
An Analysis of the Memory Mechanism of XCSM

Pier Luca Lanzi
Artificial Intelligence and Robotics Project
Dipartimento di Elettronica e Informazione

Politecnico di Milano
P.zza Leonardo da Vinci, 32 – I-20133 Milano Italia

lanzi@elet.polimi.it

ABSTRACT
We analyze the memory mechanism

of XCSM, the extension of XCS with
internal memory. Our aim is to explain
some of the results reported in the lit-
erature, which show that XCSM fails
to learn an optimal policy in complex
partially observable environments. The
analysis we present reveals that the
XCSM’s memory management strategy
cannot guarantee the convergence to
an optimal solution. We thus extend
XCSM introducing a novel hierarchical
exploration technique and modifying
the technique used for updating internal
memory. We apply the novel version
of XCSM, called XCSMH, to a set of
partially observable environments of
different complexity. Our results show
that XCSMH is able to learn an op-
timal policy in all the environments,
outperforming XCSM in more difficult
problems.

1 Introduction
The learning capabilities of adaptive agents are related to their
perception of the environment. There are cases in which the
agent is able to determine the state of the environment com-
pletely. The environment is thus said to be completely observ-
able with respect to the agent sensors. However, in many situ-
ations the agent has only partial information about the state
of the environment: agent sensors are not adequate to determ-
ine the state of the environment completely. The agent is then
said to suffer from the perceptual aliasing problem, while the
environment is partially observable with respect to the agent
sensors.

When facing an environment that is partially observable
a memory mechanism is usually introduced in order to cope
with the lack of information deriving from the sensors (Kael-
bling et al. 1996, McCallum 1996). Since the agent is unable

to determine the best action solely looking at current inputs, it
employs the internal memory to keep track of the past states so
that it can develop an optimal strategy. This approach is also
followed in Wilson’s XCS classifier systems Wilson (1995).

According to its original definition XCS has no memory
mechanism; therefore, it is able to learn optimal strategies
only in environments that are completely observable. When
applied to partially observable environments, XCS converges
to a solution that cannot be improved under the assump-
tion that the agent is memoryless (Lanzi 1998). XCS was
extended with the memory mechanism proposed by Wilson
(1995) in (Lanzi 1998). XCS with internal memory, named
XCSM, was applied to three partially observable environ-
ments: Woods101, Woods102, and Maze7. Experi-
mental results showed that XCSM successfully learns an op-
timal policy in simple environments, like Woods101 and
Woods102, while it fails to evolve an optimal solution in
more complex environments, such as Maze7.

In this paper we study the memory mechanism of XCSM
as implemented by Lanzi (1998). Our aim is to explain the
results previously reported, in order to devise a new version
of XCSM capable of learning in complex partially observable
environments.

Initially, we study XCSM’s behavior in Maze7, extending
the analysis we previously presented in (Lanzi 1998). Then,
we use a simple example in order to explain the phenomenon
previously investigated. Our analysis suggests that XCSM
cannot solve general partially observable problems, because
the memory management strategy of XCSM cannot guaran-
tee the convergence to an optimal strategy for disambiguat-
ing aliasing positions. Our results are very general and evid-
ence a phenomenon, never noticed before, which concerns
the evolutionary approach that XCSM implements. We val-
idate our analysis showing the conditions which underlie the
good performance of XCSM in simple environments, such as
Woods101 and Woods102.

We then introduce an extension of XCSM, which consists
of (i) a different policy for updating the contents of the in-
ternal memory and (ii) a hierarchical exploration strategy. We
apply the extended version of XCSM, called XCSMH, to the
environments previously considered. We report experimental
results which show that XCSMH is able to evolve an op-

timal policy for all the previous environments. Finally, we
extend these results, comparing XCSM and the new XCSMH
in Maze10, a much more difficult environment. The results
we present show that XCSMH still converges to an optimal
policy, outperforming XCSM.

The paper is organized as follows. Section 2 briefly over-
views XCS as originally proposed by Wilson (1995), and
XCSM as implemented in (Lanzi 1998). The experimental
settings we use are described in Section 3. In Section 4 we
summarize the results presented in (Lanzi 1998), extending
the analysis of XCSM’s performance in Maze7. We employ a
simple example to explain previous results in Section 5; while
in Section 6 we validate our analysis. Section 7 introduces the
proposed extension of XCSM, called XCSMH; the new sys-
tem is applied to the three environments previously presented
in the literature, and to the new Maze10 environment in Sec-
tion 8. Finally, Section 9 ends the paper drawing some con-
clusions.

