
Strength or Accuracy? A comparison of two approaches to �tness
calculation in learning classi�er systems.

Tim Kovacs

School of Computer Science
University of Birmingham

Birmingham B15 2TT United Kingdom
Email: T.Kovacs@cs.bham.ac.uk
Telephone: (44) 121 414 4773

Abstract

Wilson's XCS is a clear departure from ear-
lier classi�er systems in the way it calculates
the �tness of classi�ers for use in the ge-
netic algorithm. Despite the growing body
of work on XCS and the advantages claimed
for it, there has been no detailed compar-
ison of XCS and traditional strength-based
systems. We distinguish di�erent de�nitions
of overgenerality for strength and accuracy-
based �tness and analyse some implications
of the use of accuracy, including an advantage
in exploration. We analyse the formation
of strong overgenerals, a major problem for
strength-based systems, and show that they
require biased reward functions. We also
show that all non-trivial multi step environ-
ments have biased reward functions and thus
su�er from strong overgenerals. We conclude
that strength-based systems are not suitable
for multi step environments or indeed many
single step environments.

Keywords: accuracy-based �tness, overgen-
eral classi�ers, strong overgeneral classi�ers,
XCS, complete covering maps, best action
maps

1 Introduction

Reinforcement learning environments are either single
step, in which case the learner's actions have no in-

uence on which states it encounters in the future, or
multi step, in which case they do. Multi step environ-
ments are more di�cult as the learner has to consider
the long term e�ects of its actions if it is to learn to
behave optimally. (Multi step environments are also
more likely to involve sparse and/or delayed rewards,

which tend to make learning more di�cult.) In rein-
forcement learning we de�ne a reward function to pro-
vide feedback on the quality of the classi�er systems'
actions. The reward function associates a number with
each possible state/action combination in the learning
environment. The goal of the learner is to obtain as
much reward as possible, and the reward function is
where we indicate to it what we want done. Each
classi�er has a strength parameter which is updated
towards the rewards it receives from the environment,
and is (roughly) an estimate of the reward the sys-
tem will receive if it is used. When classi�ers advocate
con
icting actions their strengths are used in con
ict
resolution.

LCS have traditionally been strength-based, meaning
that for the genetic algorithm the �tness of a classi�er
is its strength. There is a newer type of LCS called
XCS which di�ers in that it uses accuracy-based �t-
ness, meaning that the �tness of a classi�er is based
on the accuracy with which it predicts the reward the
system will receive if it is used. We could say that this
bases �tness on the consistency of a classi�er's strength
over time, as classi�ers with varying strength are being
successively updated towards di�erent rewards, and
so make inaccurate predictions. The creator of XCS,
Stewart Wilson, gives some reasons in [1] for switching
to accuracy-based �tness, but this is the only discus-
sion in the literature and I felt a comparison of the
two approaches was lacking. A better understanding
of the two approaches is particularly important for a
number of reasons. First, there is evidence that tra-
ditional strength-based �tness is unsuitable for multi
step environments [2, 3]. Second, there is a growing
body of evidence that accuracy-based �tness is suit-
able for multi step environments (e.g. [1, 9]). Third,
a number of other advantages of accuracy-based �t-
ness have been claimed, including better generalisation
(and consequently smaller population sizes) [1, 4, 5].
Finally, XCS has generated considerable interest and

is becoming a major focus of LCS research (see [6] for
a review). Consequently, I set out to �nd out in detail
how the two approaches to �tness calculation compare.

To simplify the comparison, I looked at systems which
were as similar as possible. I did this by starting with
XCS and making the minimum changes required to
convert it to a strength-based system. This involved a
number of relatively minor changes to get the system
to work in practice, but left the architecture of the
system unchanged. This approach was necessary be-
cause there are a number of di�erences between XCS
and other LCS, and I wanted to factor the others out
and study only the di�erence in the �tness calcula-
tion. The resulting strength-based system is similar
to Wilson's earlier ZCS [7], but not identical to it.
Unfortunately space does not permit consideration of
other types of strength-based LCS, but much of the
analysis should be widely applicable. Note that both
the strength and accuracy-based systems considered
here are Michigan style systems, both use the same Q-
learning update (rather than the older Bucket Brigade
algorithm), neither uses any form of tax (though they
use discounting in multi step environments), classi�er
bids are not deducted from their strengths, and XCS
does not support default hierarchies because they in-
volve inherently inaccurate classi�ers.

