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Abstract

Wilson’s (1994) bit-register memory scheme was incorporated into the XCS classifier system and
investigated in a series of non-Markov environments. Two extensions to the scheme proved important
for reaching optimal performance in the harder environments. The first was an exploration strategy
in which exploration of external actions was probabilistic as in Markov environments, but internal
”actions” (register settings) were selected deterministically. The second was use of a register having
more bit-positions than were strictly necessary to resolve environmental aliasing. The origins and
effects of the two extensions are discussed.

1 Introduction

The learning capabilities of adaptive agents are related to their perception of the environment. There

are cases in which the agent’s immediate sensations provide all the information that is necessary to

choose the best action in every situation. Such an environment is said to be completely observable with

respect to the agent’s sensors, or Markov. When the agent’s sensations convey only partial information

about the environment, there may be different situations which appear identical to the agent but require

different optimal actions. When this happens the agent cannot decide on the best action by considering

only its current sensory inputs. Such an environment is said to be partially observable with respect to the

agent sensors, or non-Markov, and the agent is said to suffer from a perceptual aliasing problem.

A very simple example of a situation involving perceptual aliasing is the following (Lin 1993). Imag-

ine a gift packing task in which a gift must be placed in an initially closed box after which the box is

wrapped. Initially the box is closed with no gift inside and must be opened and filled. Later, with gift

inside and again closed, it must be wrapped. In both cases, the agent’s sensors see a closed box, but the

actions called for are different. The environment is non-Markov.

Note that the Markov/non-Markov distinction very much depends on the agent’s sensors. Envi-

ronments can be “made” Markov if there are enough sensors. In the gift packing task we might give

the agent the ability to weigh the box so that it can sense whether a closed box is empty or not. The

1



2

environment becomes Markov. Thus it is not the environment itself that is Markov or non-Markov, but

the environment as sensed by the system. In speaking of an environment as Markov or non-Markov,

we shall mean the environment as observed through the system’s sensors.

However, there are cases in which perceptual aliasing cannot be solved by increasing the agent’s

sensory capabilities. For instance, in robot navigation tasks, T junctions between corridors may look

the same no matter what sensors the agent has. If we cannot make the environment Markov, we can

give the agent a memory mechanism to cope with the lack of sensory information. The idea is that,

since the agent cannot rely on its current inputs to determine the best action, it can use memory to

encode something about the past which can be used in conjunction with current inputs to take correct

decisions. For instance, in the gift packing task the agent could use memory to remember whether it

had already put the gift inside the box. The environment plus memory would then be Markov.

Holland’s classifier system has an internal message list, where the system can in principle store

information from previous time-steps which it can reuse on later time steps. Thus, the system should

be able to exploit the message list to solve problems which require internal memory, e.g., non-Markov

environments. Up to now, however, Holland’s system has shown only limited success on non-Markov

problems (Robertson and Riolo 1988; Smith 1994).

Wilson (1995) introduced a simplified classifier system model, XCS, that has been shown to reach

optimal performance in Markov problems but does not have any form of internal memory. Accordingly,

XCS does not learn optimal solutions in non-Markov environments. However, Wilson (1994) suggested

that if internal memory were needed, the coupling between posting and reading classifiers would be

improved if the memory were embodied in a simple bit register instead of a list of messages. He also

observed that in many problems, decisions needing past information often require only one or a few

bits.

This paper reports on experiments in which the bit-register memory scheme was incorporated in-

to XCS and investigated in a series of four increasingly complex grid-like non-Markov environments,

termed Woods101, Maze7, Woods101 1
2 , and Woods102. Direct implementation of the bit-register

(”XCSM”) gave optimal performance in Woods101, but not in Maze7. Phenomena observed with

Maze7 led to an extension to the system, compound exploration, in which the exploration strategy chose

internal actions (register settings) deterministically, while selection of external actions remained proba-

bilistic. The resulting system, ”XCSMH”, produced optimal performance in Maze7. XCSMH was used

with the third and fourth environments also, but performance there was again short of optimal, and

led to a second extension in which the size of the memory register was made somewhat greater than

the number of bits strictly necessary to resolve the aliasing. This register redundancy produced optimal

performance in Woods101 1
2 and Woods102. Conceptually, the two extensions and their results are

seen from the point of view of reliably evolving a stable internal coding, or language, to disambiguate

aliased states.
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The remainder of the paper is organized as follows. Sections 2 and 3 present the perceptual aliasing

problem and review related work on it. Section 4 reviews XCS, describes the bit-register implemen-

tation XCSM, and the design of experiments. Experiments with XCSM in Woods101 and Maze7 are

presented in Sections 5 and analyzed in Section 6. Section 7 motivates and introduces compound explo-

ration. The resulting system, XCSMH, is tried on Maze7 and Woods101 1
2 in Sections 7 and 8. Register

redundancy is motivated and introduced in Section 8, where it permits XCSMH to solve Woods101 1
2

to optimality. In Section 9, XCSMH also solves to optimality the most difficult environment, Wood-

s102 , using sufficient register redundancy. Interpretation and implications of the results are presented

in Section 10.

2 Perceptual Aliasing and Internal Memory

The distinction between Markov and non-Markov problems depends both on the agent’s sensory e-

quipment and on the environment. Thus, before we can discuss learning in non-Markov environments

we must define what the agent can sense and what the environment looks like.

2.1 Environments and Agents

In the literature two types of environments have been employed to study learning classifier systems:

state environments (Riolo 1988; Smith 1994) and ”woods” environments (Wilson 1985; Wilson 1994).

