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With respect to Holland'original framework, the main element greatly lost sight of in ZCS is
of course the message list and the concommitent potential for multiple parallel thought lines and
the formation of complex mental models. One sees in principle how these things cogleliemer
a classifier system, but we dogét understand the mechanics well enough to make it happen.
We hope that further research on simpler systems like ZCS will contribute to bringing the full sys-

tem to maturity
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sions. It is straightforward to represent a class#fieondition as an s-expression built frand,

or, and not . Other operators such as a thresholded sum and conditional comparison can be in-
cluded in the systemfunction set, so that very flexible conditions can be evolved with a set of
primitives that is still quite small. An “s-classifier” would thus have an s-expression as its condi-
tion; its action would be a bit string as usual (though one can imagine the action also as an s-ex-
pression). The advantage of s-classifiers over standard ones would be to permit the evolution of
generalizations which suit tt&,; functions of arbitrary environments better than can the stan-

dard classifiés conjunctive syntax.

6. Summary and Conclusions

This paper has presented ZCS, a basic classifier system for reinforcement learning that retains
much of Hollands original framework while simplifying it so as to increase understandability and
performance. ZCS'relation to Q-learning was brought out, and its performance shown to be
quite similar in two experimental environments. Four extensions of ZCS were proposed: tempo-

rary memorymore sophisticated action selection, a niche GA, and “s-classifiers”.

There would appear to be several principal advantages of a classifier system like ZCS in rein-
forcement learning problems. First, ZCS is a Q-like system which has its own built-in basis for
generalization—the classifiers themselves. This contrasts with look-up table implementations of
Q-learning which either dongeneralize or must be supplemented by clustering methods (Ma-
hadevan & Connell 1992), and with neural-network-based Q-learners which generalize through
the sometimes slow process of backpropagation. In addition, the proposed s-classifier extension
to ZCS may permit achievement ofieient generalizations with respect to the underlying space.
Second, ZCS appears to be extensible to handle environments calling for temporary memory and
hierarchical behavior using a memory register technique not seen in other approaches to rein-
forcement learning. Finalljike any classifier system, ZCSearfs a Darwinian perspective on re-
inforcement learning that contrasts with the many approaches that rely principally on error

correction.
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niches later in a chain. Finallhe panmictic GA would be retained, but at a reduced probability

of invocation, to dket any inbreeding tendency of the niche GA, and to give some degree of em-
phasis to clearly more remunerative niches. Since the niche GA crosses classifiers in the same
[M], the offspring are guaranteed to match the same input, so the generation ahagugng
classifiers in sparse environments should be greatly reduced. An experimental classifier system

has been developed along the above linals@, in preparation).

5.4 S-classifiers

As discussed in Section 4, ZG$opulation [P] at any moment constitutes a mapping from
x,apairs to action set strengtfig; which control the system. The objective of the reinforcement
and discovery components is to evolve mappings [P] that produce better and better performance
in the environment. In this section we consider the mappinglerlying units, the classifiers,
and how their representation might usefully be modified. Classifiers as we usually know them are
somewhat limited beasts in that their conditions are expressed as conjunctive predicates. That is,
they match, or are true, if and only if all of the bits specified in the condition match. A classifier
can express a generalization, but only in a particular way: by saying “these bits must be just so,
and the rest dohimatter”, i.e., the generalization must be a hyperplane. Itis not possible, in a sin-
gle conjunctive classifieto express a generalization such as “bit 3 or bit 5 must be a one”, or “at
least two of bits 3, 5, and 7 must be ones”. Of course, binary classifiers completely ignore the
world of continuous variables. Some work (e.g., Grefenstette 1992) has been done with classifi-
ers whose conditions are specialized for certain domains, and, as mentionedtezndiés work
on continuous inputs via fuzzy classifiers. Howetregre is only a little work (Booker 1991) to-
ward a general reformulation of classifier representation that would permit expression of arbitrary
generalizations. The main reason has been that it was not clear how to apply genetic operations to
arbitrary logical expressions, whereas one did see how to do it for conjuncts expressed in the 1,0,#
language. Nowhoweverthe development of genetic programming (Koza 1992) has shown how