A consequence of accuracy-based �tness which soon
becomes apparent is that all accurate (consistent) clas-
si�ers are maintained in the population. This in-
cludes both those which are consistently correct and
those which are consistently incorrect.1 In contrast,
strength-based �tness (ideally) only maintains those
classi�ers which are consistently correct. As a con-
sequence, it seems the size of the population needs
to be larger if we use accuracy-based �tness, which
is a disadvantage as it requires more computational
power. Why would we want to maintain classi�ers
which have consistent predictions but which are con-
sistently wrong?

2 Strength-based �tness

LCS researchers have been aware of two long-standing
problems for many years:

Overgeneral rules For strength-based systems we
de�ne an overgeneral rule as one which matches

1A classi�er is correct when, in a given state, it advo-
cates the best action, and incorrect when it advocates any
other action. In single step environments the best action
is the one which returns the most immediate reward, while
in multi step environments the best action is that which
leads to the most reward in the long run.

in multiple states and is incorrect in some. E.g.
an overgeneral which matches 10 states may be
correct in as many as 9 or as few as 1. Even
overgenerals which are most often correct are (by
de�nition) sometimes incorrect, so using them can
harm the performance of the system.

Greedy classi�er creation Often the reward func-
tion will return di�erent rewards for correct
actions in di�erent states, e.g. one classi�er
might receive a reward of 50 for acting cor-
rectly, while another might receive a reward of
100 for acting correctly. Classi�ers which receive
more reward from the environment have higher
strength/�tness and so are more likely to be se-
lected for reproduction than classi�ers which re-
ceive less reward. If this tendency to reproduce
�tter classi�ers is too strong then there may be
gaps in the system's \covering map", i.e. there
may be lower reward states for which the system
has no applicable classi�ers. When the system en-
counters such states it must invent new rules on
the spot, which results in poor performance (at
least in the short term).

Cli� and Ross [2] showed that LCS can have serious
di�culty even with simple multi step environments.
They studied \classi�er systems", which at the time
meant strength-based LCS as XCS had only just been
invented, so their analysis applies only to strength-
based systems. They attributed the LCS's di�culties
to the two problems above, and, in particular, to their
interaction:

Interaction: strong overgenerals The problems
of greedy classi�er creation and overgeneral rules
interact when an overgeneral rule acts correctly
in a high reward state and incorrectly in a low re-
ward state. The rule gains considerable strength
in the state in which it acts correctly, and only
misses out on a little additional strength when
it acts incorrectly.2 However, a rule which al-
ways acts correctly but applies only in the low re-
ward state will have low strength. This can cause
two problems. First, because action selection is
done on the basis of strength the overgeneral rule
will have more in
uence in the low reward state,
despite being consistently wrong there. Second,
greedy classi�er creation means that the overgen-

2If classi�ers pay out a bid or some form of tax then
the overgeneral may loose a lot of strength when acting
incorrectly. However, neither occurs in XCS because these
tend to produce unstable strength values which are not
good predictors of the reward to be received [1].

eral rule is more likely to be selected for repro-
duction, so the consistently correct rule may die
out entirely. I've called this interaction e�ect the
problem of strong overgenerals as Cli� and Ross
did not give it a name. Strong overgenerals are
disastrous for the system's performance.

Although Cli� and Ross discussed these problems with
respect to the multi step case, they clearly also apply in
the single step case, although not as severely as there is
no possibility of disrupting sequences of actions in the
single step case. Strength-based LCS have had some
success with single step environments but little with
multi step environments. We might attribute the dif-
ference to the greater severity of the above problems in
the multi step case. However, strength-based systems
can perform poorly in simple single step environments,
a problem which Cli� and Ross did not discuss.

