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There has been a recent resurgence of academic interest in the claims of technical

analysis. This is largely attributable to accumulating evidence that technical trading can be

profitable over long time horizons (Brock, Lakonishok and LeBaron, 1992; Levich and Thomas,

1993; Neely, Weller and Dittmar, 1997)1.

However, academic investigation of technical trading in the foreign exchange market has

not been consistent with the practice of technical analysis. The majority of foreign exchange

traders who use technical analysis are intraday traders who transact at high frequency and aim to

finish the trading day with a net open position of zero. But, due to data limitations, most

academic studies have evaluated the profitability of trading strategies that allow trades to be

executed at most once a day. For example, in our earlier study using daily data (Neely, Weller

and Dittmar, 1997), we provide strong evidence for the existence of profitable trading rules for a

variety of currencies over a fifteen-year time horizon. The mean trading frequency for the rules

we identify ranges from once every two weeks to once every three months. Evidently, these are

not the trading strategies being used by the foreign exchange dealers in the London market

surveyed in Taylor and Allen (1992). They documented the fact that technical analysis was

widely used for trading at the shortest time horizons, namely days and weeks, and was used in

some form by over 90 per cent of their respondents.2

This paper links trading practice with research more closely by investigating the

performance of trading rules using high frequency data that allow the rules to change position

within the trading day. We use an in-sample period to search for ex ante optimal trading rules

and then assess the performance of those rules out-of-sample. We use two distinct

                                                
1 Ready (1998) questions the evidence relating to the equity market.
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methodologies: the first is a genetic program that can search over a very wide class of (possibly

non-linear) trading rules; the second consists of linear forecasting models. We find strong

evidence of predictability in the data as measured by out-of-sample profitability when transaction

costs are set to zero. However, the excess returns earned by the trading rules are very sensitive to

the level of transaction costs and to the liquidity of the markets. When transaction costs are taken

into account and trading is restricted to periods of high market activity, there is no evidence of

profitable trading opportunities. Thus, our results are consistent with the efficient markets

hypothesis.

2. Previous Work on Trading Rules in the Foreign Exchange Market

Most of the work analyzing technical trading rules in the foreign exchange market has

used daily or weekly data, and has examined the profits to be earned by employing a particular

rule or class of rules suggested by practicing technical analysts. The trading rules that have been

most intensively investigated use filters and moving averages. A simple filter rule takes the form:

“Take a long position in foreign currency when the exchange rate (dollar value of foreign

currency) rises by x% above its previous minimum over the last y days; take a short position

when the exchange rate falls x% below its previous maximum over the last y days. Otherwise

maintain the current position.” A double moving average rule compares a short- to a long-run

moving-average, changing from a sell to a buy signal when the short-run moving average

exceeds the long-run moving average by a given amount. Even these simple rules can take a great

variety of different forms. The moving-average rules will vary depending on the time windows

                                                                                                                                                            
2 A more recent survey of foreign exchange traders in the United States (Cheung and Chinn, 1999), although it did
not explicitly address the issue of trading horizon, found that 30 per cent of the sample used technical analysis as the
dominant guide to trading, compared to 25 per cent using fundamental analysis.
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chosen for each moving average and the amount by which the short moving average must exceed

or fall below the long moving average. The filter rules will depend on the size of the filter and

the time window over which the previous high or low is calculated. Both classes of rules seek to

identify changes in a trend.

A number of studies have examined the performance of trading rules using daily foreign

exchange data (Dooley and Shafer, 1983; Sweeney, 1986; Levich and Thomas, 1993; Osler and

Chang, 1995). The general conclusion is that the trading rules are able to earn significant excess

returns net of transaction costs, and that this cannot be easily explained as compensation for

bearing risk. For example, Neely, Weller and Dittmar (1997) found out-of-sample annual excess

returns in the one to seven percent range in currency markets against the dollar during the period

1981-95. The highest trading frequency was observed in the rules found for the DEM/JPY, and

was between two and three trades per month. This does not resemble the technical trading

strategies used by most foreign exchange traders. We therefore seek to discover if the profit

opportunities that exist over medium- to long-term horizons are also present at the short horizons

typically employed by traders.

Although there has been much work investigating the statistical properties of high

frequency exchange rate data—see Goodhart and O’Hara (1997)—there has been relatively little

work on high frequency trading rules.  Goodhart and Curcio (1992) probe the usefulness of

resistance levels published by Reuters.  Acar and Lequeux (1995) examine the profitability of a

class of linear forecasting rules fitted to the whole sample of half-hourly data while Curcio et al.