genetic operations can be applied successfully to arbitrary functions encoded as Lisp s-expres-
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In contrast, environments likeads1 and \WWods7 are “sparse” in the sense that the set of in-
puts which occur in them form a very small subset of the possible strings under that encoding.
Consequently panmictic crossover in ZCS often produdsprofg that never match and so re-
main dead wood in [P] until deletion happens to eliminate them. This restricts the population
computation space—the set of evaluable classifiers—and does not contribute to the search for bet-
ter classifiers in the niches that exist. While ZCS gelgrsuccessful in Wbds1 and \wods7, it
is possible that a non-panmictic niche-based GA would improve performance. Booker (1982,
1989) has investigated and long advocated a niche GA for classifier systems, for many of the rea-
sons noted here. His implementation is part ofgelasystem having many aspects not present in
ZCS, and to keep to ZCSspirit of minimalness we propose here a niche GA that contains some
but not all of the mechanisms in Booleimplementation. One of his insights was that niches are
effectively identified by the various match sets that gcaithat a GA designed to search the
niches should be restricted to classifiers in [M]. A further suggestion was that if, under exact
matching, [M] was empty or small, classifiers that nearly or partially match the input should be al-
lowed to participate in the niche GA. The idea was that partial matchers contain some, albeit im-
perfect, information relevant to the niche, and so should participate if there were few exact
matchers. \& are unsure of the value of using partial matches, since the mismatches are a form of

noise, and we leave this aspect out for.now

In line with Bookers basic concept, we propose an extension to ZCS in which a niche GA
supplements the existing panmictic one. The niche GA would simply act on [M] with a certain
probability pniches there would be no special triggering conditions. The GA would operate as usu-
al, except that if [M] contained just one classjfanly mutation and not crossover could occur
Deletion would occur from [P] as a whole, using a variation on a niche balancing technique that
Booker developed. ®ivould have each classifier keep an estimate (by exponential averaging) of
the number of classifiers in its match sets. Then a classifiebability of deletion would be
proportional to this quantitygo that niches would tend to have the same number of members, in-

dependent of niche strength. This avoids the panmictis @Ablem of giving more resources to
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problem usually means solving a set of subproblems each due to an aspect of the egstem’
ronment. Thus the GA in a classifier system faces a multiple optimization problem in which it

must allocate resources—classifiers—to search more or less separate niches of the space. The sit-
uation is further complicated by the fact that, often, success in a niche is contingent on success in
another niche. For instance, this occurs if, as in ZCS, classifiers form chains to reach reward:

each step in the chain can be regarded as an environmental niche for which good classifiers must
be found; if not, the chain as a whole is weakened or broken. Under such circumstances it is not
obvious that a panmictic GA is the best way to identify and search the niches, since it is not clear
that the recombination of classifiers from an arbitrary pair of niches will be relevant to either of

them or to any other niche.

Quite separately from mate choice, the practice in a panmictic GA of selecting the first parent
from the population as a whole, or globail/problematic for classifier systems in which a classi-
fier's fitness is based on strength. f&&nt niches may quite normally havefelieént reward lev-
els, and therefore dérent strengths in the corresponding classifiers. If the niches are separate
and unrelated, it makes sense to base selection on strength because then greater resources will go
to the more remunerative niches. Howetfghe niches belong to the same chain, and the rein-
forcement cycle has a discount fagger 1, then early niches will necessarily have less strength
than later ones. It is not clear that the early niches should get fewer resources, though, since they

“set up” and so permit reward ultimately to be received in the later ones.

The classifier system BOOLE {lbn 1987a) successfully used a panmictic GA to learn the
Boolean multiplexera highly nonlinear logical function. There, howevke niches, which cor-
responded to disjuncts of the function, had equal reward schedules, dependent only on whether
the system was right or wrong, and the problem was not sequential. In addition, the environment
was “dense” in the sense that the system would see every possible input string everttaally
meant that every classifier produced by panmictic crossover would eventually match and receive

an evaluation, so that every cross was in some degree fruitful and contributed to the search.
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this direction see Lin (1993) and Dorigo (1993).

Consider a system which integrates rewards over time, subtracting its metabolic costs to yield
a current engly reserveE(t). The system might be initialized with a reseffge Would it not
make sense for the systengxplore/exploit balance to depend&it)? For instance, the probabil-
ity of explorationProb(exploe) could be given by a functid(E(t)) wheref would have been set
by evolution. For high values & there could be strong tendency to explore, corresponding to
play or curiosity in an animal. A Ige value oy would then mean considerable exploration
while young, yielding to greater exploitationiad) fell and the system had to gain its own food.
Later, through learningz(t) could start rising, leading eventually to prosperity that would again
permit exploration or playOf course this picture is too simple: if the system got in trouble and
E(t) began falling precipitouslgreater exploration might suddenly be in oriléhatever the
characteristic forms dProb(exploe), the point is that the systesroverall success is relevant to
action selection in a way that deserves studye approach we are investigating is to lefltire
the exponential roulette wheel above depen#@nthrough various plausible functiohsThis
can be applied straightforwardly to ZCS with the slight addition that acjsoush that [M] is
empty should still be represented, with low strength values, in the probability calculation. Then, if
such an action is chosen, a classifier would be created to execute it. In this way ZCS could break

out of path habits for cases where the best action is not represented in [M].