Let's extend the analysis of Cli� and Ross to see in
which environments these problems can occur. First,
I de�ne a strong overgeneral as an overgeneral rule
which has higher strength than some accurate rule it
competes with for action selection. Two conditions
must be met for strong overgenerals to emerge: i) at
least two states must return di�erent rewards (so that
we can have a high reward and a low reward state), and
(trivially) ii) it must be possible to act incorrectly in
a lower reward state (i.e. there must be more than one
action available) so that having strong overgenerals
makes a di�erence to the learner's performance.

The reward returned for acting in a state is de�ned by
the experimenter's reward function. Figure 1 de�nes
two reward functions for an environment (the binary
state, binary action identity function). We'll call a re-
ward function unbiased if all correct actions return the
same reward, and all incorrect actions return the same
reward, regardless of state. (Of course the reward for
correct actions needs to be higher than that for incor-
rect ones.) The �rst reward function is unbiased. The
second is biased: more than two reward values are de-
�ned. Figure 2 shows all possible classi�ers for this
environment using the standard classi�er representa-
tion. A & D always respond correctly, B & C always
respond incorrectly, and E & F are overgeneral, re-
sponding correctly in one state and incorrectly in the
other. If we assume that states and actions are chosen
equiprobably we obtain the expected strength values
shown for the classi�ers using the two reward func-
tions. Using the biased reward function E is a strong
overgeneral: despite being wrong half the time it has
higher strength than D (which is always correct).3

3We could have simpli�ed the example somewhat by
de�ning only action 0 for state 0. Action 1 has no e�ect on

Having a biased reward function can lead to the prob-
lems of greedy classi�er creation and strong overgener-
als which Cli� and Ross discussed. However, it is di�-
cult to determine just when these problems will occur,
and how serious they will be because there are many
factors involved. An important factor is the degree of
bias in the reward function. Let's begin a simpli�ed
analysis by labelling the rewards from the overgeneral
rule's perspective. Let c be the reward when the over-
general acts correctly (state 0 action 0 in the biased
reward function), i the reward when acting incorrectly
(state 1 action 0), and a the reward for the accurate
rule which applies only in the lower reward state (state
1 action 1).

Now let's see what reward functions will cause E to be
a strong overgeneral. Assuming E is updated towards
c and i such that its strength is the average of the
two (which is an oversimpli�cation), it will be a strong
overgeneral if (c + i) = 2 > a. Solving for c yields:
c > 2a� i. If we use the values of 0 and 200 for i and
a as in the biased reward function then c > 400 will
result in E being a strong overgeneral.

Clearly the rewards de�ned by the reward function
play a major role in determining whether strong over-
generals are possible. Unfortunately, the above analy-
sis is a gross oversimpli�cation of more realistic learn-
ing problems, in which it can be very di�cult to deter-
mine how much of a problem strong overgenerals are
likely to be.

Thus far I have not dealt with cases in which we
have more than two actions. In such cases we may
be tempted to use more than two reward levels (see
section 3), but this gives us a biased reward function.

2.1 Multi step environments

In single step environments a reinforcement learner ap-
proximates the reward function de�ned by the exper-
imenter, which is in principle enough to maximise the
reward it receives. In multi step environments, how-
ever, consideration of the reward function alone is not
su�cient, as it de�nes immediate reward (the reward
on a given time step) only. In multi step environments
the learner's actions in
uence the state of the envi-
ronment and hence which rewards it may receive in
the future. Consequently the learner must take into
account future consequences of current actions if it is
to maximise the total amount of reward received. Q-
learners do so by learning a Q-function (also called a
state/action function) which maps state/action pairs
to an estimate of their long term value (called their Q-

the development of strong overgenerals in this example.

State Action Reward
0 0 1000
0 1 0
1 0 0
1 1 1000

State Action Reward
0 0 1000
0 1 0
1 0 0
1 1 200

Figure 1: Unbiased reward function (left) and biased reward function (right).

Classi�er Condition Action Strength
A 0 0 1000
B 0 1 0
C 1 0 0
D 1 1 1000
E # 0 500
F # 1 500

Classi�er Condition Action Strength
A 0 0 1000
B 0 1 0
C 1 0 0
D 1 1 200
E # 0 500
F # 1 100

Figure 2: Classi�ers using the unbiased and biased reward functions (left and right respectively).