(1997) examine the performance of filter rules that have been identified by practitioners. None of

these papers finds evidence of profit opportunities. However, by focusing on narrow classes of

rules they are not able to rule out the possibility that a search over a broader class would reveal
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profitable strategies. Pictet et al. (1996) employ a genetic algorithm to optimize a class of

exponential moving average rules.  They run into serious problems of overfitting, and their rules

perform poorly out of sample. Gençay et al. (1998) report 3.6 to 9.6 per cent annual excess

returns, net of transactions costs, to proprietary real-time Olsen and Associates trading models

using seven years of exchange rate data at 5-minute frequency. It is difficult to compare other

results to theirs, given that their models are not publicly available.

3. The Genetic Program

Genetic algorithms are computer search procedures based on the principles of natural

selection. These procedures were developed by Holland (1975) and extended by Koza (1992).

They have been applied to a wide variety of problems in many fields and are most useful in

situations where the space of possible solutions to a problem consists of decision trees or

programs and thus cannot be handled by hill-climbing search routines that require

differentiability. Our use of the genetic program follows an approach first applied to the foreign

exchange market in our earlier paper. Our description of the procedures used here will follow

that of the previous paper.

In genetic programming, the individual candidate solutions are hierarchical character

strings of variable length. These structures can be represented as decision trees, whose non-

terminal nodes are mathematical functions, operators or constants. We make use of the following

function set:

• arithmetic operations: “plus”, “minus”, “times”, “divide”, “norm”, “average”, “max”,

“min”, “lag”;

• Boolean operations: “and”, “or”, “not” ”, “greater than”, “less than”;
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• conditional operations: “if-then”, “if-then-else”;

• random numerical constants picked uniformly from (0,6);

• Boolean constants: “true”, “false”.

“Norm” returns the absolute value of the difference between two numbers. “average”, “max”,

“min”, and “lag” respectively return the moving average, local maximum, local minimum and

lagged value of a data series over a time window specified by the argument of the function,

rounded to the nearest whole number.

An important advantage of genetic programming in constructing trading rules is that they

can use (or ignore) additional information to construct technical rules (Neely and Weller, 1999a

and 1999b).  In this exercise, we use three information variables as input to the genetic program.

The first is the normalized value of the exchange rate, the exchange rate divided by its moving

average over the previous two weeks.3 The second summarizes information on the interest

differential, and is defined in the section describing the data. The third variable is the hour of the

day. We include this last variable because of the large and consistent intraday fluctuation in

trading volume in foreign exchange markets. This is known to be associated with volatility, but

may also have an effect on the first moment of the exchange rate series.

The genetic program searches for good solutions to problems of interest using the

principles of natural selection.  The program first randomly creates a population of arbitrary rules

and allows the members of that population to reproduce and recombine their components over

subsequent generations. Profitable rules are more likely to have their components reproduced in

subsequent populations. In this way, the genetic program searches through the space of rules,

                                                
3   It is useful to divide the exchange rate by a suitable moving average to provide the rules with similar magnitudes
of data both in and out of sample.  For example, a rule comparing the exchange rate to a constant in the in-sample
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concentrating on those parts of the space that have been shown to produce profitable rules. The

basic features of the genetic program are (a) a means of encoding trading rules so that they can be

built up from separate subcomponents (b) a measure of excess return or “fitness” (c) an operation

which splits and recombines existing rules in order to create new rules.

We denote the exchange rate at period t  (dollars per unit of foreign currency) by St , the

short-term interest differential by Dt and time of day at period t by the variable, Tt. A trading rule

is a mapping from past exchange rates and interest differentials indexed by time of day to a

binary variable, zt , which takes the value +1 for a long position in foreign exchange at time t,

and -1 for a short position. Trading rules may be represented as trees, whose nodes consist of

various arithmetic functions, logical operators and constants. The functions are distinguished by

the data series on which they operate. Thus max ( )S 3  at time t is equivalent to ( )21,,max −− ttt SSS ,

lagT(3) at time t is equal to Tt-3, and averageS(3) is equal to the mean of St, St - 1 and  St -2.

Figure 1 presents an example of a trading rule that makes use of both exchange rate and

time of day data. The rule signals a long position in foreign currency if the current exchange rate

is greater than the 48-period moving average and the time of day (GMT) is between 0800 and

1600, and a short position otherwise. This example illustrates a simple, time-dependent rule. The

function “rate” returns the average of bid and ask quotes for the exchange rate at half-hourly

intervals.