5.3 Niche GA

The genetic algorithm employed in ZGSliscovery component jnmictic a classifier has
an equal probability of mating (crossing) with any other classifier in [P] having a given strength.
The GAs used in function optimization problems are usually panmictic (with the notable excep-
tion of parallel implementations where a notion of geographic distance between strings may con-
trol the mating probability). It is felt that in problems such as optimization where a single best
point is sought, samples from all parts of the space should be capable of recombination. The situ-

ation is diferent, howeverfor spaces being searched by classifier systems. There, solving the
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ment temporary memory than the complex message list of the canonical framework. Quite
separatelythe approach forms an interesting contrast to the use of recurrent neural networks to
implement temporary memory in reinforcement learning (Elman 1990, Lin 1993). In thesiatter
fective “history features” are generated by unfolding the recurrent net and training via back prop-
agation. In the ZCS memory register approach, potential history features take the form of bits
placed in the register which are matched by succeeding classifiers. Then features which indeed
matter for performance would cause selection of the classifiers which they couple.féreaabf
between the two approaches to temporary memory iseaatite between learning by error cor-

rection and learning by a Darwinian process of variation and selection.

5.2 Performance-Based Action Selection

ZCS uses the relatively primitive roulette wheel action selection described in Section 2. The
probability of selection of an actiay, Prob(g), is proportional to the total strengﬂPM]i of
classifiers in [M] advocating;. A more flexible method is to let

Prob(a) = %xp ES[M] i/T%/ Egexp EE[M] I(/T%

then letT be lage at the start of a run where more exploration is presumably desirable, and reduce
it with time in order to make the judged best actions more probable. Still, the “annealing sched-
ule” T(t) must be determined in advance, unrelated to the systaial success or lack thereof.
In the reinforcement learning literature, a class of more sophisticated methods keeps track of the
variance or uncertainty of Q (say) estimates, and explores with the aim of progressively reducing
uncertainty but with a bias toward apparently better actions. Kaetblimtgrval estimation is
one such method, in whidbrob(g) is proportional to the sum of the Q estimate and its variance.
While effective in many problems, the uncertainty reducing methods can still miss achieving opti-
mality if the parameters of the explore/exploit balance are not within appropriate ranges. W
wondered whether these essentially formal methods could benefit from a perspective which took

into account the systemobverall performance or prosperitiyor other work which takes a step in
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steps but with a minimum of mechanism so that evolution of appropriate classifiers would occur
with reasonable probabilityAt the same time, it seemed that in many problems of interest, the
amount of information that needed to be transferred was quite small. For instance, often a deci-
sion depends simply on whether or not some prior event has occurred, i.e., just one bit may suf-
fice. Accordinglywe propose to extend ZCS using a memory-register approach. For this,

consider an expanded classifier format of which the following is an example
#100,1# : 01,##0 .

Here the condition has two parts, an environmental part #100, and a memory registé#part, 1

both of which must match for the condition to be satisfied. The memory register itself is a three
bit register whose contents are set and changed by a supplement to the action side of the classifier
as follows. The first part of the action side, 01, is an action (including the null actextjnaf

the external world. The new second part, ##0, codes an internal atgicimgfthe memory reg-

ister: a 0 or 1 writes that value to the corresponding register position, a # leaves its corresponding
position alone. (In a variant, there would be just one action part coding either an external action

or an internal one #dcting the register

The simplest experiment would implement a 1-bit register in an environment designed so that
exactly one bit of temporary memory would be important in certain situations. If the GA indeed
took advantage of the registerore elaborate experiments with a progressivefjetaregister
could be tried. An interesting possibility would be that, having found some register bits useful, the
system would evolve classifiers referring not only to those bits but to others representing refine-
ments of the information in the first bits. Certain positions of the register might in this speculation
evolve to denote tags which labeled behavioral modules, or intentions, with other bits controlling
the more detailed action of the modules, flefimplementing a behavior hierarchyi(¥gn
1987b). Of course, all such outcomes imply extensive further research (including additions to the
performance and reinforcement cycles), but we suggest at this point that a memory register ap-

proach, due to its simplicitys at the moment a better test of classifier systems’ ability to imple-
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architecture. Dynamic planning requires that the system keep track of the sensory input conse-
guent to an action taken in a given state; from this information the system can perform Q-value
updates on hypothetical as well as actual events. Because classifiers do not encode or predict the
input that will follow their activation, Roberts introduced a bounded data structure cadled a

lowset associated with each classifier record this information as it is gained. While Dyna-Q-

CS appears to be a promising approach to model building in classifier systems, updates using the
followsets are intricate. In addition, Dyna-Q-€&sults on \Wods7—21.7 steps to food asymp-

totically—suggest the system is not yet fully shaken down.