State environments are described by directed graphs in which nodes represent the agent’s sensations

(i.e., environmental “states”) while edges represent the effect of actions in each state. Edges are usually

labelled with the action and sometimes with a transition probability. The agent’s task is to learn the

shortest path to goal states. An example of a state environment is depicted in Figure 1(a). There are

four states (s0, s1, s2, and F), the unique goal state is F, and there are eight possible actions (N, S, E, W,

NE, SE, NO, and SO). The environment is deterministic since no probability values are associated with

edges.

Woods environments are grids in which, typically, each cell can contain an obstacle (a “T”), a goal

(an “F”), or can be empty. As in state environments, the agent has to learn the shortest path to goal

states. The agent senses the environments by means of sixteen boolean sensors (two for each adjacent

cell) which tell it the contents of each adjacent cells; the agent can move into any adjacent free cell.

Figure 1(b) shows a simple example of a woods environment.

To study learning in non-Markov environments, we will use woods environments because, in our

opinion, they are more intuitive and make the problem definition accessible to a larger and more di-

verse audience. Furthermore, state environments can easily become obscure, even for simple learning

problems. In fact, the state environment in Figure 1(a) and the grid in Figure 1(b) represent the same

learning problem but the grid representation is surely clearer.

TR. 99.36 Dip. di Elettronica e Informazione



4

0

2

1

F

S

N

NW-NE

E/W

SE/SW

S

E/W

N Goal

NE/NW

T
T F

(a) (b)

Figure 1: An example of a state environment (a) and a woods environment (b). The two environments
represent the same learning problem.

2.2 Internal Memory

The Woods101 environment (Cliff and Ross 1994; McCallum 1996), depicted in Figure 2, is non-Markov

since it has two distinct positions, indicated by the arrows, which the agent senses as identical but that

require different optimal actions. In the right aliased position the optimal action is “go south-west”; in

the left aliased position the optimal action is “go south-east.” When the agent is in one of these positions

it cannot decide which is the correct action solely considering its current inputs.

Perceptual aliasing in Woods101 would be easily solved if the agent could remember from which

part of the grid it entered the aliased positions. If the agent enters the aliased position from the left

corridor, the correct action will be “go south-east;” if the agent enters the aliased position from the right

corridor, the optimal action will be “go south-west.” To behave optimally in Woods101, given that we

cannot enhance the agent’s sensory equipment to make Woods101 Markov, the agent needs some form

of memory to cope with the lack of information provided by its sensors.

We can follow two approaches to add memory to the agent. We can explicitly give the agent a

“history window” where previous inputs are stored; the agent can then use the history window to take

its decisions. From the agent’s point of view decisions are taken like: “I sensed p1. . .pn, now I sense p,

therefore the best action is a”. The history window extends the agent’s input vector by including inputs

from previous time steps so that the new problem becomes Markov. But the agent’s input space grows

exponentially in the size of the history window. Accordingly, specific algorithms are often developed in

order to reduce that growing complexity and also to identify the minimum amount of past information

that is needed to make the problem Markov (McCallum 1996).

As noted, Holland’s idea was that the classifier system would evolve message posting and reading

strategies that lead to high performance in situations where past information is required, such as non-
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Figure 2: The Woods101 environment.

Markov environments. Holland’s approach is not a history window since past inputs are not explicitly

stored. Instead, a Darwinian process is relied upon to evolve appropriate messages and classifiers.

Unfortunately, because of the complexity of the message list structure (and also, in our opinion, because

classifier fitness was based on predicted payoff, or strength), Holland’s classifier system has shown only

limited success on non-Markov problems (Robertson and Riolo 1988; Smith 1994).

Wilson (1994) suggested that coupling between posting and reading classifiers would be enhanced if

the internal state were embodied in a simple bit register instead of a list of messages. The agent is given

a register where it can store information—as little as one bit—which might be useful to disambiguate

aliased situations. As in the Holland classifier system, past experience is not stored explicitly, as it

is in the history-based approach, but the agent must, through a Darwinian process, in effect learn to

use the memory to solve perceptual aliasing. For example, consider an agent with a one bit memory

register, R, that must solve Woods101 optimally; the agent can read the register, and can write in it. A

possible optimal policy for Woods101 using the register R, as depicted in Figure 3, consists of using R

to remember from which part of the grid the agent entered the aliased position. If the agent is in the left

side of the maze, it sets R to 0; if the agent is in the right side of the maze, it sets R to 1. When entering

an aliased position the agent selects the action to perform depending on the value of the register R: if

R contains 0 the agent performs the action “go south-east;” if R contains 1 the agent performs the action

“go south-west.”

Comparing the history window and memory register approaches it is worth noting that in the for-

mer method perceptual aliasing is solved by coupling the learning algorithm (Q-learning in McCal-
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Figure 3: An optimal policy in Woods101 for an agent with one bit of internal memory. Lines in each
position indicate the best action that the policy suggests. The notation “R . . . ” means that the register
is set before the agent moves; “R?. . . ” means that the agent moves only if the register contents are set
as specified.

lum (1996)), with specific algorithms responsible for storing history and for identifying the minimum

amount of necessary past experiences. In the memory register approach, the same learning algorithm

(ZCS in Cliff and Ross (1994), XCS in this paper) is intended both to solve perceptual aliasing and learn

the optimal paths to the goal state. Perhaps the most intriguing aspect of the memory register—or

any classifier system—approach, is that perceptual aliasing is resolved not by storing and/or calculat-

ing past information, but by evolving symbols, i.e., register settings or messages, that are sufficient to

represent needed past information without storing it explicitly. As such it may cast light on the broad

problem of how symbols can arise in learning systems.