The fitness criterion for the genetic program is the continuously compounded excess

return to the trading rule over the given time period. We train rules under two assumptions about

when they can trade.  The first scenario permits trading 24 hours a day, 7 days a week. The

                                                                                                                                                            
period could perform poorly because the constant was of inappropriate magnitude out of sample. This could come
about as a result of non-stationarities in the data.
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second scenario—called restricted trading—only permits trading during 12-hour periods of heavy

trading in the particular currency on business days.  After the 12 hours of trading, the rule earns

the overnight interest rate in the currency in which it is long—losing the overnight interest rate in

the other currency.  The continuously compounded (log) excess return over a half-hour is given

by ztrt where zt is the indicator variable described above, and rt is defined as:

r S St t t= −+ln ln1 . (1)

Each trade involves switching from a long to a short position or vice versa, and so incurs

a round trip transaction cost. In other words, trading from a position long x units of foreign

currency to one short the same amount requires a sale of 2x units, incurring a proportional

transaction cost of 2c. Therefore the cumulative excess return r for a 24-hour trading rule giving

signal zt at time t over the period from time zero to time T is:

( )cnrzr
T

t
tt 21ln

1

0
−+= ∑

−

=

. (2)

where n is the number of trades. This measures the fitness of the rule.  Returns to rules subject to

restricted trading would be computed using the interest differential for overnight positions as

well as the exchange rate return.

Figure 2 illustrates the crossover and reproduction operation. A pair of rules is selected at

random from the population, with a probability weighted in favor of rules with higher fitness.
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Then subtrees of the two parent rules are selected randomly. One of the selected subtrees is

discarded, and replaced by the other subtree, to produce the offspring rule.4

To implement the genetic programming procedures we define 3 separate subsamples,

referred to as the training, selection and out-of-sample test periods. The first two periods are

equivalent to an in-sample estimation period. The third, the out-of-sample test period, is used to

measure the performance of the rules trained and selected in the first two periods. The distinct

time periods for all currencies were chosen as follows: training period, 02/01/96 to 03/31/96;

selection period, 04/01/96 to 05/31/96; test period, 06/01/96 to 12/31/96. The first month of data

was used to calculate starting values for moving averages and other functions taking lagged

values as arguments.

The separate steps involved in implementing the genetic program are detailed below.

1. Create an initial generation of 1000 randomly generated rules.

2. Measure the excess return of each rule over the training period and rank according to

excess return.

3. Select the top-ranked rule and calculate its excess return over the selection period. If it

generates a positive excess return, save it as the initial best rule. Otherwise, designate the no-

trade rule as the initial best rule, with zero excess return.

4. Select two rules at random from the initial generation, using weights attaching higher

probability to more highly-ranked rules. Apply the reproduction operator to create a new rule,

which then replaces an old rule, chosen using weights attaching higher probability to less highly-

ranked rules. Repeat this procedure 1000 times to create a new generation of rules.

                                                
4 The operation is subject to the restriction that the resulting rule must be well-defined, and that it may not exceed a
specified size (10 levels and 100 nodes).
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5. Measure the fitness of each rule in the new generation over the training period. Take the

best rule in the training period and measure its fitness over the selection period. If it outperforms

the previous best rule, save it as the new best rule of the second generation.

6.  Return to step 4 and repeat until we have produced 40 generations or until no new best

rule appears for 10 generations.

4. The Linear Forecasting Model

We estimate an autoregressive model for each exchange rate over the training and

selection periods on 24-hour data, including weekends, using only own lagged values of the log

exchange rate. We restrict the maximum number of lags to 10. We then combine each estimated

forecasting model with a filter to produce a trading rule. Denoting the one-period-ahead forecast

of the log exchange rate at time t by ( ))ln( 1+tt SE  and the filter by f, trading signals are

determined in the following way:

( )
( )

( )
( ) .ln)ln( if    ,1                              

 ,ln)ln( if    ,1       ,1 If

.ln)ln( if    ,1                             
 ,ln)ln(if    ,1      ,1 If

1

11

1

11

fSSE
fSSEzz

fSSE
fSS Ezz

ttt

ttttt

ttt

ttttt

+≤−=
+>+=−=

−≥+=
−<−=+=

+

+−

+

+−

(3)

Trading rules with filters ranging from zero to 0.0005 in steps of 0.0001 and estimated lag

coefficients from one to ten are run on the data from the training and selection periods, and

excess return is calculated assuming the following three values of one-way transaction cost: 0,

0.0001, and 0.0002. The trading rule with the highest excess return for each of the three levels of

transactions cost is then run on the out-of-sample test period.
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We also estimate an expanded model in which in addition to the lagged values of the log

exchange rate we include the lagged normalized exchange rate, the hour of the day and the

interest futures differential. Trading rules are then formed in the same way, tested in-sample over

the same range of lags and filters and run on the test period.

5. The Data

We use half-hourly bid and ask quotes for spot foreign exchange rates during 1996 from

the HFDF96 data set provided by Olsen and Associates. We examine four currencies against the

dollar – the German mark (DEM), the Japanese yen (JPY), the British pound (GBP) and the

Swiss franc (CHF). We use three variables as input to the genetic program. The first is the

normalized half-hourly exchange rate series, constructed by calculating a simple average of bid

and ask quotes and dividing by a two-week moving average. The second is the difference (U.S.

minus foreign contract) in the transaction prices for the short-term interest rate futures contract

whose expiry is closest to the time stamp of the exchange rate data. Because Japanese futures

data were unavailable, only the U.S. futures price was used for the JPY exchange rate.  The U.S.

contract is traded on the Chicago Mercantile Exchange. Data for the foreign contracts comes

from the London International Financial Futures Exchange (LIFFE). The third variable is the

time of day (GMT).

