
A Study of the Generalization Capabilities of XCS

Pier Luca Lanzi

Arti�cial Intelligence and Robotics Project
Dipartimento di Elettronica e Informazione

Politecnico di Milano
P.zza Leonardo da Vinci, 32, I{20133 Milano Italia

lanzi@elet.polimi.it

Abstract

We analyze the generalization behavior of
the XCS classi�er system in environments in
which only a few generalizations can be done.
Experimental results presented in the paper
evidence that the generalization mechanism
of XCS can prevent it from learning even sim-
ple tasks in such environments. We present
a new operator, named Specify, which con-
tributes to the solution of this problem. XCS
with the Specify operator, named XCSS, is
compared to XCS in terms of performance
and generalization capabilities in di�erent
types of environments. Experimental results
show that XCSS can deal with a greater vari-
ety of environments and that it is more robust
than XCS with respect to population size.

1 INTRODUCTION

XCS is a classi�er system recently proposed by Wilson
(Wilson 1995) which has a strong tendency to evolve
near-minimal populations of accurate and maximally
general classi�ers. Experimental results reported in
the literature show that XCS can learn a more compact
representation than that learned by tabular Q-learning
(Watkins 1989). Generalization in XCS is achieved
mainly by the combination of two factors. First, clas-
si�er �tness in XCS is based on the accuracy of the
classi�er prediction instead of the prediction itself as in
traditional classi�er systems (Holland 1986). Second,
the genetic algorithm in XCS acts in environmental
niches, as opposed to the traditional panmictical GA.
XCS evolves populations of accurate and maximally
general classi�ers. Because general classi�ers match
more niches, they reproduce more. But, since the GA
bases the �tness upon classi�ers accuracy, overgeneral
classi�ers, that are inaccurate, tend to reproduce less.

Evolved classi�ers are as general as possible while still
being accurate.

Recently, subsumption deletion, has been introduced
by Wilson (Wilson 1996) to improve generalization.
Subsumption deletion acts in the GA and replaces o�-
spring classi�ers with clones of their parents if the par-
ents subsume, that is are generalization of, the o�-
spring. XCS with subsumption deletion has a strong
tendency to generalization. Unfortunately, experimen-
tal results brie
y reported in this paper, show that
pressure to generalization can prevent the system from
learning in very simple environments that do not show
regularities, such as repeated patterns, or give very
similar sensorial con�gurations for states in which dif-
ferent actions are required.

In this paper we study the problem of applying XCS
in the Maze4 environment in which XCS fails to reach
optimal performance. Initially, we brie
y analyze the
performance of XCS in Maze4. Experimental results
presented evidence that generalization capabilities pre-
vent XCS from converging to the optimal solution even
if the proposed maze is very small (8 � 8 grid). Two
types of solutions can be proposed for dealing with
this problem: a global solution and a local solution.
The global solution consists of reducing the pressure
to generalization by modifying the XCS architecture.
Unfortunately, our experiments suggest that this solu-
tion results in a classi�er system which reaches optimal
solutions in a large variety of environments but has a
strongly reduced generalization capability. Instead, we
propose a local solution in which an operator, named
Specify, counterbalances the pressure toward general-
ization in situations were generalization can prevent
learning but is excluded when the system successfully
converges to an optimal population. Experimental re-
sults presented for XCS with the Specify operator,
XCSS for short, show that the proposed system can
learn in a greater number of environments than XCS.
Moreover a comparison between XCS and XCSS on

woods environments shows that Specify does not elim-
inate the tendency to generalization of the original ar-
chitecture, but rather slows the generalization process.

The rest of the paper is organized as follows. Section 2
gives a brief overview of XCS according to the most re-
cent presentation by Wilson (Wilson 1996). Section 3
presents the woods environments, and the design of
experiments for the results presented in the paper.
Experimental results obtained with XCS in the small
Maze4 environment are reported in Section 4, while in
Section 5 these results are commented and a possible
global solution, to the problem of o�setting the general-
ization mechanism, is discussed. Section 6 isolates the
primitive components of generalization, discusses the
Mutespec operator proposed by Dorigo (Dorigo 1993),
and �nally de�nes the Specify operator. Experimen-
tal results on the Maze4 environment for the proposed
XCSS and XCS systems are compared in Section 7.
The generalization capabilities of the two systems are
evaluated and compared in Section 8. A conclusions
section ends the paper.

