to an analysis

based on the predicted cumulative distributions. Figures 9, 10 and 11 show the results for HME,

GE, and unconditional Gaussian, respectively. In all cases, the top panel shows the histogram of

the probability integral transform Z, and the four bottom panels the correlograms of the Z series

and its powers. The results are acceptable for HME, slightly worse for GE and, as expected, a lot

worse for the unconditional Gaussian.

For completeness, we close by reporting the normalized mean squared errors that can be com-

puted by collapsing the daily density predictions to their means: ENMS(HME)= 1:014 (standard

deviation for 200 runs with di�erent initial emission probabilities is 0.002); ENMS(GE)= 1:043

(standard deviation for 200 runs with di�erent initial weights is 0.083). Values larger than unity

indicate a drift in the mean.
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Figure 9: Evaluating the probability density predictions of HME for S&P500 returns. The top panel

plots the histogram of the probability integral transform on S&P 500: the Z series is reasonably

close to uniform. The four bottom panels show the correlograms: there are not many signi�cant

auto-correlations in the Z series and its powers. The dashed lines correspond to two standard

deviations.
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6 CONCLUSIONS

This paper started out by discussing di�erent tasks for prediction, and proceeded by presenting

hidden Markov experts (HME) in detail. The main focus is the prediction of the full conditional

density distribution. This is in contrast to the literature on Markov switching models that focuses

on point predictions and segmentation, and on the literature on stochastic volatility and GARCH

models that focuses on conditional variances. The density predictions we obtained as mixture
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Figure 10: Evaluating the probability density predictions of GE for S&P500 returns. The Z series

is less uniformly distributed as in the previous �gure (HME), and auto-correlations remain in the

Z series.
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Figure 11: Evaluating the probability density predictions of an unconditional Gaussian for S&P500

returns. The Z series is far from uniformly distributed, and the auto-correlations are large.
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models were evaluated in comparison to these standard approaches using several methods, including

Diebold et al. (1998).

The approach was illustrated with two time series. Section 4 showed the results of a computer

generated example where the true regimes are known. This helped us obtain intuitions for model

misspeci�cation, e.g., by revealing the signature of misapplying GE to data generated by HME.

When the right model class is used (HME), the parameters are estimated correctly and the density

is predicted well.

Section 5 applied the approach to the density of daily S&P500. On the test set, about 98 percent

of the HMEs estimated (they di�ered by their initial conditions) outperformed a GARCH(1,1)

model. While HME found a solution rather reliably, GE showed a large dispersion for two reasons:

(i) in any task with very high noise levels it is very diÆcult for the gate to learn a mapping from

some exogenous variables to the expected probabilities of the experts, and (ii) in the speci�c case

of �nancial returns, volatility is often estimated better recursively (as in GARCH and stochastic

volatility models) than with a feedforward architecture without memory, such as GE, see Timmer

and Weigend (1997).

This paper focused on introducing hidden Markov experts. The examples were chosen to

communicate some intuitions and illustrate several methods to evaluate the performance of density

predictions. An identical set of inputs, consisting of lags of the time series, was used to facilitate the

comparisons between the methods. When using this architecture in trading, we �nd that carefully

selected exogenous inputs lead to better predictions than autoregressive models. In addition to

trading applications, we have also used HME in risk measurement to capture non-Gaussian tails

and compute Value-at-Risk, as discussed in Chin, Weiged and Zimmermann (1999).
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