Q=59.05
R=0

Q=65.61
R=0

Q=72.9
R=0

Q=81
R=0

Q=90
R=0

Q=100
R=100

R=0
Q=53.12

���
���
���
���
���

���
���
���
���
���c

R=0
Q=59.05 Q=81

R=0
Q=90
R=0

M

M’

N O P Q

Q’

R

i
a

i’

a’

Figure 3: A simple multi step environment showing
immediate rewards R and Q-values Q for state transi-
tions using
 = 0:9.

value). (Q stands for quality of the state/action pair.)
The Q-value of a state/action pair is updated towards
the immediate reward it receives plus some fraction of
the Q-value of the state which follows it. (We say the
value of the following state is discounted and passed
back to its predecessor.) In this way a state/action
pair which receives no immediate reward will have a
Q-value greater than 0 if it leads to a state with an
immediate reward greater than 0. The value of a state
is the value of the best action for that state, i.e. the
state/action pair with the highest Q-value. Discount-
ing is illustrated in a simple environment in �gure 3
which shows the immediate reward R and the Q-value
Q for each state transition assuming a discount rate

of 0.9. Knowledge of the true Q-function for an envi-
ronment is su�cient to act optimally by simply taking
the action with the highest associated Q-value.

In an LCS using Q-learning the approximated Q-
function is represented by classi�ers whose strengths
are Q-values. Discounting is necessary in order to �nd
shorter paths through sequences of states, but we shall
see that the use of discounting in Q-learning introduces
special problems for strength-based LCS.4

4Classi�er systems have traditionally used the Bucket
Brigade algorithm rather than Q-learning, but it has the

The discount rate
 controls how much consideration
the system gives to future rewards in making decisions.
At
 = 1.0 no discounting occurs, and the system will
learn the path which results in the most reward, re-
gardless of how long the path is. This is often not
what we want. For example, being paid $5 a year
from now is not as desirable as being paid $5 today.
If we used
 = 1:0 in �gure 3 then both the i and a
transitions would have Q-values of 100 and the sys-
tem would be unable to choose between them. At the
other extreme, if we set
 to 0.0 the system will be
shortsighted and take no interest in the future conse-
quences of its actions. This is often undesirable, as it
would lead the system to choose $5 today rather than
$1000 tomorrow. In �gure 3,
 = 0:0 would give i and
a Q-values of 0, and again the system would be unable
to choose between them. Typically we will want to set

 to some value between 0 and 1 in order to give possi-
ble future rewards a suitable weighting. However, this
produces one of the two criteria for the production of
strong overgenerals: a biased Q-function.5 Notice that
even though there are only two rewards given in �gure
3, there are many Q-values.

A further factor is often involved in generating strong
overgenerals in multi step environments. Suboptimal
paths are routes through the state space which are
longer than necessary. (It is easy to generate them in
environments with circularities, but circularities are
not necessary.) The combination of suboptimal paths
and discounting produces states with highly biased Q-
values. Let's look at an example. Imagine the sit-
uation where an overgeneral matches in state R and

same need for discounting.
5The other criterion, that it be possible to act incor-

rectly, occurs in all non-trivial environments, speci�cally,
in all environments in which we have a choice of alternative
actions in at least one state.

advocates a transition to the terminal state, and also
matches in Q and advocates an incorrect (suboptimal)
transition to Q0. Additionally, a di�erent, accurate,
rule matches only in state Q and advocates the cor-
rect transition to state R. Assigning the Q-values from
the transitions so labelled to c; i and a in the inequality
(c+i)=2 > a we saw earlier we obtain (100+81)=2 > 90
or 90:5 > 90. In other words, the overgeneral is a
strong overgeneral as it has strength 90.5 which ex-
ceeds the accurate rule's strength of 90. This indi-
cates that strong overgenerals can be obtained even
with very short chains.