2 Description of XCS and XCSM
We shortly describe XCS as originally introduced by Wilson
(1995), and the implementation of XCSM we presented
in (Lanzi 1998).

2.1 Wilson’s XCS
The XCS classifier system differs from Holland’s frame-
work (Holland 1986) by three major factors. First, in XCS
classifier fitness is based on the accuracy of the prediction
instead of the prediction itself. Accordingly, the traditional
strength parameter is replaced by three parameters: (i) the pre-
diction � , which estimates the payoff that the animat is expec-
ted to gain; (ii) the prediction error � , that evaluates how much
precise the prediction � is; finally, (iii) the fitness � , which
evaluates the accuracy of the prediction � , and thus is a func-
tion of the prediction error � . Moreover, XCS has a very ba-
sic architecture with respect to the original framework seeing
that XCS has no internal message list, and no other memory
mechanisms. Finally, in XCS the genetic algorithm is applied
to environmental niches, as opposed to the panmictical GA.
XCS works as follows.

At each time step the system input is used to build a match
set [M] containing the classifiers in the population whose con-
dition matches the detectors. If the match set is empty a new
classifier that matches the input sensors is created through cov-
ering. For each possible action ��� the system prediction ���	����

is computed. ���	���	
 gives an evaluation of the expected pay-
off if action if action ��� is performed. Action selection can
be deterministic (the action with the highest system prediction
is chosen), or probabilistic (the action is chosen with a cer-
tain probability among the actions with a not null prediction).
The classifiers in [M] that propose the selected action are put
in the action set [A]. The selected action is performed and an
immediate reward is returned to the system together with a
new input configuration. The reward received from the envir-
onment is used to update the parameters of the classifiers in

the action set corresponding to the previous time step [A] ��
 .
Classifier parameters are updated by the Widrow-Hoff delta
rule (Widrow and Hoff 1960) using a Q-learning-like tech-
nique (Watkins 1989, Wilson 1995).

The genetic algorithm in XCS is applied to the action set.
It selects two classifiers with probability proportional to their
fitnesses, copies them, and with probability � performs cros-
sover on the copies while with probability � mutates each al-
lele.

An important innovation, introduced with XCS is the defin-
ition of macroclassifiers. A macroclassifier represents a set
of classifiers which have the same condition and the same ac-
tion using a new parameter called numerosity. Macroclassifi-
ers are essentially a programming technique that speeds up the
learning process reducing the number of real, macro, classifi-
ers XCS has to deal with.

Since XCS was presented, two genetic operators have been
proposed as extensions to the original system: Subsumption
deletion (Wilson 1998) and Specify (Lanzi 1997b). Subsump-
tion deletion has been introduced to improve generalization
capabilities of XCS. Specify has been proposed to counterbal-
ance the pressure toward generalization, in situations where a
strong genetic pressure may prevent XCS from converging to
an optimal solution.

2.2 Adding Internal Memory to XCS
As introduced in the previous section, XCS has no memory
mechanism. Therefore, it can learn optimal policies for envir-
onments that are completely observable. When facing partial
observable environments, XCS will typically evolve a solu-
tion which cannot be improved under the assumption that the
agent is memoryless, as we have shown in (Lanzi 1998).

Wilson (1995) proposed an extension to XCS by which
an internal memory register could be added to the system.
Wilson’s proposal, that we implemented in (Lanzi 1998), con-
sists of (i) adding to XCS an internal register, and (ii) extend-
ing classifiers with an internal condition and an internal action,
which are employed to sense and modify the contents of the
internal register.

The internal register consists in a string of � bits; the the
classifier’s internal condition/action are strings of � symbols
in the alphabet � 0,1,# � . For internal conditions, the symbols
retain the same meaning they have for external condition, but
they are matched against the corresponding bits of the internal
register. For internal actions, 0 and 1 set the corresponding
bit of the register to 0 and 1 respectively, while # leaves the
bit unmodified. There are nine possible external actions, eight
moves and one null action, encoded using two symbols in the
alphabet ������������� . Internal conditions/actions are initialized
at random as usual.