3 Related Work

In the literature many different methods have been proposed to deal with perceptual aliasing. In the

simplest case aliasing is simply ignored and the same algorithms, e.g., Q-learning, are applied that

would be optimal if the problem was Markov (Chrisman and Littman 1993). Such methods usually

perform poorly and moreover Littman (1994) showed that finding the optimal memoryless policy for a

non-Markov problem is NP-hard. Results can be improved if stochastic policies are considered (Jaakko-

la, Singh, and Jordan 1995) or if a complete model of the underlying non-Markov problem is available.

In this case approximate solutions can be searched (Hansen 1998; Hauskrecht 1998; Meuleau, Peshkin,

Kim, and Kaelbling 1999) as well as optimal ones (Kaelbling, Littmann, and Cassandra 1998).

All other methods use some sort of memory of past observations. One way to include memory in

a reinforcement learning algorithm like Q-learning is to use a recurrent neural network to represent

the Q-values. The resulting network will predict payoff values which implicitly depend on past obser-

vations (Lin and Mitchell 1992; Schmidhuber 1991). This approach works well on small problems but

Politecnico di Milano TR. 99.36



7

may suffer from local optima in complex problems. Otherwise, as noted previously, the agent can use

a finite window of observations to restore the Markov property (McCallum 1995).

In learning classifier systems, past observations are represented by internal messages. Using a very

basic non-Markov environment, Smith (1994) carefully analyzed Holland’s framework and identified

a number of respects in which it can fail on non-Markov environments. Notably, Smith identified a

classifier rule and message assignment problem that bears similarities to our “colors” discussion in

Section 8.

Wilson’s (1994) memory-register proposal was followed by Cliff and Ross (1994) who reported quite

good results with Wilson’s approach added to ZCS (Wilson 1994), although optimal performance was

not obtained. Furthermore, Cliff and Ross (1994) suggested that the approach would not scale up.

Optimal performance in non-Markov environments was reported by Lanzi (1998a) when he added the

memory register to XCS.

Recently Peshkin, Meuleau, Kim, and Kaelbling (1999) applied the memory-register idea to tabular

SARSA(�), reporting interesting results for simple non-Markov problems.

4 The XCS Classifier System and Internal Memory

Classifiers in XCS have three main parameters: (i) the prediction p, which estimates the payoff that

the system expects if the classifier is used; (ii) the prediction error �, which estimates the error of the

prediction p; and (iii) the fitness F , which estimates the accuracy of the payoff prediction given by p.

On each time step, the system input is used to build a match set [M] containing the classifiers in the

population whose condition part matches the current sensory inputs. If the match set does not contain

any classifiers, a new classifier which matches the current inputs is created through covering. For each

possible action ai in [M], a system prediction P (ai) is computed as the fitness weighted average of the

predictions of classifiers which advocate action ai in [M]. P (ai) estimates the payoff that the system

expects if action ai is performed. Action selection can be deterministic, i.e. the action with the highest

system prediction is chosen, or probabilistic, i.e. the action is chosen with a certain probability among

the possible actions.

Classifiers in [M] which advocate the selected action form the current action set [A]. The selected

action is then performed in the environment, and a scalar reward r is returned to the system together

with a new input configuration.

Classifier parameters are updated on each time-step. In sequential problems such as those consid-

ered here, the updates occur in the action set [A]�1 from the previous time-step, which is saved for the

purpose. First, a Q-learning-like payoff P is computed: P = r�1 + 
maxaP (a), where r�1 is the re-

ward on the previous time-step, P (a) are the system predictions for the current time-step, and 
 is a

discount factor (0 � 
 < 1). Then, each classifier in [A]�1, is updated as follows. The prediction p is

updated using the Widrow-Hoff delta rule (Widrow and Hoff 1960) with learning rate � (0 � � � 1):
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p  p + �(P � p). The prediction error � is updated with the formula: �  � + �(jP � pj � �). The

fitness update is slightly more complex. Initially, the prediction error is used to calculate the accuracy �

of each classifier as � = 0:1(�=�0)
�n for � > �0, else � = 1. Then, each classifier’s relative accuracy �0 is

computed: �0 = �=
P

[A]
�1
�. Finally the fitnesses are adjusted: F  F + �(�0 � F ).

The genetic algorithm is applied to [A]�1, though not usually on every time-step. It selects two

classifiers with probability proportional to their fitnesses, copies them, and with probability � performs

crossover on the copies; then, with probability � it mutates each allele. The resulting offspring are

inserted into the population and two classifiers are deleted. See Wilson (1995) and Wilson (1998) for

further XCS details.

4.1 Adding Memory to XCS

Adding memory to XCS following Wilson’s (1994) proposal, and as implemented by Cliff & Ross (1994)

on ZCS, is straightforward. An internal register with b bits is added to the XCS architecture; classifiers

are extended with an internal condition and an internal action that XCS uses respectively to examine and

to modify the contents of the internal register. Internal conditions and internal actions consist of b char-

acters in the ternary alphabet f0,1,#g. For internal conditions, the symbols retain the same meaning

they have for the external condition, but they are matched against the corresponding bits of the inter-

nal register. For internal actions, 0 and 1 set the corresponding bit of the internal register to 0 and 1

respectively; don’t care symbols (#) leave the corresponding bits unmodified. There are nine possible

external actions: eight moves and one null action that the agent can use to remain stationary in the

environment while performing only internal actions. The nine actions are encoded using two symbols

in the alphabet f0, 1, #g. Internal conditions and internal actions can be initialized randomly or by the

covering operator.

XCS with internal memory, “XCSM”, works basically like XCS. At the beginning of each problem,

the internal register is initialized setting all b bits to zero. At each time step, the match set [M], the

system predictions, and the action set [A] are formed essentially as in XCS. The differences are that in

XCSM internal conditions must also match when building [M], and each combination of an external

and an internal action results in a distinct system prediction. The action set [A] is created as in XCS,

but all classifiers in it have the same external/internal action combination. The external action and the

internal action are performed in parallel: the former is sent to the environment, the latter modifies the

internal register. In XCSM the classifier parameters are updated and the genetic algorithm works as in

XCS.

