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Abstract

Detailed study of the financial empirical correlation matrix of the
30 companies comprised by DAX within the period of the last 11
years, using the time-window of 30 trading days, is presented. This
allows to clearly identify a nontrivial time-dependence of the resulting
correlations. In addition, as a rule, the draw downs are always accom-
panied by a sizable separation of one strong collective eigenstate of
the correlation matrix which, at the same time, reduces the variance
of the noise states. The opposite applies to draw ups. In this case the
dynamics spreads more uniformly over the eigenstates which results
in an increase of the total information entropy.

PACS numbers: 01.75.+m Science and society - 05.40.+j Fluctuation
phenomena, random processes, and Brownian motion - 89.90.+n Other areas
of general interest to physicists
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Studying correlations among various financial assets is of great interest
both for practical as well as for fundamental reasons. Practical aspects relate
for instance to the theory of optimal portfolios and risk management [1]. The
fundamental interest, on the other hand, results from the fact that such study
may shed more light on the universal aspects of evolution of complex systems.
Recent study [2, 3] of the related problems in the context of the stock market
show that majority of eigenvalues in the spectrum of the correlation matrix
agree very well with the universal predictions of random matrix theory. Lo-
cations of some of the eigenvalues differ however from these predictions and
thus identify certain system-specific, non-random properties of the system.
The corresponding eigenvalues thus carry most of the information about the
system. The above studies have however a global in time character and do
not account for a possible change of correlations on shorter time-scales.

For a set of N assets labelled with i and represented by the time-series of
price changes δxi(t) of length T one forms a N × T rectangular matrix M.
Then, the correlation matrix is defined as

C =
1

T
MMT. (1)

In order not to artificially reduce the rank of this matrix, T needs to be
at least equal to N . This sets the lowest limit on a time-window which
can be used to study the time-dependence of correlations. One of the best
examples where T can be set relatively low, and thus efficiently allow to
get some time-dependent picture of correlations versus the global market
index, is provided by DAX (Deutsche Aktienindex). It represents a matured,
relatively independent market, whose behavior is well reflected by N = 30
companies defining this index. During the period studied here it displays
the whole variety of behaviors like stagnancy, booms, including a pattern of
self-similar log-periodic structures [7], and crashes.

The present study is based on daily variation of all N = 30 assets of the
DAX during the years 1988-1999. When calculating the covariance matrix
the average value of the price changes is subtracted off and then their values
rescaled so that σ2 = 〈δx2

i 〉 = 1. The time-interval T is set to 30 and
continuously moved over the whole period.

That the character of correlations may significantly vary in time is indi-
cated in Fig. 1 which displays some typical distributions of matrix elements
of C in three different cases: (i) an average over all time-intervals of length
T = 30, (ii) for a single T = 30 time-interval which ends on November 25,
1997, (iii) for a single T = 30 time-interval which ends on April 7, 1998.
Clearly, in all the cases the distributions are Gaussian-like but their vari-
ance and location is significantly different. In fact, a distribution of this type
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about prescribes the structure of the corresponding eigenspectrum. The point
is that to a first approximation any of such matrices can be represented as

C = G + γU, (2)

where G is a Gaussian centered at zero and U is a matrix whose all entries
are equal to unity and 0 ≤ γ ≤ 1. The rank of matrix U is one, therefore
the second term alone in the above equation generates only one nonzero
eigenvalue of magnitude γ. As the expansion coefficients of this particular
state are all equal this assigns a maximum of collectivity to such a state. If
γ is significantly larger than zero the structure of the matrix U is dominated
by the second term in (2) and an anticipated result is one collective state
with large eigenvalue. Since in this case G can be considered only a ’noise’
correction to γU all the other states are connected with small eigenvalues.
The above provides an alternative potential mechanism for emergence of
collectivity out of randomness to the one taking place in finite interacting
Fermi systems. There, a reduction of dimensionality of a leading component
in the Hamiltonian matrix is associated with appearance of more substantial
tails in the distribution of large matrix elements as compared to an ensemble
of random matrices [7].

A relatively small number of stocks comprised by DAX makes somewhat
difficult a full statistical analysis of the ’noise’ term. Its properties, analogous
to the predictions of the Gaussian orthogonal ensemble (GOE) [8] of random
matrices, are however already well established in the recent literature [2, 3].
In the present case instead, one can trace a possible non stationarity in
the location of eigenvalues with a comparatively good time-resolution. The
corresponding central result of our paper is displayed in Fig. 2. As it is
clearly seen, the draw ups and the draw downs of the global index (DAX),
respectively, are governed by dynamics of significantly distinct nature. The
draw downs are always dominated by one strongly collective eigenstate with
large eigenvalue. Such a state thus exhausts a dominant fraction of the total
portfolio variance

σP =
N∑
i,j

piCijpj , (3)

where pi expresses a relative amount of capital invested in the asset i, and
Cij are the entries of the covariance matrix C [1, 5]. (This becomes obvious
by transforming C to its eigenbasis.) The more dramatic the fall is the
more pronounced is this effect. At the same time, by conservation of the
trace of C, the remaining eigenvalues (representing some less risky portfolios)
are compressed in the region close to zero. In a formal sense, this effect is

3



reminiscent of the slaving principle of synergetics [9]: one state takes the
entire collectivity by enslaving all the others.