In the rest of the paper, we refer to XCS with � bits of in-
ternal memory as XCSM � , simply to XCSM when the discus-
sion is independent of the value � . Finally, we use XCS(M)
for referring both to XCS and XCSM.

XCSM works basically as XCS. At the start of each trial,
the internal register is initialized setting all bits to zero. At

each time step, the match set [M], the prediction array, and the
action set [A] are built as in XCS. The only difference is that
in XCSM the internal condition is considered when building
[M], and the internal action is taken into account when build-
ing the prediction array. The action set [A] is computed as
in XCS, while the external action and the internal action are
performed in parallel. The credit assignment procedure is the
same as for XCS.

3 Experimental Settings
The experiments we present in this paper are carried out in
the well-known woods environments. These are grid worlds
in which each cell can be empty, can contain a tree (a T sym-
bol), or otherwise food (an F symbol). An animat, placed in
the environment, must learn to reach food. The animat senses
the environment by eight sensors, one for each adjacent cell,
and it can move in any of the adjacent cells. If the destination
cell is blank then the move takes place; if the cell contains food
the animat moves, eats the food, and receives a constant re-
ward; if the destination cell contains a tree the move does not
take place. An experiment consists of 15000 problems that the
animat must solve. For each problem the animat is randomly
placed in a blank cell of the environment and then it moves
under the control of the system until it eats a piece of food,
receiving a constant reward. The food immediately re-grows
and a new problem begins.

We employ the usual exploration/exploitation strategy used
with XCS by Wilson (1995, 1998). Before a new problem be-
gins the animat decides, with probability 0.5, whether it will
solve the problem in exploration or in exploitation. When in
exploration, the system decides, with a probability ��� (a typ-
ical value is 0.5), whether to select actions randomly or to
choose the action that predicts the highest payoff. When in
exploitation, the genetic algorithm is not active and the action
which predicts the highest payoff is always selected.

In order to evaluate the final policy evolved, in each exper-
iment exploration is turned off during the last 2500 problems
and the system works in exploitation only. System perform-
ance is computed as the average number of steps to food in
the last 50 exploitation problems. Every statistic presented in
this paper is averaged on ten experiments.

4 XCSM in Partially Observable
Environments

We presented early results for XCSM in (Lanzi 1998) where
the system was applied to three partially observable envir-
onments: Woods101, Woods102 and Maze7. Results we
reported show that XCSM is able to learn to reach food in
Woods101 and Woods102, while it cannot converge to op-
timal performance in Maze7. In this section, we briefly sum-
marize the results presented in the original paper for the first
two environments. Then, we discuss XCSM’s behavior in
Maze7 extending the analysis we did in (Lanzi 1998).

T T T

T

T T T T T T

T T T T T T

T
T
T
T

T
T
T
T

T
T
T
T

T
T

T
T F

Figure 1 The Woods101 environment. Aliasing positions
are indicated by the arrows.

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

XCSM1 IN WOODS101

OPTIMAL PERFORMANCE

Figure 2 XCSM1’s performance in Woods101.

4.1 XCSM in Woods101 and Woods102
TheWoods101 environment (Cliff and Ross 1994), shown in
Figure 1, has two states which return the same sensory con-
figuration, but require different optimal actions. Therefore,
Woods101 can be solved by an agent with one bit of internal
memory. We apply XCSM1 with a population of 1600 classi-
fiers to Woods101; the experimental results reported in Fig-
ure 2, show that XCSM1 is able to exploit the internal memory
bit in order to evolve an optimal policy for Woods101.

Similar results are obtained if XCSM with two bits of in-
ternal memory is applied to Woods102 (see Figure 3.a),
a more difficult environment that has two types of aliasing
states. The former, see 3.b, is encountered in four positions
in the environment; the latter, shown in Figure 3.c, appears in
two positions of the environment. An agent with two bits of
internal memory, able to represent four distinct internal states,
can thus disambiguate the aliasing positions in Woods102.
We apply XCSM2 with a population of 2000 classifiers to
Woods102.
 Results reported in Figure 4 show that XCSM2
successfully evolves an optimal solution for Woods102.

We refer the interested reader to the original paper (Lanzi 1997a) for an

accurate discussion concerning XCSM’s parameter settings and the general-
ization issue in Woods102.