In the rest of the paper, we refer to XCS with an internal memory of b bits as XCSMb, to XCSM when

the discussion is independent of the size b of the register, and finally to XCS(M) when considering both

XCS and XCSM models. Later we shall introduce a further modification called XCSMH.

Politecnico di Milano TR. 99.36
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4.2 Design of Experiments

Each experiment consisted of a number of problems that the agent must solve. For each problem the

agent is randomly placed in an empty cell of the environment; then the agent moves under the control

of the classifier system until it reaches the goal, receives a constant reward, and the problem ends.

Each problem is either a learning problem or a test problem. In a learning problem, the agent se-

lects actions (external/internal action combinations) randomly 1 from those having system predictions

(i.e., those represented in the match set). During a learning problem, the system is said to solve the

problem in exploration (Wilson 1995). In a test problem, actions are selected deterministically: the ex-

ternal/internal action combination with the highest prediction is selected. This is also termed solving

the problem in exploitation. The genetic algorithm is in operation during learning problems, but it does

not operate during test problems. At the beginning of a new problem, the agent decides with proba-

bility 0.5 whether it will solve a learning problem or a test problem. Thus learning and test problems

approximately alternate.

The agent’s performance is computed as the average number of steps to the goal position in the past

50 test problems. After some number of problems, learning is usually turned off and all further prob-

lems are solved as test problems. The period before learning is turned off is termed the learning period;

the period afterward is called the testing period. Use of test problems during the learning period allows

monitoring of learning progress. Test problems afterward evaluate the final attained performance. All

statistics in this paper are averaged over ten experiments.

5 Experiments in Simple Non-Markov Environments

In the first experiment, we applied XCSM with one bit of memory, XCSM1, to Woods101 (Figure 2)

which was employed by Cliff and Ross (1994) to test the extension of ZCS with internal memory. XC-

SM1 used a population size, N , of 800 classifiers. Parameters were set as follows: �=0.2, 
=0.71, �= 25,

�0=0.01, �=0.8, �=0.01, and �=0.5, following settings in Wilson (1995). During the last 2000 problems,

learning was turned off to test the final solution evolved. Recall that during the learning period the ge-

netic algorithm is in operation and actions are selected randomly; during testing, the genetic algorithm

is not in operation and the best actions are always selected.

The results depicted in Figure 4 show that XCSM1 converged to an optimal policy during the testing

period. During learning (first 6500 problems) the performance oscillated slightly above the optimum.

Examination of classifier populations during the learning period revealed that an optimal policy was

often present. But, in non-Markov environments, as further explained in Section 6.1, exploration of

internal actions can cause an optimal policy to be lost, at least temporarily. Once exploration stopped

in Woods101, the solution immediately converged to the optimum.
1Later, using compound exploration, the selection will be only partly random.
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Figure 4: Performance of XCSM1 in Woods101. Population size is set to 800 classifiers. The optimum
average performance is at 2.90 steps per problem.

Woods101 is a simple problem in that the optimal solution requires the agent to visit at most one

aliased position before reaching a nearby goal state. We introduced Maze7 (Lanzi 1998a) to test XCSM

in a more challenging environment where the agent had to visit more aliased positions and perform

longer sequences of actions before it reached the goal. Maze7, depicted in Figure 5, is a path of nine cells

with a goal at the end; it has two aliased positions, indicated by the dashed circles. We applied XCSM1

to Maze7 using a population of 1600 classifiers; parameters were set as in the previous experiment.

Results are reported in Figure 6; as in the previous experiment we turned off learning during the last

2000 problems to test the final solutions evolved.

Figure 6 shows that during learning the agent did not converge to an optimal solution. But when

the final population was tested, indicated by the arrow at beginning of the peak, XCSM1 eventually

evolved a near optimal solution for Maze7. Examination of populations showed that during learning

the agent was unable to evolve an optimal policy that could reach the goal from positions near the end

of the corridor. Therefore, XCSM performance would drop whenever a problem began in one of those

positions, so that the overall performance oscillated heavily. When learning stopped (at the beginning

of the peak in Figure 6) the performance fell sharply indicating that the final policy caused the agent to

get stuck (loop) in some areas of the environment. XCSM detects this situation because the predictions

of the classifiers involved dramatically decrease (Wilson 1995), and it starts replacing them through

covering.2 Thus the final solution was formed almost completely of classifiers created by the covering

operator. Quite remarkably, it was close to optimal.

2The covering operator was enabled during both learning and testing.

Politecnico di Milano TR. 99.36



11

T T T T T
T T
T T T
T T T
T T T
T F T T T

(a) (b)

Figure 5: The Maze7 environment. The two aliased positions, (a) on the left and (b) on the right, are
indicated by dashed circles.

This analysis suggests that XCSM1 can evolve a near optimal solution for Maze7 just using cover-

ing. We verified this by applying XCSM1 in Maze7 in an experiment with no genetic algorithm and

completely deterministic action selection. Note that under this regime XCSM1 implements a greedy

search of the optimal policy for Maze7. In fact, the system performs only a little search through cov-

ering, while the system chooses the most promising search direction by always selecting the highest

predicting action.

Figure 7 reports the average performance of this greedy XCSM1 with a solid line. The two dashed

lines represent respectively the best and the worst performances over the ten runs. The analysis of

single runs showed that in many cases greedy XCSM converged very close to the optimum (lower

dashed line in Figure 7) but sometimes evolved an unstable solution (upper dashed line in Figure 7).