If the reward received at some state s is R(s), dis-
counting results in R(s)
 being passed to the state
preceding s. In general, a state n steps ahead of s
receives R(s)
n. If we rewrite a as c
n and i as c
m

where n and m are integer distances of a and i from
c, we have (c+ c
m)=2 > c
n. This expression is true
for any c > 0 as long as 0 <
 < 1 and n � 1. In other
words, according to our approximate expression, any
discounting will produce a Q-function capable of sup-
porting strong overgenerals in this environment. Of
course our calculations have been greatly oversimpli-
�ed, but it should be clear that all but the simplest
multi step environments can support at least some
strong overgenerals.

Now let's look at another example, in which the over-
general matches in states R and M, and the accurate
rule matches only in state M. We now use the Q-values
labelled a0 and i0 for a and i in (c + i)=2 > a and
obtain 76:56 > 59:05. Notice that in this example
the overgeneral acts incorrectly farther from the goal
than in the �rst example, but its strength exceeds the
threshold required of a strong overgeneral by a greater
degree. The farther i and a are from the goal, the
stronger the strong overgeneral will be, compared to
the accurate classi�er. Notice also that the farther i
and a are from the goal, the easier it is to produce
strong overgenerals because there are more state tran-
sitions in which c can occur and gain enough strength
to produce a strong overgeneral.

3 Why bias the reward function?

The reward function is the means by which the exper-
imenter de�nes the goals of the learner (see [8]). The
reward function is part of the de�nition of the problem;
choosing di�erent reward functions results in di�erent
learning problems. The trick is to choose a reward
function which results in the desired behaviour. Given
that the experimenter de�nes the reward function, po-
tential problems with biased reward functions can be
avoided by using unbiased ones (or only slightly biased

ones). One reason to bias the reward function is to get
the system to allocate more resources (classi�ers) to
more important parts of the environment. For exam-
ple, we might consider the detection of an impending
meltdown to be more important than optimising the
output of a reactor.

In single step environments we can normally achieve
the same e�ect by varying the frequency with which
individual states are encountered. (Although we might
not be able to do this if we're learning on-line and don't
have enough memory to store exemplars for later play-
back.) Unfortunately, this is not an option in multi
step environments as the agent and environment de-
termine which states are encountered, not the exper-
imenter. Alternatively, we could split the classi�ers
into multiple subpopulations, each with a di�erent size
limit, and assign each subpopulation to a subpart of
the environment. More important parts of the envi-
ronment would get bigger subpopulations.

Another reason to bias the reward function in single
step environments is to indicate the relative value of
di�erent actions when more than two are available.
Suppose we can take many actions. We could give a
high reward (e.g. 100) for the best action in each state
and a low reward (e.g. 0) for all others. This would be
an unbiased reward function. However, we might not
want to treat all sub-optimal actions equally. Some
might be much better than others.

In multi step environments we don't need to bias the
reward function to indicate the relative value of di�er-
ent actions (as they relate to the same goal) because
discounting does this for us by producing a biased Q-
function. This bias is towards classi�ers which apply
in states which are closer to the source of the reward.
It is not clear to me whether this bias is desirable or
not. However, there is an additional need to purposely
bias the reward function in multi step environments
because the learner's actions a�ect which states it will
see in the future. If we de�ne multiple goals we need to
tell the learner about their relative importance, so it
knows which goals to pursue if it must choose between
them.

4 Accuracy-based �tness

The only fully accuracy-based LCS is Wilson's XCS.
(See [1] for a review of the use of accuracy in primar-
ily strength-based systems.) Although the di�erence
in �tness calculation may seem minor, it has profound
implications for the system. Strength-based systems
attempt to �nd rules which advocate the best action
for each state. Ideally they would maintain only a sin-

gle rule (advocating the best action) for each state. We
call this a best action map. Since the action selection
mechanism can only choose between the advocated ac-
tions, the maintenance of a best action map means
the genetic algorithm has a hand in action selection.
In contrast, the idea in XCS is to �nd a population
of rules such that each action in each state in advo-
cated. We call this a complete map. It is then up to
the action selection mechanism to decide which action
to take. Thus, in XCS, the genetic algorithm is disso-
ciated from action selection. Its role is only to search
for useful generalisations over states. I use di�erent
de�nitions for overgeneral rules to match the di�erent
objectives of the two types of system.