T T T T T T T
T T F T T
T T T T
T T
T T T T
T T T T T T T
T T T T
T T
T T T T
T T F T T
T T T T T T T

(a)

T

T
(b)

T T

T T
(c)

Figure 3 The Woods102 environment (a) with the corres-
ponding aliasing states (b) and (c)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

XCSM2 IN WOODS102

OPTIMAL PERFORMANCE

Figure 4 XCSM2 in Woods102.

4.2 XCSM in Maze7
Woods101 and Woods102 are simple problems, seeing that
in both environments: the optimal solution requires the agent
to visit at most one aliasing state before it reaches the food,
and the goal state is also very near to the aliasing cells (Lanzi
1998).

We thus introduced Maze7 in order to test XCSM in an en-
vironment where the animat has to evolve an optimal strategy
to visit more aliasing positions before it can eat, and must per-
form longer sequences of actions to reach the goal state.
Maze7, see Figure 5, is a simple environment consisting

of a linear path of nine cells to food; it has two aliasing po-
sitions, indicated by the dashed circles. As the experimental
results confirm, Maze7 is much more difficult to solve than
Woods101 and Woods102.

We apply XCSM1 to Maze7 with a population of 1600
classifiers. Results are reported in Figure 6; as usual, during
the last 2500 problems exploration is turned off to evaluate the
final policy evolved. Figure 6 shows that while exploration
acts the system does not converge to an optimal solution, but
when the final population is evaluated turning off exploration,
see the arrow at beginning of the peak, XCSM1 evolves an op-
timal solution to the problem.

T T T T T
T T
T T T
T T T
T T T
T F T T T

(a) (b)

Figure 5 The Maze7 Environment. The two aliasing po-
sition, (a) on the left and (b) on the right, are evidenced by
dashed circles.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

XCSM IN MAZE7

EXPLORATION STOPS

OPTIMAL PERFORMANCE

Figure 6 XCSM1’s performance in Maze7.

The analysis of the population dynamic evidences that,
when exploration acts, the system is not able to learn an op-
timal policy to reach the positions at the end of the corridor.
Therefore, XCSM’s performance drops when an experiment
starts in one of the positions for which the optimal policy has
not evolved, so that the overall performance oscillates. Most
important, when the exploration stops, at the beginning of the
peak in Figure 6, the performance drops indicating that the fi-
nal policy causes the animat to loop in some positions of the
environment. XCSM detects this situation because the predic-
tion of the classifiers involved dramatically decreases (Wilson
1995). Therefore, XCSM starts replacing such low predictive
classifiers through covering. The final policy, at the end of the
peak, is thus built from classifier created by the covering oper-
ator. This is also confirmed by the results we obtain applying
XCSM1 to Maze7 only in exploitation, i.e. the genetic oper-
ators do not act and always the best action is selected. Results
reported in Figure 7 show in fact that the system, on the av-
erage, converges to a nearly optimal solution, suggesting that
Maze7 is a simple problem for XCSM. Moreover, the ana-
lysis of single runs (Lanzi 1998) shows that in many cases this
basic version of XCSM converges to the optimum, while sel-
dom it evolves nearly optimal solutions.

At this point, we may conclude that a basic version of
XCSM, which only relies on covering and exploitation, could
be an adequate solution to the general problem of learning to

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

XCSM IN MAZE7 WITH EXPLOITATION ONLY

OPTIMAL PERFORMANCE

Figure 7 XCSM1 in Maze7 using exploitation only: the
GA is off and always the best action is selected.

reach food in partially observable environments. However, a
system only based on covering and exploitation is not accept-
able; in fact, it is worth noticing that:

! A system that does not employ any exploration cannot be
guaranteed to converge to an optimal policy; moreover,
as the complexity of the environment increases, XCSM
is more likely to get stucked in local optima.

! Since generalization in XCS is achieved through evolu-
tion, a system only based on covering would throw away
all the generalization power of XCS(M).

In our opinion, the behavior we observed points out some
important aspects of the evolutionary approach for learning in
partially observable domains, that XCSM implements. Ac-
cordingly, we think it is essential to study the real causes
of XCSM’s performance in order to improve our knowledge
of learning classifier systems in general, and specifically of
XCS(M).