These results may suggest that a merely greedy version of XCSM would be capable of solving gen-

eral non-Markov problems. But a series of experiments (not reported) showed that greedy XCSM is

likely to converge to a highly suboptimal solution as the complexity of the environment increases. Fi-

nally, since generalization in XCS(M) is achieved through exploration and use of the genetic algorithm,

this version of XCSM effectively throws away all generalization capability.

6 Analysis of the Results

6.1 Explaining XCSM Behavior in Maze7

Returning to “regular” XCSM, consider the two aliased positions in Maze7, indicated in Figure 5 by the

dashed circles. An optimal policy which disambiguated the two aliasing positions (a) and (b), might

include two classifiers which advocate respectively the actions: “go-south” when the internal register is

set to 1 in position (a), and “go-north” when the internal register contains 0 in position (b). Suppose that

TR. 99.36 Dip. di Elettronica e Informazione



12

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 G

O
A

L

NUMBER OF PROBLEMS

LEARNING STOPS

OPTIMUM

Figure 6: Performance of XCSM1 in Maze7. The curve is averaged over ten experiments. The optimum
is 4.33.

XCSM has successfully evolved such a policy and that, at this point, the system starts exploration. Since

during exploration the system selects actions randomly, it may happen that the agent enters position (b)

with the internal register set to 1. The agent can now select any of the actions which appear in the match

set and, for example, it may try the action “go-south”. If this occurs, the classifiers that match position

(b) are the same ones which predict the optimal action in position (a). But in these two positions, the

action “go-south” has different payoffs. Therefore, classifiers that are optimal in (a) become inaccurate

when tried in (b) because they are applied in the same situation with different payoff levels. Accordingly,

since in XCSM classifier fitness is based on accuracy, their fitnesses decrease. As a consequence, they

reproduce less and may be selected for deletion through the evolutionary process.

6.2 Verification of the Hypothesis

To verify whether our explanation of XCSM’s suboptimal behavior in Maze7 is correct we applied a

version of XCSM in which the action with the highest payoff was always selected (both during learning

and during testing), while the genetic algorithm was in operation, as usual, during learning. This

experimental regime was identical to that of Figure 6, except that action-selection was deterministic

during learning. Our aim was to verify that the suboptimal behavior we observed earlier depends

on the action selection strategy—namely on exploration of internal actions—and not on the genetic

algorithm.

We applied this version of XCSM in Maze7 with the same settings we used in the previous ex-

periments. The results reported in Figure 8 show that with these settings XCSM1 converged almost
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Figure 7: Performance of XCSM1 in Maze7 when the system works only in exploitation: the genetic
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stable near optimal performance and of unstable performance.

immediately to an essentially stable optimal solution, supporting our explanation that in non-Markov

environments, exploration of internal actions can interfere with learning. Separately, we note that the

regime in this experiment differed from that of the experiment with greedy XCSM only in that the GA

was active here. Yet the optimum was reliably reached in this experiment whereas it was not reached

with greedy XCSM. This suggests that, even without exploration of actions, the search performed by

the genetic algorithm itself is sufficient for convergence to an optimal solution in Maze7.

Our analysis appears to be general, thus it should apply to all the environments. On the other

hand, in Section 5 we showed that XCSM1 solves Woods101 optimally so it might appear that our

explanation is contradicted by those positive results. However, if we analyze the classifiers in the

population during single runs for XCSM1 in Woods101 we note that also in Woods101, classifiers that

are optimal in one of the two aliased positions eventually become inaccurate because they are tried in

both the aliased positions. But, since in Woods101 these positions are near to the goal state, they are

visited frequently. Moreover, since these positions are symmetric with respect to the goal, their payoff

levels in both positions are similar. Thus, the classifiers which advocate the optimal actions in the two

aliased positions are able to survive, even if they may be applied to situations that have different payoff

levels. It is true that in XCS(M) inaccurate classifiers are deleted through evolution (i.e., they tend to

reproduce less and consequently to be deleted). But this evolutionary mechanism is slow so that in

Woods101 its effects are counterbalanced by the frequent exploitation of those classifiers which form
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Figure 8: Performance of XCSM1 in Maze7 with deterministic action selection. The genetic algorithm
is operating during learning, but the best action is selected both in learning and in testing.

the optimal policy. In contrast, in Maze7:

(i) The two aliased positions are not symmetric with respect to the goal state; thus, the payoff levels

of the same action are very different in the two positions.

(ii) Aliased position (a) is near to the goal therefore it is visited more frequently than position (b)

which is at the end of the corridor.

The reasons for the difference in XCSM performance between Maze7 and Woods101 are now clear.

Because of (i), in Maze7 the classifiers that are optimal in a certain aliased position are more likely to

become inaccurate when they are tried in the other aliased position. Because of (ii), those classifiers

that are optimal in (a) tend to survive because they are tried frequently in (a) and seldom in (b). At the

same time, classifiers that are optimal in (b) tend to be selected for deletion because they are often tried

in (a) and seldom in (b).

7 An Extension to XCSM

According to its definition, XCSM should learn an optimal policy in partially observable environments

by evolving a strategy to associate the content of the internal memory to the actual agent position in

the environment, so as to solve aliased situations. We showed that in XCSM, since during exploration

actions are selected randomly, the agent may enter the same position with different memory settings.

When this happens, the memory mechanism becomes useless with respect to the perceptual aliasing
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problem, because the contents of internal memory are no longer related with the absolute agent posi-

tion.

The analysis we presented reveals that the strategy XCSM follows to use the internal memory reg-

ister may not guarantee the convergence to optimum in general partially observable environments.