For accuracy-based �tness I de�ne an overgeneral rule
as one which receives di�erent rewards in di�erent
states. As noted earlier, it is possible for the reward
function to be biased in such a way that a rule receives
the same reward when acting correctly in one state and
incorrectly in another. Such a rule would have a con-
sistent prediction and thus be accurate, �t and not

overgeneral in an accuracy-based system. However, it
would be overgeneral in a strength-based system as it
advocates an incorrect action. In any case, this seems
unlikely to occur in practice.

A much more signi�cant di�erence is that a rule can
successfully advocate the same correct action in states
with di�erent Q-values only using strength's de�nition
of overgenerality. For example, a rule which matches
in states O and P in �gure 3 will be updated towards
two Q-values: 72.9 and 81. Its strength will be some
sort of average of these values. With �tness based on
strength, this rule will have a reasonable �tness. But
with �tness based on accuracy, this rule will have low
�tness, as its prediction will oscillate between the two
Q-values and be a good estimate of neither.

Accuracy-based �tness can only generalise over
state/action pairs with very similar Q-values.6

Strength-based �tness does not have this limitation.
Strength-based classi�ers are free to match any and all
states for which their action is optimal. Unfortunately,
they are also free to match states for which their action
is suboptimal, and, in the standard strength-based sys-
tem, there is nothing preventing them from doing so.

According to Wilson's Generalization Hypothesis [1]
there is a tendency in accuracy-based XCS for the
more general of two equally accurate rules to repro-
duce more. This results in a tendency to evolve max-
imally general rules; rules which cannot be made any
more general without becoming inaccurate. These ac-

6This is a limitation of dynamic programming based
systems rather than of XCS or LCS per se.

curate, general rules form a compact representation
of the learned solution to the problem environment.
Consequently, XCS maintains populations which are
smaller than those of standard strength-based systems.
In fact, with minor extensions XCS is able to con-
sistently evolve optimal solutions for boolean (mul-
tiplexer and parity) functions (see [4]). These are
solutions which are complete (cover all parts of the
input/action space), non-overlapping (no part of the
space is described more than once) and minimal (the
minimal number of non-overlapping rules is used).

In addition to a tendency towards best action maps,
strength has two other advantages over accuracy in
maintaining small population sizes. First, accuracy
cannot generalise over correct actions which result in
di�erent rewards. Second, accuracy cannot support
normal default hierarchies because default hierarchies
involve classi�ers which are inherently inaccurate.7 It
is not clear at present how the two compare in practice
in terms of population size.

An important property of accuracy-based systems is
that they are largely insensitive to bias in the reward
function. This is because �tness is based on the ac-
curacy (consistency) of the reward prediction, rather
than the magnitude of the prediction. So a classi�er
which accurately predicts a reward of 0 will be as �t as
one which equally accurately predicts a reward of 100
{ it does not matter much what values we use in the
reward function (as long as correct rules have higher
reward than incorrect rules). So accuracy-based �t-
ness avoids the problem of greedy classi�er creation.
It also largely avoids problems with overgenerals be-
cause they are updated towards di�erent rewards and
so have low accuracy and low �tness. In particular,
it should be di�cult for strong overgenerals to emerge
using accuracy because overgenerals tend to have low
�tness while all accurate classi�ers have high �tness.

However, insensitivity to bias in the reward function
also means we are unable to bias the allocation of clas-
si�ers towards more important parts of the environ-
ment by biasing the reward function. With accuracy-
based �tness there is no point in using a biased reward
function.8 However, we can still bias the allocation of
rules in other ways, as discussed in section 3. Another
option, which is applicable in any situation, is simply
to de�ne a weighting function for each state/action

7However, it should be possible for accuracy to use clas-
si�ers with multiple conditions which form their own inter-
nal default hierarchies.

8In fact it is a little easier for the system to generalise
if the reward function is unbiased because, with a biased
reward function correct rules can receive di�erent rewards
and thus cannot be generalised over.

pair, and to modify the system to take it into account
when allocating rules. This reintroduces the possibil-
ity of problems with greedy classi�er creation.