5 Analysis of XCSM’s Behavior
We may formulate two hypotheses in order to explain
XCSM’s behavior in Maze7. First, we may assume that
the genetic component somehow prevents the system from
converging to an optimal policy. On the other hand, we
may also hypothesize that the random exploration strategy,
employed in XCS(M), is not adequate for evolving optimal
solutions in general partially observable environments. As we
observed in (Lanzi 1998), in fact, exploration in XCS is done
solely “in the environment” and therefore relies both on the
structure of the environment and on the exploration strategy
used, that in our case is random. On the contrary, XCSM has
also to perform exploration “in the internal memory” in order
to develop the best policy to disambiguate aliasing situations.
Such an exploration is uniquely based on the agent strategy,
that in XCSM is still random.

We now analyze how random exploration influences
XCSM’s performance when the system is applied to Maze7,

by studying a simple example.
Consider the two aliasing positions in Maze7, evidenced

in Figure 5 by the dashed circles. A possible optimal policy,
which disambiguates the two aliasing positions (a) and (b),
consists in two classifiers which advocate the actions: go-
south when the internal register is set to 1 in position (a), and
go-north when the internal register contains 0 in position (b)."

Assume that XCSM has successfully evolved this policy and
that, at this point, the system starts exploration.

Since exploration in XCSM is random, it may happen that
the agent enters position (b) with the internal register set to
one. The agent can now select any of the actions which ap-
pear in the match set and, for example, it may experiment the
action go-south.

Observe that, if such a situation occurs, the classifiers activ-
ated in position (b) are the same which predict the optimal ac-
tion in position (a). However, in the two positions, the action
go-south has different payoffs. Therefore, the classifiers that
are optimal in (a), become inaccurate when experimented in
(b), because they are applied in the same situation with differ-
ent payoff levels. Accordingly, since in XCSM (like in XCS)
fitness is based on accuracy, when classifiers that are optimal
in (a) are experimented in (b), their fitness decreases. Con-
sequently, they reproduce less and may be selected for dele-
tion through the evolution process.

As it can be noticed, our argumentation does not concerns
overgeneralization (Lanzi 1997b) nor XCS(M) definition. On
the contrary, the problem we evidence uniquely depends on
the strategy that the system employs to explore the environ-
ment. However, as we show next, the phenomenon we ob-
served has more general implications that cannot be solved
simply introducing a new exploration technique.

6 Hypothesis Verification
Before we proceed any further, it is essential to discuss some
issues that the analysis we presented arises.

First, we shall verify whether our explanation of XCSM’s
behavior in Maze7 is correct. We thus apply the system to
Maze7 when the best action is selected both in exploration
and in exploitation. Notice that in the previous experiment
(whose results are reported in Figure 7) the GA was turned
off, while now the GA is on during exploration. Our aim is
to verify that the phenomenon we observed is indeed a con-
sequence of the exploration strategy, and does not depend on
the genetic component.

The results reported in Figure 8 show that XCSM1 con-
verges to an optimal solution for Maze7 when the action se-
lection is always deterministic and the GA is on. These res-
ults therefore support our explanation of XCSM’s behavior in
Maze7.

Moreover, comparing these results with the ones for the
version of XCSM that works in exploitation only (see Fig-
#
For simplicity’s sake, we do not consider the whole optimal policy which

would require that the agent enters position (a) and (b) with the correct internal
memory configuration.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

XCSM IN MAZE7 WITH DETERMINISTIC EXPLORATION

OPTIMAL PERFORMANCE

Figure 8 XCSM1’s performance in Maze7 when the GA
is on during exploration and always the best action is se-
lected both in exploration and in exploitation.

ure 7), it is worth noticing that XCSM1 is able to converge
to an optimal solution even if deterministic action selection is
employed both in exploration and in exploitation. This sug-
gests that, since the problem is quite simple, the exploration
performed by the genetic operators is sufficient to guarantee
the convergence to an optimal solution in Maze7.

Our analysis appears to be very general, and thus should ap-
ply to all the environments. Consequently, it may seem that
our explanation is contradicted by the positive results we re-
ported in Section 4.1 and in (Lanzi 1998) for Woods101 and
Woods102. Therefore it is important to analyze XCSM’s be-
havior in Woods101 so to explain the different results that the
system produces in Woods101 and Maze7.

