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Abstract|We add internal memory to the XCS classi�er
system. We then test XCS with internal memory, named
XCSM, in non-Markovian environments with two and four

aliasing states. Experimental results show that XCSM can
easily converge to optimal solutions in simple environments;
moreover, XCSM's performance is very stable with respect
to the size of the internal memory involved in learning.
However, the results we present evidence that in more com-

plex non-Markovian environments, XCSM may fail to evolve
an optimal solution. Our results suggest that this happens
because, the exploration strategies currently employed with
XCS, are not adequate to guarantee the convergence to an
optimal policy with XCSM, in complex non-Markovian en-

vironments.

I. Introduction

XCS is a classi�er system proposed by Wilson [10] that
di�ers from Holland's framework [2] in that (i) classi�er �t-
ness is based on the accuracy of the prediction instead of the
prediction itself and (ii) XCS has a very basic architecture
with respect to the traditional framework. According to the
original proposal, XCS does not include an internal mes-
sage list, as Holland's classi�er system does, and no other
memory mechanism either. XCS can thus learn optimal
policy in Markovian environments where, in every situation,
the optimal action is always determined solely by the state
of current sensory inputs. But in many applications, the
agent has only partial information about the current state
of the environment, so that it does not know the state of the
whole world from the state of the sensory input alone. The
agent is then said to su�er from the hidden state problem

or the perceptual aliasing problem, while the environment is
said to be partially observable with respect to the agent [3].
Since optimal actions cannot be determined only looking at
the current inputs, the agent needs some sort of memory of
past states in order to develop an optimal policy. Such en-
vironments are non-Markovian and form the most general
class of environments. When in non-Markovian environ-
ments XCS can only develop a suboptimal policy, in order
to learn an optimal policy in such domains, XCS would
require a sort of memory mechanism or local storage.

An extension to XCS was proposed in [10] by which an
internal state could be added to XCS like a sort of \system's

internal memory." The proposal consists of (i) adding to
XCS an internal memory register, and (ii) extending classi-
�ers with an internal condition and an internal action, em-
ployed to sense and act on the internal register. The same

extension was proposed [9] for ZCS the \zeroth level" clas-
si�er system from which XCS was derived. The proposal
was validated for ZCS in [1] where experimental results were
presented which showed that (i) ZCS with internal memory
can solve problems in non-Markovian environments when
the size of internal state is limited; while (ii) when size
internal memory grows the learning become unstable.
Wilson's proposal has never been implemented for XCS

and in the literature no results have been presented for ex-
tending XCS with other memory mechanisms. In this pa-
per we validate Wilson's proposal for adding internal state
to XCS. Experimental results we report, show that XCS
with memory, XCSM for short, evolves optimal solutions
in non-Markovian environments when a su�cient number
of bits of internal memory is employed; while the system
still converges to an optimal policy in a stable way when
a larger internal memory is employed. However, as we �-
nally show, XCSM may fail to evolve an optimal solution
in complex partially observable environments. Our results
suggest that the exploration strategies currently employed
with XCS are not adequate to guarantee the convergence
to optimal policies in complex problems.
The paper is organized as follows. Section II briey

overviews XCS, while Section III introduces the \woods"
environments and the design of experiments. Section IV
discusses the performance of XCS in non-Markovian en-
vironments. Wilson's proposal and our implementation of
XCS with internal memory, we call it XCSM, is presented
in Section V. In Section VI, XCSM is applied to two non-
Markovian environments, Woods101 and Woods102. The
stability of learning of XCSM is then discussed in Sec-
tion VII, while in Section VIII the previous results are
extended applying XCSM to a more di�cult environment,
that we call Maze7. Finally, conclusions and directions for
future works are drawn in Section IX.