We present summary statistics for the distributions of half-hourly log exchange rate

changes in Table 1. Standard deviations are quite similar across currencies, and all exchange

rates display very high kurtosis. In the top panel of Figure 3 we plot autocorrelations for the log

returns, using all hours, and find highly significant negative first order autocorrelation for all
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currencies.5 This significant first-order autocorrelation is also present in both bid and ask prices

and it is robust to excluding outliers in the bid-ask spread.  We checked to see whether the

summary statistics or autocorrelation patterns were sensitive to the omission of weekends or off-

peak trading hours. The bottom panel of Figure 3 shows that measuring autocorrelation only

during business hours reduces mean first-order autocorrelation to -0.12, from -0.17 when

measured during all hours. There was also a decline in kurtosis as more periods of low market

activity were omitted. However the kurtosis still remained highly significant in all cases.

Baillie and Bollerslev (1991) note the existence of significant negative first order serial

correlation in hourly exchange rate series, and suggest that it is a spurious consequence of two

features of the data collection process. They used a data set in which each observation consisted

of the average of the five most recent bid quotes, a procedure known to induce serial correlation.

However this is not a feature of the data set that we use, and so we consider the second reason

they propose—non-synchronous trading. If there are periods during which no trade occurs, and a

zero return is recorded, this may not be an accurate reflection of the movement of the true

underlying return process. When a trade occurs after a period of inactivity, the observed return is

a sum of the accumulated returns over the periods of no trade. If the series has a non-zero mean,

this will induce mean reversion in the observed series. The first point to make is that quotes may

adjust even when no trade takes place, so it is unclear to what extent the argument applies to our

data set. However, we do find a rather high proportion of zero returns in the full sample, ranging

across the four currencies from 22 to 26 per cent of the total number of observations. This is

                                                
5 It is interesting to compare this result with the findings of Bollerslev and Domowitz (1993). Using observations on
percentage changes at five-minute intervals in the USD/DEM market they report positive third-order autocorrelation
when the series is constructed either from the average of bid and ask quotes or from an algorithm approximating
transaction prices. Thus the pattern of momentum and reversal documented at longer time horizons in equity markets
appears here at much shorter horizons.
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almost entirely due to the presence of weekends, and the figures fall to a range of 3.9 to 5.9 per

cent when weekends are excluded and further when only business hours are considered.

Lo and MacKinlay (1990) derive a formula for the level of serial correlation induced by

non-synchronous trading if the true return series follows a random walk with drift. It depends on

the mean and variance of the return series, and the probability of no trade occurring. We use the

sample proportion of zero return observations as a proxy for the probability of no trade occurring.

If true returns are generated by the model

ttr εµ += (4)

where tε  is a noise term with zero mean and variance 2σ  independent at all leads and lags, and

π  is the probability of no trade, then ( )iρ , the induced correlation in observed returns o
tr at lag i

is given by

( )
22

2

1
2 µ

π
πσ

πµρ

−
+

−=
i

i . (5)

We obtain a figure for ( )1ρ  of –0.00000706 for the DEM even when the probability of no

trade is set to 0.227. This is to be compared with the observed value of –0.14. We conclude that

the magnitude of serial correlation observed in the data cannot be explained by non-synchronous

trading, and treat it as a true feature of the data and not an artifact.

6. Results

We consider first the unrestricted, benchmark case in which trading is allowed to take

place twenty-four hours a day, seven days a week. For each currency we generated twenty-five

rules from the genetic program under each of three assumptions about transactions costs in
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training and selection periods. We used one-way transaction costs of zero, one and two basis

points (c = 0, 0.0001, 0.0002).6 From those twenty-five rules we selected those which had a

positive excess return during the selection period and also traded at least once.

We aggregate the signals from the sets of individual rules by constructing an equally

weighted portfolio rule. The equally weighted portfolio rule assumes that the trader permits each

rule an equal share in the position taken by the portfolio. Table 2 presents results for this rule. To

investigate pure predictability—as opposed to profitability—in column three we report annual

returns assuming zero transaction costs in the out-of-sample period. To indicate the potential

profitability (or lack thereof) of these rules, column six of Table 2 reports the level of transaction

cost measured in basis points that would reduce the excess return to zero (break-even transaction

cost). The rules trained with zero transactions costs in-sample produce returns that are very high,

in three of the four cases over 100 per cent per annum. This provides strong evidence of a

predictable component in the exchange rate series. But the rules trade very frequently,

approximately once an hour on average, or every other period. Because of this, the break-even

transaction cost is low. The highest figure among the four exchange rates, that for the British

pound, is 1.01 basis points for a one-way trade. This is largely attributable to the somewhat lower

trading frequency of these rules.