Therefore, we need to devise another strategy for exploiting internal memory in order to increase XC-

SM’s learning capabilities.

7.1 Description of XCSMH

We now introduce an extension to XCSM, “XCSMH”, which appears capable of learning an optimal

policy in much more difficult partially observable environments. XCSMH retains the major character-

istics of XCSM, while it differs from it in two major respects:

� In XCSMH internal actions are performed only if the associated external action results in a change

in the sensory inputs; that is, if the agent perceptions have changed.

� During learning, XCSMH employs a compound action selection strategy: the system first selects

the internal action deterministically; then, it selects the external action randomly as usual.

These changes are closely related to the analysis of XCSM behavior we presented in the previous sec-

tions. In the following, we discuss each change in detail.

Internal Actions. In the previous section we observed that, during exploration, the main problem of

XCSM is that internal actions act independently of the agent position in the environment. In particular,

the internal memory can be modified even if the agent does not change its position. In contrast, XC-

SMH associates the execution of an internal action with a definite change in the agent perceptions. I.e.,

an internal action is performed only if the corresponding external action has caused the agent to receive

a new sensory input. Thus in XCSMH internal memory is associated with the sequence of past agent

sensations. Internal memory does not represent the result of the execution of an internal program any-

more (Cliff and Ross 1994) because the register cannot be updated independently from what the agent

experiences in the environment. Rather, in XCSMH, internal memory is intended to give a compact

representation of the agent’s past sensory experience. As an immediate consequence of this memory

update policy, XCSMH no longer employs null external actions.

Compound Action Selection. The second change we introduce in XCSMH concerns the agent’s ac-

tion selection strategy during learning. As we discussed previously, random action selection may cause

the agent to enter the same aliased position with different configurations of internal memory. Conse-

quently, XCSM can fail to associate the current content of the internal memory to the actual position

in the environment. In XCSMH, we replace the usual random action selection strategy by a compound
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action selection strategy to limit the set of internal actions that the agent can perform in each position.

As a result, XCSMH tends to associate a specific internal memory configuration with each position in

the environment. The strategy we propose works as follows:

� First, the agent selects the internal action which corresponds to the internal/external action pair

predicting the highest payoff, i.e., to the highest system prediction.

� Then, the agent selects the external action randomly from among the action pairs having the

selected internal action.

This compound action selection strategy selects the internal action deterministically so that, in each

environmental niche, the classifiers that advocate the best internal action will tend to survive; the ex-

ternal action is selected randomly as usual to guarantee an adequate exploration of the environment.

7.2 XCSMH vs. XCSM

We compared XCSMH and XCSM in Maze7 using the same parameter settings used in the previous

experiments. Results reported in Figure 9 show that compound action selection strategy does improve

XCSM performance. In fact XCSMH (solid line) performs significantly better that XCSM1 (dashed

line), and rapidly converges to an optimal policy for Maze7.3 Furthermore, if we compare XCSMH1

and XCSM1 in Woods101 (not reported) we find that the performance of the two systems is almost

identical (Lanzi 1998b).

7.3 A Linguistic Interpretation of the Results

To solve a non-Markov problem, XCSM has to develop a strategy to associate the content of internal

memory to the agent’s actual position in the environment. This strategy is formed by (i) classifiers

which properly set the content of internal memory before the system enters an aliased position; and (ii)

classifiers which exploit those settings to behave optimally in the aliased situations.

These classifiers can be viewed as agents trying to develop a common lexicon (Steels 1996). There

are agents, the classifiers in (i), that try to develop a “language” whose symbols are used to mark aliased

situations. There are agents, the classifiers in (ii), which try to associate a “meaning” to those symbols,

i.e., what actual position in the environment corresponds to a specific internal memory configuration.

To use the internal memory effectively implies that XCSM must both create an appropriate internal

language of feasible memory configurations, and learn to associate a meaning to that language by

binding each memory configuration to a specific aliased position.

In this perspective the experiments with Maze7 suggest that for XCSM it is difficult to develop both

the language and the meaning at once. In fact our analysis shows that incoherence can arise in the
3The vertical scale of Figure 9 has been reduced in order to better compare the performances of the two systems with respect

to the optimal performance. Unfortunately, part of the peak corresponding to XCSM1 performance goes off-scale.

Politecnico di Milano TR. 99.36



17

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 G

O
A

L

NUMBER OF PROBLEMS

OPTIMUM

Figure 9: Comparison of the new XCSMH1 (solid line) and XCSM1 (dashed line) in Maze7.

meaning of a specific language symbol because the same symbol (i.e., memory configuration) might

be associated with different meanings (i.e., aliased positions). With the compound action selection

strategy in XCSMH we try to fix the internal language by limiting its exploration and letting the system

focus on the evolution of a correct meaning. In fact, in XCSMH the internal language is searched by the

genetic algorithm alone4 while the meaning is searched as usual both through random exploration and

through evolution.

8 More Than Two Aliased Positions

Both Woods101 and Maze7 have only two aliased positions; accordingly, they can be solved by an

agent with one bit of internal memory. In this section we extend those results by applying XCSMH

in an environment, Woods101 1
2 , for which an optimal policy requires more than one bit of memory.

Woods101 1
2 , depicted in Figure 10(a), has four different positions that the agent perceives as identi-

cal, as shown in Figure 10(b), but which require four distinct optimal actions. To disambiguate these

positions the agent needs at least two memory bits, to represent four distinct memory configurations.

A possible optimal solution for Woods1011
2 using a memory register R having two bits is depicted in

Figure 11. As with Woods101 (Figure 3) the optimal policy for Woods101 1
2 consists of properly setting

registerR before entering an aliased position. Then, when the agent enters an aliased position, it selects

the best action according to the content of R.