The analysis of the single runs of XCSM in Woods101
shows that also in Woods101, classifiers, that are optimal
in one of the two aliasing positions, may become inaccur-
ate because they are experimented in both the aliasing pos-
itions. However, since in Woods101 the aliasing cells are
near to the goal state, the agent visits these positions fre-
quently. Moreover, since the two positions are symmetric with
respect to the food cell, the payoff levels for the same action
in both positions are similar and, most important, the two ali-
asing states are visited almost with the same frequence. Con-
sequently, classifiers which advocate the optimal actions in
the two aliasing positions are able to survive, even if they
may be applied to situations that have different payoff levels.
In XCS(M), in fact, inaccurate classifiers are deleted through
evolution, that is they tend to reproduce less and consequently
to be deleted. Nevertheless, this mechanism is slow (Lanzi
1997b); accordingly, in Woods101 its effects are counter-
balanced by the frequent exploitation of classifiers which
form the optimal policy. On the contrary, we observe that in
Maze7:

(i) The two aliasing positions are not symmetric with respect
to the goal state; thus, the payoff levels of the same action
are significantly different in the two positions.

(ii) Aliasing position (a) is near the goal state, therefore, it is
visited more frequently than position (b) which is at the
end of the corridor.

The motivations which underlie the difference in XCSM’s
performance between Maze7 and Woods101 are now clear.
Because of (i), in Maze7 the classifiers, that are optimal in a
certain aliasing position, are more likely to become inaccur-
ate when they are experimented in different aliasing states be-
cause the payoff levels are very different. Moreover, since po-
sition (b) is far from the food cell, it is visited less often than
position (a). Accordingly, classifiers that are optimal with re-
spect to position (a) tend to survive, because they are experi-
mented frequently in (a) and seldom in (b). On the contrary,
classifiers that are optimal in (b) tend to be selected for dele-
tion because they are often experimented in (a) and seldom in
(b).

7 An Extension to XCSM
According to its definition, XCSM should learn an optimal
policy in partially observable environments, by evolving a
strategy to update the contents of the internal memory. The
goal is to associate the state of the internal memory to the ac-
tual agent position in the environment, so to disambiguate ali-
asing situations. However in XCSM, since exploration is ran-
dom, the system may enter the same position with different
memory settings. In such a case, the memory mechanism be-
comes useless with respect to the aliasing problem, because
the contents of internal memory register are no longer related
with the absolute agent position.

7.1 Possible Solutions
The analysis we presented so far reveals that the XCSM’s
memory management strategy may not guarantee the con-
vergence to optimum in general partially observable environ-
ments. Therefore, we need to devise another strategy for ex-
ploiting internal memory in order to solve general problems.

As a first solution, we may decide to resign the evolution-
ary approach completely. Accordingly, we could extend XCS
by adapting one of the methods presented in the reinforcement
learning literature, like (McCallum 1996). Although this kind
of approach may lead to good results, it would be an ad-hoc
solution, not well integrated with the philosophy underlying
Wilson’s classifier system.

Another possible solution would consists in extending XCS
with an internal message list as in the original Holland’s
framework. However, as already discussed in (Wilson 1994),
internal messages tend to be long and the evolution of appro-
priately coupled classifiers becomes increasingly improbable
as the message length increases.

7.2 Description of XCSMH
We now introduce an extension to XCSM, we call it XCSMH,
which is capable of learning an optimal strategy in general
partially observable environments. XCSMH retains the same
structure of XCSM, while it differs from the previous system
by two major factors:

! In XCSMH internal actions are performed only if the cor-
responding external action causes a change in the sensory
inputs; that is, if the agent has changed position in the en-
vironment.

! XCSMH employs a hierarchical exploration strategy:
the system first selects the internal action deterministic-
ally; then, it selects the external action with the usual ran-
dom exploration.

These changes that we introduce may appear to be suppor-
ted by obscure motivations. However, as we show next, they
are strictly related with the analysis of XCSM’s behavior we
presented in the previous sections. In the following, we dis-
cuss each change in detail.

7.2.1 Internal Actions

As we noticed in the previous section, the main problem of
XCSM is that internal actions act independently with respect
to the agent position in the environment. The internal state can
thus be modified even if the animat does not change its posi-
tion in the environment. Accordingly, classifiers that are ac-
curate in one specific position may become inaccurate because
they are experimented in other positions of the environment
corresponding to different payoff levels.