As the transaction cost in training and selection periods is increased from zero to one and

then two basis points, both annual excess returns before transaction cost and trading frequency

fall sharply. But break-even transaction cost rises uniformly to levels close to the level that a

large institutional trader would face. It also becomes more difficult to find good rules according

                                                
6  We chose not to compute rules for higher levels of transaction cost because of the increasing difficulty of finding
rules that were profitable in-sample using higher levels of costs.  In addition, estimates of foreign exchange
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to our in-sample selection criteria, most notably in the case of the GBP, where only five of the

twenty-five rules satisfied the criteria for c = 0.0002. One of the most striking features of Table 2

is the steady rise in break-even transaction cost as the in-sample value of c is increased.7 Since

the break-even transaction cost can be interpreted as the average excess return per zero-cost

trade, this demonstrates the ability of the search procedure to identify rules that can successfully

predict not just the direction but also the magnitude of a price change. It also shows that there are

remarkably stable patterns in the high frequency data. Although a purely speculative trader

cannot exploit these patterns, they nevertheless represent important information for foreign

exchange dealers. A dealer who takes account of the predictability in the exchange rate in setting

quotes will trade more profitably than one who does not.

We can investigate more systematically the role played by serial correlation in the data by

comparing the performance of the linear (autoregressive) forecasting model with that of the

genetic program. Table 3 reports the estimated coefficients of the models with the highest excess

return (net of one-way transaction costs of 0.0001) over training and selection periods. As the

statistics on serial correlation would lead one to expect, the first two lags in the data are much the

most important in all cases. Only the model for the GBP has more than three lags and the

coefficients on lags four and higher are small. The implied models for the log exchange rates are

(barely) stationary. The optimally selected filters for all currencies are 0.0001, matching the

chosen level of transaction cost. When we consider the out-of-sample performance of the

autoregressive forecasting model (see Table 4) we see a similar pattern of improvement as the in-

                                                                                                                                                            
transaction costs suggest that 2-2.5 basis points for a one-way trade is realistic for recent large transactions (Neely,
Weller and Dittmar, 1997).
7 The number of trades and breakeven transaction cost for the equally weighted rule are not simple averages over all
rules. We correct for the fact that if two rules simultaneously trade in opposite directions, this has no effect on the net
open position and so does not generate a trade.
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sample transaction cost increases. However, the results are clearly superior to those derived from

the genetic program at the highest level of transaction cost. In all cases the break-even transaction

cost is higher, dramatically so in the case of the DEM, where it is 24.4 basis points. If we take 2.5

basis points as an estimate of the one-way transaction cost faced by a large institutional trader,

then the trading rules earn excess returns net of transaction cost which in all cases exceed twenty

per cent per annum. However, it is not clear that this is a reasonable thing to do given that we

have assumed that trading takes place twenty four hours a day and during weekends. There are

periods during the week when the major markets are closed and trading activity is much reduced.

The fall in liquidity is very likely to be associated with an increase in transaction cost.

For this reason we generate a new set of rules under the assumption that trading is

restricted to occur during a twelve-hour period on weekdays only. Such rules were able to

observe both business and non-business data but were only permitted to change positions during

business hours.  During non-business hours the rules earned or lost the appropriate interest

differential.  We selected the business hours to coincide with the time of the most active trading

in the particular currency (see Melvin, 1997 for figures on the DEM). They were chosen as

follows: DEM 0600-1800 GMT, JPY 0400-1600 GMT, CHF 0500-1700 GMT, and GBP 0500-

1700 GMT.

The results for the genetic program with restricted trading are presented in Table 5. The

annual excess returns with zero transactions costs are reduced in close proportion to the reduction

in trading time for all currencies except the DEM. There is still strong evidence of predictability

for these currencies. Break-even transaction costs are generally reduced to a level below that

which an institutional trader would face. The only exception to this is the GBP, where for c =

0.0002 we find a break-even transaction cost of 4.2 basis points. One should be cautious about
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reading too much into this finding. There were a relatively small number of good rules identified

in sample, they traded infrequently and tended to be skewed towards short positions.8

In Table 6 we show the results of imposing restricted trading on the autoregressive-

forecasting model. Again, the models are estimated on 24-hour, in-sample data but are only

permitted to change positions during business hours. During non-business hours, the models earn

or lose the appropriate interest differential.  The model with the highest excess return net of

transaction costs is then tested out of sample.  The picture changes dramatically when compared

to the figures in Table 4. In all cases in which the rules trade, the break-even transaction costs fall

to a level below that which even a large trader would face. This demonstrates conclusively that

the apparent profitability of the trading rules obtained with c = 0.0002 is solely attributable to

trading during periods of reduced market activity when transaction costs are likely to be

substantially higher than the benchmark figure of 2.5 basis points that we have chosen.