II. The XCS Classifier System

XCS di�ers from Holland's classi�er system for two main
aspects. First, in XCS classi�er �tness is based on the
accuracy of the prediction instead of the prediction itself.
Accordingly, the original strength parameter is replaced
by three di�erent parameters that are updated using a Q-
learning like mechanism [7], [10]: (i) the prediction pj which
gives an estimate of what is the payo� that the system is
expected to gain when the classi�er is used; (ii) the predic-



tion error "j estimating how much precise is the prediction
pj; �nally (iii) the �tness Fj that evaluates the accuracy of
the prediction given by pj and therefore is a function of the
prediction error "j. Second, XCS has a very basic architec-
ture with respect to the original framework. Speci�cally,
XCS has no internal message list, and no other memory
mechanisms. XCS works as follows.
At each time step the system input is used to build the

match set [M] containing the classi�ers in the population
whose condition matches the detectors. If the match set
is empty a new classi�er that matches the input sensors
is created through covering. For each possible action ai
the system prediction P (ai) is computed. P (ai) gives an
evaluation of the payo� expected if action ai is performed.
Action selection can be deterministic (the action with the
highest system prediction is chosen), or probabilistic (the
action is chosen with a certain probability among the ac-
tions with a not null prediction). The classi�ers in [M] that
propose the selected action are put in the action set [A]. The
selected action is then performed and an immediate reward
is returned to the system together with a new input con�g-
uration. The reward received from the environment is used
to update the parameters of the classi�ers in the action set
corresponding to the previous time step [A]

�1. Classi�er
parameters are updated by the Widrow-Ho� delta rule [8]
using a Q-learning-like technique [10].
The genetic algorithm in XCS is applied to the classi�ers

in the action set. It selects two classi�ers with probabil-
ity proportional to their �tnesses, copies them, and with
probability � performs crossover on the copies while with
probability � mutates each allele.
An important innovation, introduced with XCS is the

de�nition of macroclassi�ers. A macroclassi�er represents
a set of classi�ers which have the same condition and the
same action using a new parameter called numerosity. Mac-
roclassi�ers are essentially a programming technique that
speeds up the learning process reducing the number of real,
(micro) classi�ers XCS has to deal with.
Since XCS was presented, two genetic operators have

been proposed as extensions to the original system: Sub-
sumption deletion [11] and Specify [5]. Subsumption dele-
tion has been introduced to improve generalization capabil-
ities of XCS. Specify has been proposed to counterbalance
the pressure toward generalization, in situations where a
strong genetic pressure may prevent XCS from converging
to an optimal solution.

III. Design of Experiments

Discussions and experiments presented in this paper are
conducted in the well-known \woods" environments. These
are grid worlds in which each cell can be empty, can con-
tain a tree, \T" symbol, or otherwise food, \F". An animat,
placed in the environment, must learn to reach food. The
animat senses the environment by eight sensors, one for
each adjacent cell, and it can move in any of the adjacent
cells. If the destination cell is blank then the move takes
place; if the cell contains food the animat moves, eats the
food and receives a constant reward; if the destination cell

contains a tree, the move does not take place. If the an-
imat has internal memory, it can modify the contents of the
register performing an internal action in parallel with the
external action performed in the environment. The set of
external actions, in such a case, is enriched with a null ac-
tion so that the animat can modify its internal state, without
acting in the environment.
Each experiment consists of a number of problems that

the animat must solve. For each problem the animat is
randomly placed in an empty cell of the environment. Then
it moves under the control of the system until enters a food
cell, eats the food receiving a constant reward. The food
immediately re-grows and a new problem begins.
We employed the following exploration/exploitation

strategy. Before a new problem begins the animat decides
with probability 0.5 whether it will solve the problem in
exploration or in exploitation. When in exploration, the
system decides, with a probability Ps (a typical value is
0.3), whether to select the action randomly or to choose the
action that predicts the highest payo�. When in exploit-
ation the GA does not act and the animat always selects
the action corresponding to the highest prediction. In order
to evaluate the �nal solutions evolved, in each experiment
exploration is turned o� during the last 2500 problems and
the system works in exploitation only. Performance is com-
puted as the average number of steps to food in the last
50 exploitation problems. Every statistic presented in this
paper is averaged on ten experiments.