2 OVERVIEW OF THE XCS

CLASSIFIER SYSTEM

XCS is a classi�er system developed by Wilson which
di�ers from the traditional one de�ned by Holland
(Holland 1986) mainly because (i) it has a very sim-
ple architecture, (ii) there is no message list, and most
important (iii) the traditional strength is replaced by
three di�erent parameters. In the following we brie
y
review XCS in its most recent version (Wilson 1996).
The original XCS description can be found in (Wilson
1995) or in Kovacs's report (Kovacs 1996) where some
original results are duplicated and extended for more
complex environments.

Classi�er Parameters. Classi�ers in XCS have
three main parameters: the prediction pj , the predic-
tion error "j and the �tness Fj . Prediction pj gives
an estimate of what is the reward that the classi�er
is expected to gain. Prediction error "j estimates how
precise is the prediction pj . The �tness parameter Fj
evaluates the accuracy of the payo� prediction given
by pj and is a function of the prediction error "j .

Performance Component. At each time step the
system input is used to build a match set [M] con-
taining the classi�ers in the population whose condi-
tion part matches the detectors. If the match set is
empty a new classi�er that matches the input sensors
is created through covering. For each possible action
ai the system prediction P (ai) is computed as the �t-

ness weighted average of the classi�er predictions that
advocate the action ai in the match set [M]. The value
P (ai) gives an evaluation of the expected reward if ac-
tion ai is performed. Action selection can be determin-

istic, the action with the highest system prediction is
chosen, or probabilistic, the action is chosen randomly
among the actions with a not null prediction.

The classi�ers in [M] that propose the selected action
are put in the action set [A]. The selected action is
performed and an immediate reward rimm is returned
to the system together with a new input con�guration.

Reinforcement Component. The reward received
from the environment is used to update the parameters
of the classi�ers in the action set corresponding to the
previous time step [A]�1. Classi�ers parameters are
updated in the following order: �rst the prediction,
then the prediction error, and �nally the �tness.

First, the maximum system prediction is discounted
by a factor
 (0 �
 < 1) and added to the re-
ward returned in the previous time step. The result-
ing quantity, simply named P, is used to update the
prediction pj by the Widrow-Ho� delta rule (Widrow
and Ho� 1960) with learning rate � (0 < � � 1):
pj pj + �(P � pj). Then the prediction error
"j is adjusted using the delta rule technique: "j
"j + �(jP � pj j � "j). Fitness update is slightly more
complex. Initially, the prediction error is used to eval-
uate the classi�cation accuracy �j of each classi�er as
�j = exp(ln�("j � "0)="0) if "j > "0 or �j = 1 oth-
erwise. Subsequently the relative accuracy �0j of the
classi�er is computed from �j and, �nally, the �tness
parameter is adjusted by the rule Fj Fj+�(�

0

j�Fj).

Covering. Covering acts when the match set [M] is
empty or the system is stuck in a loop. In both cases,
a classi�er, created with a condition that matches the
system inputs and a random action, is inserted in the
population while another one is deleted from the pop-
ulation. The situation in which the system is stuck
in a loop is detectable because the predictions of the
classi�ers involved start to diminish steadily. To de-
tect this phenomenon when [M] is created the system
checks whether the total prediction of [M] is less than
� times the average prediction of the classi�ers in the
population.

Genetic Algorithm. The genetic algorithm in XCS
is applied to the action set. It selects two classi�ers
with probability proportional to their �tnesses, copies
them, and with probability � performs crossover on the
copies while with probability � mutates each allele.

Subsumption Deletion. Subsumption deletion
acts when classi�ers created by the genetic component
have to be inserted in the population. O�spring clas-
si�ers created by the GA are replaced with clones of
their parents if: (i) they are specialization of the two
parents that is, they are \subsumed" by their parents,
and (ii) the parameters of their parents have been up-
dated su�ciently. If both these conditions are satis-
�ed the o�spring classi�ers are discarded and copies of
their parents are inserted in the population; otherwise,
the o�spring classi�ers are inserted in the population.