The results from the rules derived from the extended linear forecasting model with

additional variables were not significantly different from the autoregressive results reported in

Table 4, and so we omit them. This indicates that there is no additional forecasting power

contained in the variables added in the extended model exchange rate normalized by a two-

week moving average, time of day and interest differential.

Tables 7 and 8 summarize the extent to which the genetic program rules find common

patterns during the out-of-sample test period. For each observation we calculate the proportion of

rules which signal a long position and then count how often the proportion of long rules lies in

each quintile. For example, the first entry in the third column of Table 7 indicates that for 50.6

                                                
8 We also computed results for the case where rules trained on 24-hour data were used for restricted trading out of
sample. Thus, whatever position was signaled by the rule at the beginning of the no-trade period was held until trade
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percent of the observations, 0 to 20 percent of the all-day DEM rules with c = 0 were long in the

DEM.  That is, more than 80 percent of the rules were simultaneously short the DEM over half

the time.  High numbers in the first and last quintiles indicate consensus among the rules. If there

were no predictable patterns in the data, the trading rules would switch randomly between long

and short positions and we would tend to observe a high percentage of observations in the middle

quintile. We observe the highest degree of consensus in the all-day trading scenario with zero

transaction cost. There is a general tendency for consensus to decline as transaction costs are

increased.

The fact that the trading rules identified by the genetic program generally perform less

well than those generated by the autoregressive-forecasting model deserves some comment. This

is likely to be attributable to two factors. First, the variables in addition to the exchange rate

series that were provided as input to the genetic program proved not to be informative. This is

suggested by the fact that the inclusion of these variables in the forecasting model did not make

any difference.9 We have found in our previous work that the inclusion of uninformative data can

degrade the efficiency of the genetic program. Second, if the relevant information enters the

model in a linear fashion, then confining the search to the set of linear models will be a more

efficient procedure.

                                                                                                                                                            
was allowed to start again. The returns of the rules were in almost all cases inferior to those reported in Table 5 and
we do not include them.
9 We confirmed this fact for the case of the genetic program rules by conducting various experiments in which the
separate data series were randomized separately and changes in out-of-sample performance for the rules were
recorded.  No significant impact was observed for any series but the exchange rate.
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7. Discussion and Conclusion

Our findings demonstrate that there are very stable predictable components to the intraday

dollar exchange rate series for all the currencies we consider, German mark, Japanese yen, Swiss

franc and British pound. But neither the trading rules identified by the genetic program nor those

based on the linear forecasting model produce positive excess returns once reasonable transaction

costs are taken into account and trade is restricted to take place during times of higher market

activity. The rules based on the autoregressive forecasting model perform at least as well as those

found by the genetic program and the extended linear model, indicating that our results are

largely attributable to the low order negative serial correlation in the data. Previous authors (e.g.

Baillie and Bollerslev, 1991) have suggested that this serial correlation is an artifact that can be

explained by non-synchronous trading. We show that this is not the case for our data set.

A striking feature of our results is that the break-even transaction costs generally

converge to a level close to that faced by a large institutional trader, namely two to three basis

points per one-way trade. These conclusions are based on an analysis of round-the-clock trading.

If we restrict trading to occur during a twelve-hour window of high volume, break-even

transaction costs are considerably reduced.

Our findings are consistent with those of Lyons (1998). He examined the trading behavior

of a foreign exchange dealer over the course of a week, using data that enabled him to

decompose profits into speculative and non-speculative components. He found that he could

attribute less than ten per cent of profits to speculation and that the vast majority came from

trading off the spread.

It is interesting that the foreign exchange market seems to display quite different

characteristics depending on the trading horizon. At weekly and monthly horizons there is strong
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evidence to indicate significant and persistent trends, but, as we show here, this is not the case at

intraday horizons. This may be a consequence of the uneven division of capital allocated to

financing trade at different horizons. Although no precise figures are available, there is little

doubt that a much greater volume of transactions is accounted for by traders who close their

positions at the end of each day than by those who take open positions with horizons of weeks or

months.
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Table 1
Summary statistics

Mean Std. Dev. Skew Kurt ( )1ρ ( )2ρ ( )3ρ Min Max
DEM 0.00022 0.07189 -0.07 25.64 -0.14 -0.03 -0.01 -0.93 0.97
JPY 0.00050 0.07939 -0.05 14.16 -0.17 -0.02 0.00 -0.90 0.92
CHF 0.00063 0.09339 -0.23 31.73 -0.17 -0.01 -0.01 -1.59 1.62
GBP -0.00071 0.07041 0.27 34.14 -0.19 -0.03 -0.02 -1.20 1.22

Note: the table presents statistics for log exchange rate changes constructed from the full data set, consisting of
16080 half-hourly observations (average of bid and ask) taken 24 hours a day, seven days a week for the year 1996.
Mean and standard deviation are multiplied by 100. The skewness and kurtosis statistics are standard normally
distributed. ( )iρ records the autocorrelation coefficient at lag i. Min and max record the smallest and largest half-
hourly percentage changes over the sample period.