IV. XCS in non-Markovian Environments

XCS has no internal message list as Holland's classi�er
system, thus it only learns optimal policies for Markovian
environments in which optimal actions are solely determ-
ined by the state of current inputs. When the environ-
ment is non-Markovian, XCS converges to a suboptimal
policy. As an example consider the Woods101 environment
(also known as McCallum's Maze [?]), shown in Figure 1, in
which two states, indicated by the arrows, return the same
sensory con�guration to the animat but require two di�er-
ent optimal actions: the right cell requires a go south-west

movement; the left cell requires a go south-east movement.
The animat, when in these cells, cannot choose the optimal
action only examining the current sensory inputs.
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Fig. 1. The Woods101 environment. Aliasing positions are indicated
by the arrows.
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Fig. 2. XCS in Woods101.

Figure 2 compares the performance of XCS in Woods101,
solid line, with the optimal performance, dashed line. As
we expected, XCS does not learn an optimal solution for
Woods101, but it converges to a suboptimal policy, that is
displayed using a vector �eld in Figure 3. Lines in each
free position corresponds to the best action that the �nal
policy suggests. As it can be noticed, XCS assigns equal
probability to the two actions go south-east/go south-west

when the animat is in the two aliasing positions that is, the
animat can go to the food if the correct action is selected,
or it can go back to another position for which the optimal
action is to return into the aliasing cell. This policy is an
e�cient stochastic solution for the Woods101 problem, and
is very similar to the one found for the same environment
with ZCS [1].

TT T T T T T
T
T

T
T

F

T T T T T TTTTTT

T
T
T
T

T
T
T
T

Fig. 3. Vector �eld for the policy in Woods101.

In order to evolve an optimal solution in Woods101, XCS
needs some sort of memory mechanism. Optimal policy for
Woods101 can in fact be obtained with one bit of internal
memory that represents previous agent position: when the
agent reaches the aliasing position from the left part of the
maze, sets the bit to 0, when it arrives from the right, the
agent sets the bit to 1. Accordingly, when in the aliasing
state, the agent is able to choose the action go south-east or
go south west if the memory bit contains 0 or 1 respectively.

V. Adding Internal Memory to XCS

We now extend XCS with internal memory as done for
ZCS in [1]. An internal register with b bits is added to XCS
architecture; classi�ers are extended with an internal con-
dition and an internal action that are employed to \sense"
and modify the contents of the internal register. Internal
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Fig. 4. XCSM1 in Woods101 with 1600 and 800 classi�ers.

condition/action consist of b characters in the ternary al-
phabet f0,1,#g. For internal conditions, the symbols retain
the same meaning they have for external condition, but they
are matched against the corresponding bits of the internal
register. For internal actions, 0 and 1 set the corresponding
bit of the internal register to 0 and 1 respectively, while #
leaves the bit unmodi�ed. There are nine possible external
actions, eight moves and one null action, which are encoded
using two symbols in the alphabet f0; 1;#g. Internal condi-
tions/actions are initialized at random as usual. In the rest
of the paper, we refer to XCS with b bits of internal memory
as XCSMb, to XCSM when the discussion is independent
of the value b.
XCSM works basically as XCS. At the start of each trial,

the internal register is initialized setting all bits to zero. At
each time step, the match set [M], the prediction array, and
the action set [A] are build as in XCS. The only di�er-
ence is that in XCSM the internal condition is considered
when building [M], and the internal action is used to build
the prediction array. The action set [A] is computed as in
XCS, while the external action and the internal action are
performed in parallel. The credit assignment procedure is
the same as for XCS.