Macroclassi�ers. Whenever a new classi�er has to
be inserted in the population it is compared to exist-
ing ones to check whether there already exists a clas-
si�er with the same condition/action pair. If such a
classi�er exists then the new classi�er is not inserted
but the numerosity parameter of the existing classi�er
is incremented. If there is no classi�er in the pop-
ulation with the same condition/action pair then the
new classi�er is inserted in the population. Macroclas-
si�ers are essentially a programming technique that
speeds up the learning process reducing the number of
real, macro, classi�ers XCS has to deal with. Experi-
mental results reported in (Kovacs 1996) evidence that
macroclassi�ers do not a�ect the population of micro-
classi�ers since every procedure is written to take into
account the numerosity parameter. The number of
macroclassi�ers is a useful statistic to measure the de-
gree of generalization obtained by the system. In fact,
as XCS converges to a population of accurate and max-
imally general classi�ers, the number of macroclassi-
�ers decreases while the number of microclassi�ers is
kept constant by the delete/insert procedures.

3 DESIGN OF EXPERIMENTS

Experiments with XCS were conducted in the well-
known \woods" environments following the methodol-
ogy employed in (Wilson 1995). In the next we give a
brief overview of the woods environments. Then the
design of experiments discussed in the rest of the paper
will be introduced.

The Woods Environments. Woods environments
are grid worlds in which each cell can be empty, \."
symbol, can contain a rock, \Q" or \O" symbols, or
otherwise food, \F" or \G" symbols. An animat, *",
placed in the environment must learn to reach food
cells. The animat senses the environment by eight
sensors, one for each adjacent cell, which result in a
binary string of 16 digits for environments, with only
one type of food and rock, or 24 digits for Environ-
ments with two types of food cells and rocks. The ani-

QQQQQQQQ

Q..Q..FQ

QQ..Q..Q

QQ.Q..QQ

Q......Q

QQ.Q...Q

Q*...Q.Q

QQQQQQQQ

Figure 1: The Maze4 Environment.

mat can decide to move in any of the adjacent cells. If
the destination cell is blank then the animat moves; if
the cell contains food the animat moves and eats the
food, while if the destination cell contains a rock the
move does not take place.

Experiments. Each experiment consists of a num-
ber of problems that the animat must solve. For each
problem the animat is randomly placed in a blank cell
of the environment. Then it moves under the control
of XCS until it enters a food cell, eats the food, and re-
ceives a reward equal to 1000. The food immediately
re-grows and a new problem begins. We employed
the same exploration/exploitation strategy reported in
the original XCS papers (Wilson 1995; Wilson 1996).
Before a new problem begins XCS randomly decides
whether the problem is going to be solved in \pure
exploration" or \pure exploitation" with probability
0:5. When in exploration mode, the system selects
actions randomly with a probability proportional to
their predicted reward1. When in exploitation, XCS
selects the action with the highest predicted reward.
This strategy is simply referred to as 50/50 explo-
ration/exploitation strategy (Wilson 1995).

Two types of statistics are collected for each envi-
ronment: the performance and the population size in
macroclassi�ers. Performance is computed as the aver-
age number of steps to food in the last 50 exploitation
problems. Each statistics presented in this paper is
averaged on ten experiments.

4 XCS IN THE MAZE4

ENVIRONMENT

Results proposed in literature for the XCS classi�er
system in the woods environments are limited to very
regular and periodic environments that is, built re-
peating a certain pattern inde�nitely in the horizon-
tal and vertical directions, such as in Woods1 and

1XCS as proposed in (Wilson 1995) selects actions ran-
domly when in exploration mode. Our experiments show
no signi�cant di�erence between the two criteria.