XCSMH associates the execution of the internal action
with a transition in the environment: An internal action is in
fact performed only if the corresponding external action has
caused the agent to move in the environment. The contents
of the internal memory in XCSMH are thus associated with
the sequence of environmental states the agent visited. The in-
ternal memory in fact does not represent the result on an exe-
cution of an internal program anymore (Cliff and Ross 1994).
The register, in fact, cannot be updated independently from
what the agent experiments in the environment. The content
of the internal memory in XCSMH rather gives a compact
representation of the agent past experiences. As an immedi-
ate consequence of this memory update policy, XCSMH no
longer employs null external actions.

7.2.2 Hierarchical Exploration.

The second change we introduce in XCSMH concerns the ex-
ploration strategy. As we discussed previously, random ex-
ploration may cause the agent to enter different aliasing states
with the same internal memory configuration. Consequently,
the system fails to associate the state of the internal memory
to the actual agent in the environment.

In XCSMH, we replace the usual random exploration
strategy by a hierarchical exploration in order to limit the set
of internal actions that the agent can perform in each posi-
tion. As a consequence, the system will tend to associate a

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

COMPARISON OF XCSMH AND XCSM - WOODS101 ENVIRONMENT

XCSMh IN WOODS101
ORIGINAL XCSM IN WOODS101

OPTIMAL PERFORMANCE

Figure 9 Comparison of the new XCSMH1 (solid line)
and XCSM1 (dashed line) in Woods101.

specific internal state with each position in the environment.
The strategy we propose works as follows:

! First, the internal action is selected as the one corres-
ponding to the internal/external action pair which predict
the highest payoff.

! Then, the external action is chosen randomly among the
action pairs which have the same internal action which
has been selected in the previous step.

The exploration strategy, we propose, selects the internal
action deterministically so that, in each environmental niche,
the classifiers which advocate the best internal action will tend
to survive. On the other hand, the external action is selected
randomly, as usual, to guarantee the exploration of the envir-
onment.

Hierarchical exploration may appear similar to the determ-
inistic strategy, because the internal action is always selected
as done in exploitation. However, the analysis of the final pop-
ulations evidences that the system tends to build a complete
mapping of the payoffs for external actions, while it tends to
associate an unique internal action for each position of the en-
vironment.

8 Experimental Results
We now apply XCSMH to two of environments discussed in
the previous sections in order to compare XCSM and the novel
XCSMH.

First we apply XCSMH1 toWoods101with the same para-
meter settings employed for XCSM1. Results reported in
Figure 9 show that in Woods101 the performances of the
two systems are almost identical. Experimental results, not
reported here, show that similar results are also obtained in
Woods102.

The performance of the two systems becomes significantly
different when they are applied to Maze7. As the results in
Figure 10 show, XCSMH1 (solid line) performs better that

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

COMPARISON OF XCSMH AND XCSM - MAZE7 ENVIRONMENT

NEW XCSMH1
XCSM1

OPTIMAL PERFORMANCE

Figure 10 Comparison of the new XCSMH1 (solid line)
and XCSM1 (dashed line) in Maze7.

T T T T T T T T T
T T
T T T T T
T T T T T
T T F T T T

Figure 11 The Maze10 Environment.

XCSM1 (dashed line): the system we propose easily con-
verges to an optimal policy for Maze7. $

Finally, we compare XCSMH1 and XCSM in the new
Maze10 environment, see Figure 11. Maze10 is more dif-
ficult than Maze7 since it has three aliasing positions, similar
to the ones in Woods101, and necessitates longer sequences
of actions to reach the goal state. As it can be noticed, two of
the three aliasing states of Maze10 require the same optimal
action; accordingly, one bit of internal memory is sufficient
to disambiguate the aliasing positions. We apply XCSMH1
and XCSM1 to Maze10with a population of 2000 classifiers.
Results in Figure 12 show that XCSM1’s behavior in Maze10
is similar to the one we observed in Maze7. As in Maze7 in
fact, XCSM1 is not able to evolve an optimal policy when in
exploration, while the system converges to a nearly optimal
solution when the system acts only in exploitation.