In multi step environments discounting always pro-
duces a biased Q-function, but this does not matter
as accuracy-based �tness is largely insensitive to it
and appears to work well in multi step environments
(as demonstrated in a number of environments in e.g.
[1, 9]). I said earlier (section 3) that we might need to
bias the reward function in multi step environments in
order to give di�erent goals relative importance. Al-
though accuracy-based �tness means the system is in-
sensitive to bias when it comes to reproducing classi-
�ers with the genetic algorithm, action selection is still
done on the basis of strength, not accuracy-based �t-
ness. Thus, an accuracy-based system can distinguish
between high and low priority goals (or �nd shortest
paths to goals).

5 Complete maps and best action

maps

Now let's return to the question of why we would want
to maintain classi�ers which are consistently wrong.
Accuracy-based �tness maintains all accurate classi-
�ers (both consistently right and consistently wrong).
For any state, an accuracy-based system will tend to-
wards having at least one classi�er advocating each
possible action (a complete map). Strength-based sys-
tems, in contrast, tend towards maintaining only a sin-
gle classi�er for each state, namely the one which advo-
cates the action which results in the highest reward (a
best action map). Thus it seems that accuracy-based
systems should require a larger population of classi-
�ers, although whether this is the case is not clear.
(The worst case is that the complete map will be n
times larger than the best action map, where n is the
number of actions available. In practice, however, the
di�erence will be less as strength only tends towards
a best action map.)

However, maintaining consistently wrong classi�ers in
the population does not mean we have to take the
wrong action each time that classi�er is applicable. In
fact, quite the opposite is true. If a classi�er is con-
sistently wrong, this suggests we should not take the
action it advocates. If we did not keep this consistently
wrong classi�er in the population, how would we know
it was a bad idea to take its action? If we delete it, we
have no record of the utility, or lack thereof, of taking
that action in that state, and we might be tempted
to try the bad action again and again in the future.
We need to keep bad classi�ers in order to keep track

of our failed guesses; in other words to manage our
explore/exploit strategy.

Accuracy-based �tness tends towards forming and
maintaining complete covering maps because it is in-
sensitive to the magnitude of reward received by a
classi�er. Strength-based �tness, in contrast, tends
to maintain classi�ers for only a subset of the actions
for each state. Can we get a strength-based system
to maintain a complete map? We could use a reward
function which, for example, gave rewards of 90 for in-
correct actions, and 100 for correct actions. If selective
pressure is not too strong the system should be able
to maintain classi�ers for both correct and incorrect
actions (i.e. a complete map). A problem is that over-
general rules would always have more strength than
accurate incorrect rules.

A complete map has the disadvantage of requiring
more classi�ers but the advantage of helping with the
explore/exploit problem. Whether the advantage out-
weighs the disadvantage depends on the situation. If
larger population sizes are costly (e.g. as on a serial
computer) then a complete map is costly (although
the power required is likely to increase by only a small
polynomial factor). On the other hand, the more di�-
cult the exploration problem, the more advantageous a
complete map will be. Two cases in which exploration
is more di�cult are i) when the environment changes
over time, and ii) in multi step environments.

Hartley [10] trained two LCSs, XCS (which has a com-
plete map) and NEWBOOLE (which has a best action
map), on a binary categorisation task, then abruptly
switched the category each stimulus belonged to. XCS
quickly recovered from these changes by simply adjust-
ing the strengths of the rules involved: consistently
correct rules suddenly became consistently incorrect
and vice versa. NEWBOOLE, in contrast, found that
its rules suddenly all had low strength, and had to
engage the genetic algorithm to generate new ones as
it does not maintain low strength rules. A complete
map should also be useful for adapting to less system-
atic and more gradual changes in the environment, al-
though this has not been studied.

In multi step environments globally optimal behaviour
often requires that the learner take locally suboptimal
actions (i.e. actions which do not return the highest
possible immediate reward). E.g. the learner must take
action B, knowing that action A results in greater re-
ward, because only action B will lead it to state Q
where it can obtain even greater reward. The best
way to ensure that such sequences of actions can be
learned is to use a complete covering map. Note that
a tabular Q-learning system employs a complete map.

Further study is needed to con�rm and quantify the
advantages of complete covering maps for exploration
control, and to determine how much of an increase in
population size is required by a complete map.