Woods2. Thus, after having duplicated Wilson's re-
sults, we experimented the system on a series of non
periodic environments. For this purpose we used a
number of mazes of increasing complexity based on
the woods environments. Starting from trivial mazes
(5 � 5 grids) we increased the complexity of environ-
ments uniformly. Here we report the results obtained
for XCS in the simple maze, named Maze4, shown in
Figure 1. Maze4 is a small maze consisting of 26 dis-
tinct free cells, which contains only one type of rock
(Q) and a unique food cell (F). Maze4 was speci�cally
designed to be very di�erent from other environments
such as Woods2. First, Maze4 does not have any regu-
larities, consequently each sensory-action pair almost
requires one classi�er. Second, many sensory con�g-
urations that the system receives di�er only for few
bits and thus is very likely for system to produce over-
general classi�ers. Thus Maze4 does not allow much
generalization as other traditional environments do.

Figure 2 shows the performance of the system com-
puted as the average number of steps to food in the
last 50 exploitation problems. The XCS system pa-
rameters were set as by Wilson for the Woods2 envi-
ronment in (Wilson 1995): N = 800, �=0.2,
=0.71,
�= 25, "0=0.01, �=0.1, �=0.8, �=0.01, �=0.1, �=0.5,
P#=0.5, PI=10.0, "I=0.0, FI=10.0

2.

As it can be noticed, XCS fails to learn an optimal path
to food. Experiments, not reported here, evidence that
the population size must be set to 1600 classi�ers be-
fore the system reaches optimal performance, although
the Maze4 environment is very simple (it consists only
of 26 distinct sensory con�gurations).

5 ANALYSIS OF THE RESULTS IN

THE MAZE4 ENVIRONMENT

To understand the resulting performance of XCS in
the Maze4 environment we �rst removed the general-
ization mechanism from the system by not allowing
don't care symbol in classi�ers. Experimental results
with this bare version of XCS, not reported, showed
that XCS could easily learn how to reach food in the
Maze4 environment with 400 classi�ers. This result
lead us to formulate the hypothesis that the general-
ization mechanism of XCS needs a very large popu-
lation to converge in those environments which allow
almost no generalization. Unfortunately, the larger the
population, the more the time to learn, and therefore

2Some of these parameters have not been presented in
the XCS overview but are reported here for completeness.
We refer the reader to (Wilson 1995) for a complete dis-
cussion of those parameters.

0

10

20

30

40

50

0 500 1000 1500 2000 2500

S
T

E
P

S
 T

O
 F

O
O

D

NUMBER OF EXPLOITATION PROBLEMS

OPTIMAL PERFORMANCE

Figure 2: Performance of the XCS system in the
Maze4 environment with 800 classi�ers. Optimal per-
formance is represented by the horizontal dashed line.
The curve is averaged on ten experiments.

the larger the number of problems to solve before the
population can converge to a small set of maximally
general classi�ers. Thus we experimented a modi�ca-
tion to the standard XCS that, reducing the pressure
towards generalization, could have, on average, bet-
ter performances with smaller populations on di�erent
types of environments.

We �rst experimented with a version of XCS in which
the tendency to generalize was reduced. This was ob-
tained as follows: (i) the GA acted in the match set
as in the �rst Wilson's proposal (Wilson 1995); (ii)
classi�ers were selected for reproduction with proba-
bility proportional to the product of the prediction and
the �tness (pj � Fj) instead of the �tness alone; (iii)
during exploration problems actions were randomly se-
lected using the Boltzmann distribution. The under-
lying idea was to reduce the generalization pressure,
by means of point (i) above, and to diminish the ex-
ploration of less rewarded condition/action pairs, by
means of points (ii) and (iii). Results, presented in
Figure 3, show that this reduced version of XCS learns
to reach food in a few trials but, as Figure 4 con�rms,
has a very reduced tendency to generalization. This
version of XCS, in fact, tended to keep a population
of macroclassi�ers almost as large as the population of
microclassi�ers, which indicates that generalization is
not operating.