We applied XCSMH with two bits of memory, XCSMH2, in Woods101 1
2 in order to test whether

4Because internal actions are always selected deterministically.
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Figure 10: The Woods101 1
2 environment.

XCSMH can exploit internal memory to disambiguate the four aliased positions. The population size

was set to 2800 classifiers. General parameters were set as in the initial experiments with XCSM1;

during the last 2000 problems we turned off learning to test the final policy.

The results reported in Figure 12 (upper solid curve) show that in Woods101 1
2 , XCSMH2 converges

to a policy that is close to, but not optimal. Analysis of individual runs indicated that the system could

not evolve a policy capable of solving all four aliased situations at once. The final policies would usually

disambiguate at most three out of the four aliased positions. These results suggested that the approach

based on the internal memory register might not be scalable to more complex problems. However, let

us consider how the agent exploits the internal memory to cope with perceptual aliasing.

To disambiguate the four aliased positions in Woods101 1
2 the agent must evolve a policy in which

before entering one of those positions the internal register is properly stamped so that when the agent

faces an aliased situation it can in effect determine its actual position by looking at the register. The

agent solves perceptual aliasing by taking decision like: “Register R is set to 01 therefore I should be in

the aliased position at south-east, and the best action is go south-west” (see Figure 11). From this perspec-

tive, the different configurations of internal memory can be seen as colors that the agent can use to mark

the different aliased positions. When the environment can be solved with one bit of internal memory,

just two colors are needed. When the environment requires two bits of internal memory, four colors are

needed. Note that there is a direct relation between the number of colors that an environment requires

and the number of distinct optimal solutions: the more the colors, the more possible assignments of
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Figure 11: An optimal policy for Woods101 1
2 with an internal register, R, of two bits. See Figure 3 for

notation.
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colors to aliased states. In particular, in Woods101 and in Maze7 there are only two strategies that can

be used to disambiguate the two aliased situations, while in Woods101 1
2 there are 4! different strate-

gies. This may be considered a positive aspect of Woods101 1
2 since more admissible solutions means

that the system has more chances to find an optimum. Still, Woods1011
2 is harder than Woods101 to

begin with.

To solve Woods101 1
2 , XCSMH must evolve a policy which associates a distinct color (i.e., memory

configuration) to each aliased position. Note that the agent associates a color to a particular aliased

position without knowing which colors have been already associated to the other positions. The agent

takes a “local” decision and lets evolution “decide” which policy is best. Accordingly, when there are

many different aliased position that must be solved at once, as in Woods101 1
2 , it may be difficult for

the system to evolve a globally optimal policy. Let us illustrate this problem with an example.

Consider Woods101 1
2 and suppose that XCSMH2 has evolved a policy to disambiguate three of the

four aliased situations. When the agent enters the last aliased position it should build a proper associ-

ation between the memory and the position so that the overall policy becomes globally optimal. Note

that the system has three possibilities out of four of associating the current position with a color that has

been already used. Thus XCSMH2 is most likely to choose a color (i.e., a memory configuration) which

is already associated with another position. When this happens those classifiers that match the two

positions associated to the same color will become inaccurate because they apply in aliased situations

with different payoff. Consequently, they are likely to be deleted; that is, part of the solution evolved

is corrupted and the system “forgets” what it has learned. There is, however, a certain probability that

in entering the last aliasing situation the system will associate the correct memory configuration with

that position. Accordingly, we should see from time to time that an optimal policy is evolved even if

only temporarily. But this was not observed in our experiments. As a possible explanation, we note

that in solving an aliased situation the system must associate the correct color with all the positions that

are adjacent to the aliased situation to guarantee a complete solution. So in Woods101 1
2 all the clas-

sifiers matching in three different positions around an aliased cell must associate their internal action

with the correct memory configuration. Therefore, although there is a finite probability that the system

will make the correct association once, the chances that the same association is selected for all the three

adjacent positions is quite small.

At this point we may think that a solution for this type of problem will be hard to find. Nevertheless,

if our analysis is correct, the reason XCSMH2 does not evolve an optimal policy in Woods101 1
2 is

simply that it does not have enough colors to differentiate the four aliased positions. More precisely, it

is difficult to solve Woods101 1
2 having only the exact number of colors that are sufficient to distinguish

the different aliased positions, but a larger number of color “choices” might make the problem easier.

In a second experiment we gave more “colors” to the agent to test whether that would lead to an

optimal policy for Woods101 1
2 . We applied XCSMH with four bits of internal memory, XCSMH4, and a
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Figure 12: Comparison of the performance of XCSMH2, solid line, with that of XCSMH4, dashed line,
in Woods101 1

2 . Population size is set to 2800 classifiers. Curves are averaged over ten experiments.
The optimum is at 3.10.

population of 2800 classifiers in Woods101 1
2 ; during the final 2000 problems exploration was turned off

to test the final solutions. Our hypothesis was that with more bits the system would have more chances

to associate distinct memory configurations with distinct aliased positions. Note that an increase in

the number of memory bits brings an exponential increase of the search space; accordingly, the system

needs more classifiers to converge. But while the search space complexity grows exponentially, we

found that the required population size grows almost linearly. This supports Wilson’s (1998) hypothesis

which suggests that in XCS, the complexity of the learning process grows as a low polynomial of the

complexity of the learning task instead of with the complexity of the search space as in other learning

techniques such as neural networks and nearest-neighbor.

Figure 12 compares the performance of XCSMH2 with 2800 classifiers (solid line) with that of XC-

SMH4 and the same population size (dashed line) in Woods101 1
2 . XCSMH4 with four bits of internal

memory performed better than XCSMH2, supporting our hypothesis. All the ten XCSMH4 runs in fact

converged to optimal policies. These results tend to confirm the “color” analysis. They also recall work

of Teller (1994) who used an internal memory register in a genetic programming approach to a robot

task and found that adding redundant positions to the register improved the results.