VI. XCSM in non-Markovian Environments

We apply XCSM to two non-Markovian environments in
order to test whether the system can learn optimal policies
in environments that are partially observable. First, we
apply XCSM to the Woods101 environment, seen in Sec-
tion IV, which has two aliasing states and, as pointed out
previously, can be solved by an animat with one bit of in-
ternal memory. XCSM1 is applied to Woods101with a pop-
ulation of 1600 and 800 classi�ers, Specify does not act.
Results reported in Figure 4 show that XCSM1 learns an
optimal policy with a population of 1600 classi�ers while
with 800 classi�ers the system converges to a slightly sub-
optimal policy. But Woods101 is a very simple environment
consisting only of 10 sensory con�gurations and we would
expect 800 classi�ers to be enough to evolve an optimal
policy. However, a limited population size may increase
the genetic pressure toward more general classi�ers that, as



noticed in [5], may prevent the system from converging to
optimal performance. Specify has been introduced in [5] to
counterbalance generalization mechanismwhen such type of
situations occur. Accordingly, when we apply XCSM1 with
Specify to Woods101 using a population of 800 classi�ers,
the system converges to an optimal solution, as Figure 5
reports.
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Fig. 5. XCSM1 with Specify in Woods101 with 800 classi�ers.

As a second experiment, we test XCSM in Woods102

[1], a more di�cult environment shown in Figure 6(a).
Woods102 has two types of aliasing states. The former,
see 6(b), is encountered in four di�erent positions in the
environment; the latter, see 6(c), is at one of two di�erent
positions in the environment. An internal state with two
bits, giving 4 distinct internal states, should be su�cient
to disambiguate the aliasing states in order to converge to
an optimal policy. XCSM2 and XCSM2 with Specify are
applied to Woods102 with 1600 classi�ers. Experimental
results reported in Figure 7 show that XCSM2 (solid line)
cannot converge to a stable policy in Woods102 when Spe-
cify does not act: The system initially reaches a suboptimal
policy, �rst slope, then the learning becomes unstable and
the population is rapidly corrupted; �nally, when explora-
tion stops, at the beginning of the big slope, the performance
drops. On the contrary, XCSM2 with Specify successfully
evolves an optimal solution for Woods102.
Results presented in this section, con�rm that XCS with

the internal memorymechanism proposed by Wilson is able
to converge to optimal solutions in non-Markovian environ-
ments. Moreover, they also con�rm the early results presen-
ted in [5] where the authors observed that a strong genetic
pressure can prevent the system from converging to an op-
timal solution. Accordingly, Specify has to be employed in
order to guarantee the convergence to an optimal perform-
ance.

VII. Stability of Learning with XCSM

Results presented in [6] for ZCS with internal memory
showed increasing instability in performance for increasing
memory sizes. We now apply XCSM to Woods101 using dif-
ferent sizes of internal memory to test the stability of the
system. The hypothesis we test is that the generalization
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Fig. 6. The Woods102 environment (a) with the correspondingaliasing
states (b) and (c)
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Fig. 7. XCSM2 in Woods102 without Specify (upper solid line) and
with Specify (lower dashed line).

mechanism of XCS can lead to a stable and optimal policy
even if redundant bits of internal memory are employed.
We apply XCSM1, XCSM2 and XCSM3 to Woods101 us-
ing 1600 classi�ers. Results reported in Figure 8 show that
XCSM learns how to reach food in an optimal way even
when three bits of memory are employed. It is worth no-
ticing that even if XCSM is applied to search spaces of
very di�erent sizes, due to the generalization over internal
memory, there is almost no di�erence between the �nal solu-
tions evolved.

We have extended these results in [4], where we have
applied XCSM with increasing sizes of internal memory
to other environments. Results, not reported here for the
lack of space, con�rm that XCSM is able to learn a stable
and optimal policy even when a redundant number of in-
ternal memory bits is employed. Finally, we wish to point
out that, even if an internal state consisting of three bits
may appear very small, most of the environments presen-
ted in the literature require only one or two bits of internal
memory in order to disambiguate aliasing situations [1].

VIII. A More Difficult Environment

In the previous sections we applied XCSM to environ-
ments in which the optimal solution requires the agent to
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Fig. 9. The Maze7 Environment. Aliasing positions are indicated by
dashed circles.

visit at most one aliasing state before it reaches the food,
and the goal state is very near aliasing cells.