6 POSSIBLE SOLUTIONS

We consider the reduced version of XCS proposed in
the previous section an inacceptable solution to the dif-
�culty that XCS has to learn in environments which,

0

10

20

30

40

50

0 500 1000 1500 2000 2500

S
T

E
P

S
 T

O
 F

O
O

D

NUMBER OF EXPLOITATION PROBLEMS

OPTIMAL PERFORMANCE

Figure 3: Performance for the reduced version of XCS
in the Maze4 environment with 800 classi�ers. Op-
timal performance is represented by the horizontal
dashed line. The curve is averaged on ten experiments.

like Maze4, allow only a few generalization. First,
generalization, one of the most interesting features in
XCS, is almost eliminated. Second, the reduced ver-
sion of XCS gives a global solution to the problem.
Generalization is, in fact, reduced on the whole envi-
ronment. This is not desirable since many environ-
ments could have zones in which generalization is de-
sirable and areas where generalization is impossible. A
local solution to the problem evidenced in the previous
section, would be more desirable.

Classi�er systems introduce generalization by means of
the don't care symbols (#) in the condition part of the
classi�ers. Speci�cally, the presence of a # indicates
that the classi�er condition can match sensory inputs
in which the bit corresponding to the # is either a 1
or a 0. In XCS, # symbols are introduced, in three
places:

- in the initial population, where an allele is set to
with probability P#;

- in covering, when a new classi�er that matches
the input condition is created, don't care symbols
are randomly introduced;

- in the mutation, when the alleles of a classi�er are
randomly changed.

The �rst two cases can be regarded as initial condi-

tions of the system, while mutation is a main com-
ponent of generalization in XCS. Thus we devised a
mechanism to contrast mutation in situations that do
not allow much generalization. In literature Dorigo
(Dorigo 1993) already presented an operator, named
Mutespec, for this kind of problems.

400

450

500

550

600

650

700

750

800

0 500 1000 1500 2000 2500

P
O

P
U

LA
T

IO
N

 S
IZ

E

NUMBER OF EXPLOITATION PROBLEMS

Figure 4: Population size in macroclassi�ers for the re-
duced version of XCS in the Maze4 environment with
800 classi�ers. The curve is averaged on ten experi-
ments.

6.1 THE MUTESPEC OPERATOR

Dorigo (Dorigo 1993) presents the Mutespec opera-
tor to reduce reward variance in oscillating classi�ers.
These are classi�ers that, due to the presence of some
don't care symbols, match di�erent conditions with
di�erent rewards. Consequently they are, on aver-
age, activated too often in situations in which they are
not useful and too seldom in situations in which they
would be useful. Dorigo used the Mutespec operator
to specialize an oscillating classi�er into two o�spring
classi�ers: When the reward variance of a classi�er
C1 is K times greater than the average of the reward
variance in the population then Mutespec is applied.
Mutespec selects the classi�er with the largest reward
variance in the population. Then it generates two o�-
spring classi�ers from the original one replacing a ran-
domly selected # symbol respectively with the 0 and
1 symbols.

Comparing the way in which the operator proposed
by Dorigo is applied, with other operators in the XCS
system it is worth noting that:

- Mutespec operates on the whole population acting
panmictically while the genetic operators in XCS
are executed in niches, i.e. in the action set [A];

- Mutespec introduces a new statistics, the reward
variance, that should be treated di�erently from
the other classi�er parameter in XCS;

- Mutespec selects a classi�er deterministically, in
fact, it is always applied to the classi�er with the
highest variance value.

6.2 THE SPECIFY OPERATOR

We propose Specify, a speci�cation operator which re-
places don't care symbols in the classi�ers with a crite-
rion di�erent from Mutespec. First, Specify acts in the
action set, as the other genetic operators in XCS do,
and uses the prediction error "j to detect oscillating
classi�ers and to select them. Finally Specify, as the
GA in XCS, is executed only under certain conditions.

Specify works as follows. At each cycle the average
prediction error "[A] in action set [A] is compared to
the average prediction error "[P] in the population [P].
If "[A] is twice larger than "[P] and the classi�ers in [A]
have been updated, on average, at leastNSp times then
a classi�er is randomly selected from [A] with proba-
bility proportional to its prediction error. Finally, the
selected classi�er is used to generate one o�spring clas-
si�er in which each # symbol is replaced with a prob-
ability PSp with the corresponding digit in the system
input. The resulting classi�er is then inserted in the
population and another is deleted if necessary.