The opposite applies to draw ups. Their onset is always accompanied by
a sizable restructuring of eigenvalues towards a more uniform distribution.
The related principal effect is that the largest eigenvalue moves down which
is compensated by a simultaneous elevation of lower eigenvalues. At one
instant of time (mid 1996), which marks the beginning of the long-term
boom, the two largest eigenvalues become almost degenerate. Based on these
results a general statement that an increase on the market involves more
competition than a decrease seems appropriate since in the former case the
total variance is more democratically distributed among eigenstates of the
correlation matrix. In other words, the increase on the stock market, at
least in the presently studied case, never involves parallel uniform increase
of prices of all the participating companies as it happens during decreases.

Such a conclusion is also indicated by the information entropy:

Ik =
30∑
l=1

−(ukl)
2 ln(ukl)

2, (4)

where ukl (here l = 1, ..., 30) are the components of eigenvector k. Its GOE
limit [10] is

IGOE = ψ(N/2 + 1)− ψ(3/2) (5)

where ψ is the digamma function and N , in the present study, corresponds
to the number of stocks. For N = 30 we thus have IGOEk ≈ 2.67 and for the
uniformly distributed components (u2

kl = 1/30) Iunik = 3.4. These two limits
are to be related to the information entropies displayed in the lower panel of
Fig. 2. As one can see, it happens only during decreases that the information
entropy approaches the limit of uniform distribution for the upper, most
collective state. Otherwise this state becomes somewhat more localized. The
information entropy of the ’noise’ states on average about agrees with IGOE,
though, a more careful inspection shows systematic and consistent deviations,
going in opposite directions during increases and decreases, respectively.

In quantitative terms this effect can easily be deduced by looking at the
total information entropy

Itot =
30∑
k=1

Ik (6)

shown in Fig. 3. On average it reveals a visible tendency of moving in op-
posite direction relative to the information entropy I1 of the most collective
state, even though I1 is included in Itot. This result is very interesting and
even intriguing in itself. The market draw ups are accompanied by increase
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of the total information entropy while draw downs are associated with its de-
crease. At first glance such a behavior and, especially, the entropy decreases
accompanying such turmoils as crashes may look somewhat embarrassing.
A possible reason for this effect might be the fact that prices and related
quantities reflect only a part of the market world. There is also an envi-
ronment with which any market constantly interacts and which easily may
absorb a corresponding portion of entropy. Actually, the turmoils accompa-
nying crashes are visible more in the market environment than in the genuine
market parameters.

Since the structure of the covariance matrix is influenced by measurement
noise more for short time-series than for the long ones, a question which needs
to be answered is to what extent our conclusions are stable with respect to
the length T of the price time-series. Of course, the specific values of the
quantities considered do depend on T but the main effect of increasing it is
to smear them out in time. The global tendencies, of interest for the present
paper, remain however unchanged. An example is shown in Fig. 4 which
displays the structure of eigenspectrum of the covariance matrix for several
values of T .

In summary, the present study discloses several interesting novel facts
about the dynamics of financial evolution. These empirical facts, interpreted
in terms of the coexistence of collectivity and noise in correlations among
the financial assets, provide arguments for distinct nature of the mechanism
governing financial increases and decreases, respectively, even though such
correlations on average are largely compatible with the random matrix theory
predictions. The structure of eigenspectrum of the correlation matrix and
the information entropy arguments point to increases as those phenomena
which internally involve more diversity and competition as compared to de-
creases. It seems likely that such characteristics may apply to the dynamics
of evolution of other complex systems as well.
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Figure 1: Distributions of matrix elements of the correlation matrix C cal-
culated from daily price variation of all N = 30 companies comprised by
DAX in three different cases: (i) an average over all time-intervals of length
T = 30 during the period 1988-1999. (ii) for a single T = 30 time-interval
which ends on November 25, 1997, (iii) for a single T = 30 time-interval
which ends on April 7, 1998.
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Figure 2: Time-dependence of the 10 largest eigenvalues (upper panel) and of
the related spectrum of information entropies (lower panel) corresponding to
the DAX correlation matrix C calculated from the time-series of daily price
changes in the interval of T = 30 past days, during the years 1988-1999. The
DAX time-variation (represented by its logarithm) during the same period is
displayed in the upper panel. The two solid horizontal lines in the lower panel
indicate the two reference limit values, IGOE = 2.67 and Iuni = 3.4, of the
information entropy.
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Figure 3: Time-dependence of the total information entropy Itot versus DAX.
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Figure 4: Time-dependence of eigenspectra (as in Fig. 2) for T = 30, 60 and
120 days.
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