XCSMH1 immediately reaches an almost optimal solution.
As it can be noticed, when exploration acts XCSMH’s per-
formance is quite unstable. Maze10 is in fact a quite diffi-
cult environment, therefore the system is extremely sensible
to unlucky exploration. However, when the final population
is evaluated XCSMH’s performance results to be optimal.
%

Observe that the vertical scale of Figure 10 has been reduced in or-
der to better compare the performances of the two systems with respect to
the optimal performance. Unfortunately, part of the peak corresponding to
XCSM1’s performance goes off-scale.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000

S
T

E
P

S
 T

O
 F

O
O

D

�

NUMBER OF EXPLOITATION PROBLEMS

COMPARISON OF XCSMH AND XCSM - MAZE10 ENVIRONMENT

NEW XCSMH1
XCSM1

Figure 12 Comparison of the new XCSMH1 (solid line)
and XCSM1 (dashed line) in Maze10.

9 Conclusions
We presented an analysis of the memory mechanism of XCSM
in order to explain the results reported in the literature.

We started from the early results presented in (Lanzi 1998),
where we showed that XCSM easily converges to an optimal
policy in simple environments, but it is not able to solve more
difficult problems, such as Maze7. Our analysis evidenced
that the memory mechanism, as proposed by Wilson (1995)
and implemented in (Lanzi 1998), is not able to evolve an op-
timal solution for general partially observable problems. As
a simple example showed, XCSM can in fact fail to associate
the state of the internal memory to the actual agent position in
the environment.

We introduced an extension to XCSM, we call it XCSMH,
capable to solve the problems evidenced by our analysis. The
new system basically retains the same structure of XCSM,
while it differs from XCSM because: (i) XCSMH employs
a different policy for updating the internal memory; (ii) XC-
SMH uses a hierarchical exploration strategy to select actions.
Our results show that XCSMH is able to evolve an optimal
policy for all the environments previously presented. Most
important, when applied to a more difficult environment, such
as Maze10, XCSMH still converges to an optimal solution,
outperforming XCSM.

Acknowledgments
I wish to thank Marco Colombetti for the support and for the
many interesting discussions. Stewart Wilson for reviewing
early versions of this papers and for the many discussions and
suggestions. Finally, my thanks also go to an anonymous re-
viewer.

References
Cliff, Dave and Susi Ross (1994). Adding memory to ZCS.

Adaptive Behaviour 3(2), 101–150.

Holland, John H. (1986). Machine learning, an artificial in-
telligence approach. Volume II. Chap. Escaping Brit-
tleness: The possibilities of General-Purpose Learn-
ing Algorithms Applied to Parallel Rule-Based Systems,
pp. 593–623. Morgan Kaufmann.

Kaelbling, Leslie Pack, Michael L. Littman and Andew W.
Moore (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research.

Lanzi, Pier Luca (1997a). Solving Problems in Partially
Observable Environments with Classifier Systems
(Experiments on Adding Memory to XCS). Tech-
nical Report 97.45. Dipartimento di Elettronica e
Informazione - Politecnico di Milano. Available at
http://www.elet.polimi.it/people/lanzi/listpub.html.

Lanzi, Pier Luca (1997b). A Study on the Generalization Cap-
abilities of XCS. In: Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms. Morgan
Kaufmann.

Lanzi, Pier Luca (1998). Adding Memory to XCS. In: To ap-
pear in the Proceedings of the IEEE Conference on Evol-
utionary Computation. IEEE Press.

McCallum, R. Andrew (1996). Hidden state and reinforce-
ment learning with instance-based state identification.
IEEE Transations on Systems, Man and Cybernetics -
Part B (Special issue on Learning Autonomous Robots).

Watkins, C.J.C.H. (1989). Learning from delayed reward.
PhD Thesis, Cambridge University, Cambridge, Eng-
land.

Widrow, B. and M. Hoff (1960). Adaptive switching circuits.
In: Western Electronic Show and Convention. Vol. 4. In-
stitute of Radio Engineers (now IEEE). pp. 96–104.

Wilson, S. W. (1994). ZCS: a zeroth level classifier system.
Evolutionary Computation 1(2), 1–18.

Wilson, Stewart W. (1995). Classifier fitness based on accur-
acy. Evolutionary Computation 3(2), 149–175.

Wilson, Stewart W. (1998). Generalisation in the XCS clas-
sifier system. In: To appear in the Proceedings of the
Third Annual Genetic Programming Conference (GP-
98). (MIT Press, Ed.).