Specify is thus a sort of \covering" operator in that it
tries to correct an oscillating classi�ers using the raw
sensory con�guration. Parameters for the new speci-

�ed classi�er are initialized as the o�spring classi�ers
in the GA (Wilson 1995; Kovacs 1996). In the fol-
lowing, XCS with the Specify operator will be called
XCSS.

0

10

20

30

40

50

0 500 1000 1500 2000 2500

S
T

E
P

S
 T

O
 F

O
O

D

NUMBER OF EXPLOITATION PROBLEMS

OPTIMAL PERFORMANCE

Figure 5: Performance for the XCSS, solid line, and
XCS, dashed line, classi�er systems in the Maze4 en-
vironment. Optimal performance is represented by the
horizontal dashed line. Curves are averaged on ten ex-
periments.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

S
T

E
P

S
 T

O
 F

O
O

D

NUMBER OF EXPLOITATION PROBLEMS

OPTIMAL PERFORMANCE

Figure 6: Performance for the XCSS, solid line, and
XCS, dashed line, classi�er systems on the Maze4 en-
vironment for a population of 400 classi�ers. Optimal
performance is represented by the horizontal dashed
line. Curves are averaged on ten experiments.

7 XCSS IN THE MAZE4

ENVIRONMENT

The �rst experiment employs XCSS to learn how to
reach food in the Maze4 problem with a population
of 800 classi�ers. The parameters for the experiments
are set as for the previous experiment on the XCS with
the same environment while parameters for the Specify
operator are set as follows:

- Specify acts when the classi�ers in the action set
have been updated on average at least 20 times
(NSp=20);

- Each # symbol in the selected classi�er is replaced
by the corresponding sensory input with probabil-
ity 0:5 (PSp=0.5).

Figure 5 compares the performance of XCSS, solid line,
with that of XCS, dashed line, in the Maze4 environ-
ment. The curves evidence that XCSS rapidly learns
how to reach food in the maze while XCS performance
is very unstable. A second experiment tests the ro-
bustness of the Specify operator against the population
size. The hypothesis we test is that the Specify oper-
ator, contrasting the generalization mechanism, deter-
mines a better performance even with smaller popula-
tions. XCSS and XCS are applied, with the same pa-
rameter settings of the previous experiment, to Maze4
with a population of 400 classi�ers. Our hypothesis
is that in XCS the pressure to generalization leads to
worse performance but that in XCSS the worsening is
reduced by the presence of the speci�cation operator.

Results for the performance of the two systems, shown
in Figure 6, con�rm our hypothesis. As the population
size diminishes, the generalization mechanism in XCS
prevents the system from learning the shortest path
to food. On the contrary, in XCSS, the Specify oper-
ator contrasts the tendency to generalization and the
system reaches a good solution almost immediately. It
is worth noting the oscillating performance of XCSS,
that evidences the presence of the contrasting gener-
alization/speci�cation operators.

8 XCSS IN THE WOODS2

ENVIRONMENT

The Woods2 environment, shown in Figure 7, has
been introduced by Wilson in (Wilson 1995) to study
the generalization mechanism in XCS. It contains two
types of food cells (G and F) and two types of rocks (Q
and O). The right and left edges of the grid are con-
nected and so are the top and bottom edges.

..............................

.QQF..QQF..OQF..QQG..OQG..OQF.

.OOO..QOO..OQO..OOQ..QQO..QQQ.

.OOQ..OQQ..OQQ..QQO..OOO..QQO.

..............................

..............................

.QOF..QOG..QOF..OOF..OOG..QOG.

.QQO..QOO..OOO*.OQO..QQO..QOO.

.QQQ..OOO..OQO..QOQ..QOQ..OQO.

..............................

..............................

.QOG..QOF..OOG..OQF..OOG..OOF.

.OOQ..OQQ..QQO..OQQ..QQO..OQQ.

.QQO..OOO..OQO..OOQ..OQQ..QQQ.

..............................

Figure 7: The Woods2 Environment with animat
(*"). Empty cells are indicated by \.". Two types of
rocks (\O" and \Q"). Two types of food (\F" and \G").