The optimal policy for such type of environments is usu-
ally quite simple. Accordingly, we now want to test XCSM
in a more di�cult environment in that (i) the animat has to
evolve an optimal strategy to visit more aliasing positions
before it can eat; and (ii) longer sequences of actions must
be taken to reach the goal state. The optimal solution for
this type of environments can be far more complex. Since
the animat visits more aliasing cells before it reaches the
goal state, it may need to perform sequences of actions in
the internal memory. Moreover, as shown in [1], the longer
the sequence of action the agent must perform to reach the
goal state is, the more di�cult is the problem to solve.

Maze7 is a simple environment, see Figure 9, which con-
sists of a linear path of nine cell to food and it has two
aliasing cells, indicated by two dashed circles. Neverthe-
less, Maze7 is more di�cult than the environment previ-
ously considered in that: (i) it has two positions, at the
end of the corridor, from which two aliasing states must be
visited to reach the food cell; moreover (ii) it requires a long
sequence of action to reach food. We apply XCSM1 with
Specify operator to Maze7 with a population of 1600 classi-
�ers. Results are reported in Figure 10; as in the previous
experiments we presented, during the last 2500 problems
exploration is turned o�. Figure 10 shows that while ex-
ploration acts the system cannot converge to an optimal
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Fig. 10. XCSM1 with Specify in Maze7.

solution, but when the �nal population is evaluated turning
o� exploration, at beginning of the peak, XCSM1 evolves
an optimal solution to the problem.
The analysis of the population dynamic evidences that,

when exploration acts, the system is not able to learn an op-
timal policy to reach the goal state from the positions at the
end of the corridor. Therefore, XCSM's performance drops
when an experiment starts in one of the positions for which
the optimal policy has not evolved, so that the overall per-
formance oscillates. Most important, when the exploration
stops, see the vertical dashed line in Figure 10, the perform-
ance drops indicating that the �nal policy causes the animat
to loop in some positions of the environment. XCSM de-
tects this situation because the prediction of the classi�ers
involved dramatically decreases [10]. Accordingly, XCSM
starts replacing such low predictive classi�ers through cov-
ering. The �nal policy, at the end of the peak, is thus built
by classi�ers created by the covering operator.
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Fig. 11. XCSM1 with Specify in Maze7 working in exploitation only.

Therefore, we apply XCSM1 to Maze7 only in exploit-
ation, that is the GA does not work and always the best
action is selected. XCSM1 performance is reported in Fig-
ure 11 with a solid line, while the two dashed lines show
the worst and the best performance over the ten runs. Res-
ults show that XCSM1 easily converges to a suboptimal



solution for Maze7 when all the problems are solved in ex-
ploitation. The analysis of single runs also shows that in
many cases XCSM1 converges to the optimal performance,
lower dashed line, while seldom the performance is subop-
timal, upper dashed line. These results suggest that Maze7
is a simple problem for XCSM, indeed it is solved using
a very basic version of XCSM. However, the results for
XCSM working in exploitation only suggest that the ex-
ploration strategies currently employed with XCS are too
simple for XCSM. In XCS in fact, exploration is done \in
the environment," and relies on both the structure of the
environment and on the strategy employed. Conversely, in
XCSM, the exploration is also done \in the memory." This
type of exploration only relies on the agent's exploration
strategy, accordingly, if the strategy is not adequate it can-
not guarantee that the animat will be able to evolve a stable
an optimal solution for complex problems.

IX. Conclusions

We have implemented and tested XCS when internal
memory is added. XCS with internal memory, we call it
XCSM, has been applied with di�erent sizes of internal
memory to non-Markovian environments with two and four
aliasing positions. Experimental results we present show
that, in simple environments XCSM converges to an op-
timal solution, even if redundant bits of memory are em-
ployed. Most important, experiments with Maze7 show that
in complex problems the XCSM's exploration strategy cur-
rently employed, is not adequate to guarantee the conver-
gence to an optimal solution. Therefore other strategies
should be investigated in order to develop better classi�er
systems.
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