Table 2
Out-of-sample trading rule performance for the equally weighted portfolio rule:

All-day trading

c Annual
return

Number
of rules

Number
of trades

Break-even
transaction

cost

% long Long
return

DEM
DEM
DEM

0.0000
0.0001
0.0002

66.92
46.09
6.30

25
21
19

4908.76
887.57
88.58

0.40
1.51
2.08

45.69
60.19
54.46

2.30

JPY
JPY
JPY

0.0000
0.0001
0.0002

130.56
43.28
16.30

25
23
13

4164.44
451.57
144.69

0.91
2.80
3.28

48.40
45.30
60.33

11.72

CHF
CHF
CHF

0.0000
0.0001
0.0002

127.48
92.40
30.99

25
25
15

4846.88
1773.96
388.60

0.77
1.52
2.33

50.02
50.46
45.98

11.51

GBP
GBP
GBP

0.0000
0.0001
0.0002

132.34
111.18
31.59

25
25
5

3830.92
1920.96
412.00

1.01
1.69
2.24

49.62
48.49
63.60

-15.80

Note: the equally weighted portfolio rule attaches a weight (1/# of rules) to each rule satisfying the selection criteria.
Column 2 records the value of c, the one-way transaction cost used in training and selection periods. Column 3 gives
the annualized per cent excess return over the seven-month out-of-sample test period calculated assuming zero
transaction cost. Column 4 reports the number of rules out of the twenty-five obtained for each case that produced a
positive excess return before transactions costs and also traded. These were the rules used for the out-of-sample test.
Number of trades reports the number of trades corrected for double counting. Break-even transaction cost is the one-
way transaction cost (in basis points) which reduces the annual excess return during the test period to zero. The
break-even cost is computed as ( ) ( )tradesofnumberreturnannual   2 100 12

7 ⋅⋅ .  % long is the average
percentage of the test period the rules held a position long the foreign currency. Long return gives the annualized
excess return to a long position in the currency held throughout the out-of-sample test period (buy-and-hold return).
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Table 3
Estimated coefficients for the optimal linear forecasting model: c = 0.0001

Lag 1 2 3 4 5 6 7 8 9 const f
DEM 0.89 0.11 0.0003 0.0001
JPY 0.85 0.15 0.0115 0.0001
CHF 0.77 0.18 0.05 0.0001 0.0001
GBP 0.78 0.16 0.05 0.00 0.01 0.02 -0.03 -0.01 0.02 -0.0009 0.0001

Note: columns 2 to 10 give the estimated lag coefficient for the best performing model over training and selection
periods when one-way transaction cost was 0.0001. Column 11 records the constant and column 12 the optimal filter.
Presenting more digits would show that all of the models imply stationary ARMA processes for the log exchange
rate.

Table 4
Out-of-sample trading rule performance for the linear forecasting model

All-day trading

c Annual
Return

Number
of trades

Break-even
transaction

cost

% long

DEM 0.0000 92.68 3847 0.71 0.42
DEM 0.0001 79.30 640 3.63 0.37
DEM 0.0002 30.75 37 24.37 0.40

JPY 0.0000 94.28 2304 1.20 0.16
JPY 0.0001 73.03 811 2.64 0.12
JPY 0.0002 61.50 335 5.38 0.11

CHF 0.0000 137.64 4021 1.00 0.39
CHF 0.0001 161.28 1926 2.46 0.42
CHF 0.0002 111.48 996 3.28 0.40

GBP 0.0000 121.63 2898 1.23 0.79
GBP 0.0001 93.72 1024 2.68 0.81
GBP 0.0002 56.20 408 4.04 0.82

Note: Column 2 records the value of c, the one-way transaction cost used in training and selection periods. Column 3
gives the annualized per cent excess return over the seven-month out-of-sample test period calculated assuming zero
transaction cost. Break-even transaction cost is the one-way transaction cost (in basis points) which reduces the
annual excess return during the test period to zero. % long is the average percentage of the test period the rule held a
position long the foreign currency.
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Table 5
Out-of-sample trading rule performance for the equally weighted portfolio rule:

Restricted trading

c Annual
return

Number
of rules

Number
of trades

Break-even
transaction

cost

% long

DEM
DEM
DEM

0.0000
0.0001
0.0002

3.60
1.04

-0.47

13
13
17

591.38
126.00
45.65

0.18
0.24

-0.30

52.59
53.45
52.39

JPY
JPY
JPY

0.0000
0.0001
0.0002

55.59
25.76
8.06

25
20
18

1952.84
409.60
123.00

0.83
1.83
1.91

47.63
68.98
64.40

CHF
CHF
CHF

0.0000
0.0001
0.0002

50.56
0.51
6.35

25
8
8

1750.60
182.13
109.38

0.84
0.08
1.69

43.57
40.70
65.61

GBP
GBP
GBP

0.0000
0.0001
0.0002

50.24
35.56
9.60

25
24
10

1608.32
744.50
67.30

0.91
1.39
4.16

54.75
47.12
27.87

Note: Trading was restricted to a twelve-hour period on weekdays. Periods for each currency were: DEM 0600-1800
GMT, JPY 0400-1600 GMT, CHF 0500-1700 GMT, and GBP 0500-1700 GMT. For further explanation see notes
to Table 2.
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Table 6
Out-of-sample trading rule performance for the linear forecasting model

Restricted trading

c Annual
Return

Number
of trades

Break even
transactions

cost

% long

DEM 0.0000 0.17 15 0.33 0.56
DEM 0.0001 0.17 15 0.33 0.56
DEM 0.0002 -6.10 13 -13.62 0.57

JPY 0.0000 30.98 1012 0.89 0.21
JPY 0.0001 1.06 128 0.24 0.10
JPY 0.0002 1.92 14 3.97 0.12

CHF 0.0000 44.09 1927 0.66 0.44
CHF 0.0001 42.37 984 1.25 0.41
CHF 0.0002 12.05 0 NA 1.00

GBP 0.0000 21.61 1360 0.46 0.69
GBP 0.0001 17.83 516 1.00 0.70
GBP 0.0002 -7.19 46 -4.54 0.84

Note: Trading was restricted to a twelve-hour period on weekdays. Periods for each currency were: DEM 0600-1800
GMT, JPY 0400-1600 GMT, CHF 0500-1700 GMT, and GBP 0500-1700 GMT. For further explanation see notes
to Table 4.



27

Table 7
Consensus of trading rules identified by the genetic program: All-day trading

c 0-20% 20-40% 40-60% 60-80% 80-100%
DEM
DEM
DEM

0.0000
0.0001
0.0002

50.57
6.17
4.09

0.05
25.43
3.39

0.00
18.02
76.37

3.17
16.19
9.22

46.21
34.20
6.93

JPY
JPY
JPY

0.0000
0.0001
0.0002

36.09
20.70
1.40

7.16
29.55
8.03

15.77
15.49
46.42

9.29
19.28
25.47

31.68
14.97
18.67

CHF
CHF
CHF

0.0000
0.0001
0.0002

40.39
38.26
12.42

8.75
8.66

31.85

0.89
6.83

42.57

11.21
8.84
9.13

38.76
37.41
4.03

GBP
GBP
GBP

0.0000
0.0001
0.0002

43.48
32.00
7.91

7.20
14.56
10.57

2.57
13.52
41.64

5.68
12.60
33.83

41.07
27.32
6.04

Note: the table reports the quintiles of the distribution of the proportion of all trading rules giving a long signal over
the out-of-sample test period.

Table 8
Consensus of trading rules: Restricted trading

c 0-20% 20-40% 40-60% 60-80% 80-100%
DEM
DEM
DEM

0.0000
0.0001
0.0002

1.70
1.32
0.00

28.98
16.88
23.53

30.54
39.85
35.09

31.85
40.68
41.38

6.93
1.27
0.00

JPY
JPY
JPY

0.0000
0.0001
0.0002

53.99
0.08
0.29

0.00
13.20
14.13

0.00
29.76
16.90

0.00
24.75
50.01

46.01
32.22
18.66

CHF
CHF
CHF

0.0000
0.0001
0.0002

55.26
8.63
0.00

1.67
53.35
4.65

0.10
21.72
35.63

7.76
15.78
43.32

35.21
0.53

16.40

GBP
GBP
GBP

0.0000
0.0001
0.0002

36.69
43.60
44.42

8.25
6.58

33.80

1.28
1.46

17.31

5.26
11.88
4.48

48.52
36.48
0.00

Note: the table reports the quintiles of the distribution of the proportion of all trading rules giving a long signal over
the out-of-sample test period, with trading restricted as described in the notes to Table 5.
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Figure 1: A simple trading rule

Notes:  The rule signals a long position in foreign currency if the current exchange rate is greater
than the 48-period moving average and the time of day (GMT) is between 0800 and 1600, and a
short position otherwise.
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Figure 2: Crossover and reproduction
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Figure 3: Autocorrelation coefficients for log exchange rate changes

Notes:  The horizontal lines indicate the asymptotic 95% confidence interval for zero
autocorrelation. The autocorrelation coefficients from the DEM, JPY, CHF and GBP are
represented as circles, solid squares, triangles, and pluses, respectively.
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