We apply XCSS and XCS to this environment and
compare the results. The goal is to evaluate the gen-
eralization capabilities of XCSS with respect to XCS
or equivalently how much generalization is lost when
XCSS is used in environments which allow general-
ization. XCS parameters are set as in (Wilson 1996)
for the same experiment: N = 800, �=0.2,
=0.71,
�= 25, "0=0.01, �=0.1, �=0.8, �=0.01, �=0.1, �=0.5,
P#=0.5, PI=10.0, "I=0.0, FI=10.0. Parameters for
the Specify operator are set as for the Maze4 environ-
ment.

Figure 8 shows the performance of the two systems:
XCSS, solid line, and XCS, dashed line. The two

curves evidence that the systems reach the same per-
formance and that XCSS converges a little bit faster
than XCS. Analyzing the population size in macro-
classi�ers for the two systems, see Figure 9, it can
be noticed that XCS has better generalization capa-
bilities; nevertheless, the Specify operator slows the
generalization process but does not eliminate it.

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
T

E
P

S
 T

O
 F

O
O

D

NUMBER OF EXPLOITATION PROBLEMS

OPTIMAL PERFORMANCE

Figure 8: Performance in the Woods2 environment for
XCSS, solid line, and XCS, dashed line. Optimal per-
formance is represented by the horizontal dashed line.
Curves are averaged on ten experiments.

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
O

P
U

LA
T

IO
N

 S
IZ

E

NUMBER OF EXPLOITATION PROBLEMS

Figure 9: Population, in macroclassi�ers, for XCSS,
solid line, and XCS, dashed line, in the Woods2 envi-
ronment. Curves are averaged on ten experiments.

9 CONCLUSIONS

This paper presents a modi�cation of the XCS sys-
tem to counterbalance the e�ects of its generalization
mechanism in environments that allow only few gener-
alizations. Experimental results have shown that the
generalization mechanism of XCS can prevent the sys-

tem from learning simple tasks in such type of environ-
ments. Two solutions to the problem were discussed:
a global solution and a local solution. In the former,
the XCS architecture was modi�ed to reduce the over-
all generalization mechanism of the system; unfortu-
nately, this solution results in a classi�er system with
almost no generalization capabilities.

In the latter, a genetic operator, called Specify, coun-
terbalances the e�ects of the generalization mechanism
in environmental niches that do not allow much gener-
alization. The proposed operator acts in environmen-
tal niches only when an unstable situation is detected
and replaces some don't care symbols with the corre-
sponding sensory input digits. Experimental results
reported in the paper show that the proposed system
can deal with a larger number of environments and,
most important, is more robust than XCS with respect
to the population size parameter.

Acknowledgments

I wish to thank Marco Colombetti and Marco Dorigo
for the many interesting discussions and for the sup-
port in reviewing the last version of this paper. Many
thanks also to Stewart Wilson and to two anonymous
reviewers for their comments on an earlier version of
this paper.

References

Dorigo, M. (1993). Genetic and non-genetic op-
erators in alecsys. Evolutionary Computa-

tion 1 (2), 151{164.

Holland, J. H. (1986). Escaping brittleness: The
possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In
M. Michalski, Carbonell (Ed.), Machine Learn-

ing, Volume 2, Chapter 20, pp. 593{623. San
Mateo, CA: Morgan Kaufmann.

Kovacs, T. (1996). Evolving optimal populations
with XCS classi�er systems. Technical Re-
port CSR-96-17 and CSRP-96-17, School of
Computer Science, University of Birmingham,
Birmingham, U.K. Avaiable from the techni-
cal report archive at http://www/system/tech-
reports/tr.html.

Watkins, C. (1989). Learning from delayed reward.
PhD Thesis, Cambridge University, Cambridge,
England.

Widrow, B. and M. Ho� (1960). Adaptive switching
circuits. In Western Electronic Show and Con-

vention, Volume 4, pp. 96{104. Institute of Ra-
dio Engineers (now IEEE).

Wilson, S. W. (1995). Classi�er �tness based on
accuracy. Evolutionary Computation 3 (2), 149{
175.

Wilson, S. W. (1996). Generalization in XCS. Un-
published contribution to the ICML '96 Work-
shop on Evolutionary Computing and Machine
Learning. Avaiable at http://netq.rowland.org.