9 A More Difficult Problem

We now present a final set of experiments using a more difficult environment. Woods102, depicted in

Figure 13 was first introduced by Cliff and Ross (1994). Woods102 has two aliased situations. One,
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Figure 13: The Woods102 environment.

shown in Figure 13(b), is encountered in four positions of the environment. The second, shown in

Figure 13(c), is encountered in two other positions. From this it would appear that three memory-

register bits are required to resolve perceptual aliasing. However, since the two situations occur in

separate parts of the environment, there is the possibility that an optimal policy could evolve in which

certain register bits are used for more than one situation, thus requiring fewer bits in all. It is therefore

not clear how large a bit-register is strictly necessary.

We therefore performed experiments using XCSMH with 2-, 4-, and 8-bit memory registers. The

optimum performance in Woods102 is 3.23 steps. Performance for XCSMH2 and XCSMH4 reached

4 and 3.7 steps, respectively (results not shown). Results for XCSMH8 are shown in Figure 14, where

it is seen that XCSMH8 reliably converged to an optimal policy. Since it seems clear that the number

of register bits strictly required to solve Woods102 is definitely less than eight, these results further

confirm the importance of register redundancy.

10 Summary and Implications

The work reported in this paper contains the first examples of a learning classifier system achieving

optimal performance in non-Markov environments. Schematically, the final system, XCSMH, consisted
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Figure 14: Performance of XCSMH8 in Woods102. Population size is set to 6000 classifiers. Curve is
averaged over ten experiments. The optimum is at 3.23

of three components: (1) the XCS classifier system; (2) a memory register written into and read by

classifier ”internal actions”; and (3) a ”compound” action-selection strategy in which internal actions

were selected deterministically. The fact that XCSM—which did not contain component (3)—reached

optimality on Woods101, whereas ZCSM of Cliff and Ross (1994) did not, suggests that use of XCS was

required for optimality. The essential difference between XCS and ZCS lies in the definition of classifier

fitness: in XCS it is based on prediction accuracy; in ZCS and traditional classifier systems, on strength,

which resembles the prediction itself. Thus our results suggest that XCS’s way of defining fitness may

be necessary for optimal classifier system performance in non-Markov environments.

XCSMH (and XCSM) are internal-state classifier systems but they use a memory register instead

of a message list. The memory register is much simpler conceptually and in implementation than a

message list. It is possible that the memory-register architecture can be applied successfully to much

more complex non-Markov problems than those here, and may be superior generally to the list. It is

also possible that if the fitness definition of message-list classifier systems were changed to that of XCS,

optimal performance would be obtained. Both directions should be pursued.

Success of XCSMH on the harder non-Markov problems in this paper resulted from discoveries and

observations that increased our understanding of the nature of internal actions. Unlike external actions,

which have well-defined effects, the effect of an internal action depends on the classifiers that match

the resulting register setting. This has positive and negative consequences. On the positive side, more

than one—and possibly a great many–coherent sets of classifiers setting and reading the register will be

consistent with optimal performance in a given environment, which can ease the search problem. On
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the negative side, the requirement for coherence means that exploration of internal actions in a manner

typical of external actions can readily upset good sets of classifiers before they are complete.

XCSMH’s compound action-selection strategy abandoned probabilistic internal action selection in

favor of deterministic selection, in effect leaving the exploration of internal actions to the genetic al-

gorithm. This appeared to provide sufficient stability to the ”symbol choosing” side of the internal

”language” so that the meanings of the symbols could be evaluated—via external action selection—

without disruption. With that accomplished, the positive consequence above—the multiplicity of con-

sistent ”languages”—came to the fore, especially when the memory-register size was larger than strictly

necessary.

Scale-up is an important issue for learning systems. The question is: how rapidly does the learning

time or system size grow as the problem size grows? Cliff and Ross (1994) worried that systems using a

memory register would not scale up well, because the amount of needed exploration of internal actions

would grow exponentially with the register size. They assumed that the space of internal actions would

need to be explored as thoroughly as the space of external actions. Our results indicate otherwise.

XCSMH reached optimality using deterministic internal action-selection and GA search; in effect, it was

not necessary to explore all possible settings of the register. Many (sets of) settings will be interpretable

to yield high or optimal performance; it is only necessary to find one of them.

Nevertheless, we did observe that system size and learning time grew with problem difficulty. To

give a crude overall picture, we can compare the experiment with XCSM1 and Woods101 (Figure 4)

to the experiment with XCSMH8 and Woods102 (Figure 14). The learning time to reach near-optimal

performance goes from about 500 problems to 5000 problems, the population size goes from 800 to

6000, and the number of possible internal actions goes from 31 = 3 to 38 = 6561. Clearly, the time and

resources required are not rising as fast as the space of possible internal actions, as discussed above,

but they do rise considerably.

We are not able at this point to be more precise about scale-up. However, note that an environment

like Woods102 is ”tricky” in that aliased positions are numerous and close together. Natural, or real-

world synthetic environments may be considerably larger, but the density of aliased situations will

probably be considerably lower. In addition, spaced aliased situations may permit the system to evolve

schemes for re-using register bits. As a result the degree of learning complexity added by aliasing to that

already present in the Markov parts of the problem may not be major.

Future work will include implementation in a robotic environment with aliasing due to sensor lim-

itations. However, much remains to be done to understand more deeply the mechanisms of XCSMH

and the specific policies it evolves to overcome aliasing, and to obtain definitive results on complexity.
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