6 The big picture

That an estimate of accuracy is needed should not be
surprising because LCS are searching a space of gen-
eralisations and accuracy is a measure of the utility
of generalisation. Function optimisation genetic algo-
rithms are rather di�erent. Typically they attempt to
�nd parameter settings which correspond to the ex-
tremum of the �tness function (or, in LCS terminol-
ogy, the reward function). They include no concept of
environmental state (and so lack the condition part of
a classi�er), and only manipulate a set of parameters
(corresponding to the action part of a classi�er). Con-
sequently they have no notion of generalising across
states and no need for a measure of the accuracy with
which this is done. Their measure of �tness is just
the strength value in a strength-based classi�er system
(with the important di�erence that chromosomes in a
genetic algorithm are normally only evaluated once,
whereas a classi�er's strength is updated many times).

The use of strength as a �tness measure in LCS is
apparently due to confusion over the role of the ge-
netic algorithm. In function optimisation, the genetic
algorithm is a function optimiser seeking only the ex-
tremum of the �tness function. Within an LCS, how-
ever, it is a function approximator, learning to du-
plicate the entire reward function, hopefully doing so
more e�ciently by generalising over states. It was easy
to make the mistake of retaining the same �tness mea-
sure when moving from one to the other.

7 Summary of comparison

I've tried to show that strength-based �tness is not
suitable for non-trivial multi step environments. The
only potential advantage of strength we've seen is
that it can, in principle, maintain smaller populations.
However, it is not clear how the approaches really
compare in this respect. Further, it seems that com-
plete maps are important for controlling exploration,
so strength may be well suited only to single step
environments in which exploration is relatively easy.
Accuracy-based �tness seems more suitable for more
di�cult single step environments, and appears to be
necessary for non-trivial multi step environments.

I have evaluated the accuracy-based �tness of XCS
while ignoring its other valuable features.

8 Acknowledgements

I am grateful to Stewart Wilson, Manfred Kerber and
two anonymous reviewers for their comments.

References

[1] Stewart W. Wilson. Classi�er �tness based on
accuracy. Evolutionary Computation, 3(2):149{
175, 1995. http://prediction-dynamics.com/

[2] Dave Cli� and Susi Ross. Adding Tempo-
rary Memory to ZCS. Adaptive Behavior,
3(2):101{150, 1995. ftp://ftp.cogs.susx.ac.uk/
pub/reports/csrp/csrp347.ps.Z

[3] Tim Kovacs. Weeding populations of classi�ers.
In preparation. http://www.cs.bham.ac.uk/~tyk

[4] Tim Kovacs. XCS Classi�er System Reli-
ably Evolves Accurate, Complete, and Min-
imal Representations for Boolean Functions.
In Roy, Chawdhry, and Pant, editors, Soft

Computing in Engineering Design and Manu-

facturing, pages 59{68. Springer-Verlag, 1997.
ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/

[5] Stewart W. Wilson. Generalization in the XCS
classi�er system. In J. Koza et al., editor, Genetic
Programming 1998: Proceedings of the Third An-

nual Conference. Morgan Kaufmann, 1998.

[6] Stewart W. Wilson. State of XCS classi�er sys-
tem research. Technical Report 99.1.1, Prediction
Dynamics, Concord MA, 1999.

[7] Stewart W. Wilson. ZCS: A zeroth level classi�er
system. Evolutionary Computation, 2(1), 1994.

[8] Richard S. Sutton and Andrew G. Barto. Re-

inforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. http://www-
anw.cs.umass.edu/~rich/book/the-book.html

[9] Pier Luca Lanzi and Marco Colombetti. An Ex-
tension of XCS to Stochastic Environments. To
appear in W. Banzhaf et al. eds, GECCO-99: Pro-
ceedings of the Genetic and Evolutionary Compu-

tation Conference. Morgan Kaufmann, 1999.

[10] Adrian Hartley. Accuracy-based �tness allows
similar performance to humans in static and dy-
namic classi�cation environments. To appear in
W. Banzhaf et al. eds, GECCO-99: Proceedings of
the Genetic and Evolutionary Computation Con-

ference. Morgan Kaufmann, 1999.