5. Extensions to ZCS

Having in the last few sections described ZCS, illustrated its performance, and shown its rela-
tion to Q-learning, we now go on to suggest ways in which ZCS, as a basic, understandable clas-
sifier system foundation, can be extended. For this we will take the foundation to be as described
in Section 2, except that instead of the update expression (2) we will from now on define ZCS to

use the more completely Q-like expression (4).

5.1 Emporary Memory

In Holland’s original framework, information could in principle be carried over from one
time-step to the next by posting a message to the internal message list, then matching it on the
next cycle. Unfortunatelyossibly for reasons of formal simpligitpternal messages were de-
fined as strings of length equal to strings from the detectors, so that the internal messages tended
to be long. €mporary memory and other uses of messages depend on classifiers which post mes-
sages that other classifiers can match. Unless special non-GA triggered operators are employed
(Riolo 1989), evolution of appropriately coupled classifiers becomes increasingly improbable the
longer the messages are. In fact, there appears to be only one investigation in the literature (Smith
1991) reporting significant generation of couplings by the GA alone, and there the messages were

short.

We sought a simple extension to ZCS that could permit transfer of information between time-
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as Q-learning estimates a function of input-action combinations, the modified bucket brigade of
(4) updatesule setaction combinations. Whil§,; is not obviously a function in the sense
Q(x,a)is, we can gain perspective by considering that for every xg@ud actiora, the system

will in general produce an action set [A], with stren§ify, whose members all matgfand ad-
vocatea. Thus the current population [P] can be regarded as embodyiagmngfrom X x A to
strengthsS. As noted in Section 2, the mapping is capable of generalization because, due to #’
the classifiers, a given [A] will often match more than xn&Vhile we have no proof that what

we shall call th&-bucket brigad€éQBB) of (4) leads to a population that maps optimay can

still compare its experimental performance to that of better understood relatives like Q-learning.

To do this let us first explain that the solid curves in Figures 3 and 6 were obtained via the
QBB update rule (4), whereas the dotted curves are for rule (2), without the “max”. Q-learning
was tried informally on \WWods1 by Kaelbling (1993) who employed heerval estimation
(Kaelbling 1990) exploration technique. The result was very rapid descent in steps to food to very
nearly the optimum, faster and better than ZCS using QBB. @u%V, the comparison was
closer Kaelblings system reached approximately 4 steps to food on average (vs. 5 for ZCS),
somewhat more rapidlyLittman (1993) reports “Q-learning identified a Class 1 agent that aver-
ages 0.27 foods per step [3.70 steps to food]"—i.e., this was the best performance of several runs.
Both Kaelbling and Littman implemented the Q function as a lookup tabéeintéfpret the re-
sults of these informal and preliminary comparisons as follows. @yd¥1, Q-learning per-
formed essentially perfectlgs it should, because the environment is Class 1 teudieé
exploration occurred. Our hypothesis is that ZCS performed less welbodsWbecause the ex-
ploration technique was lesdegftive and in particular had no way of exploring action sets not
represented in [M]. On @éds7, the comparison is much closéth performance for both Q-
learning and ZCS limited primarily by the fact thab®ds7 is Class 2. $\hypothesize that

ZCS’s more primitive exploration technique accounts for the performarfeeetice.

Besides ZCS, there are Q-learning-like mechanisms in Rab&r893) classifier system

Dyna-Q-CS, which is designed to do dynamic planning along the lines of Syt681) DYNA
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O(xa) & r+ymax O(x,a) @

a'lJA

Fimm
wherex' is the input on the next time-step. It has been provedkiité 1989) that if the environ-

ment is Markovian (Class 1) and aJa combinations are tried didiently often, this update pro-

cedure will caus€) (x, a) to convege to a functio(x,a)such that by carrying out the action

which maximize)(x,a)for eachx, the system will optimize the discounted sum of future re-

00 .
wards, jZOWHj , that it receives. Thus if the discounted sum is accépited reasonable

measure of return— it rates rewards received sooner higher than equal rewards receigaed later
so emphasizes expeditious behavior—and if the environment is Class 1faneslyfexplored,
Q-learning dfers a technique for achieving optimal performance with the advantage of being
quite well understood analyticallysimilar proofs do not exist for Class 2 environments, nor for
the case where the set of possible ingus$sso lage that explicit estimation @(x,a)for everyx

is impractical and the technique must be modified to generalize over “siridarNevertheless,
Q-learning can work quite well in practice, as shown for instance in Lin (1993). There a neural
network, which generalized over inputs, learned a Q-like function in a Class 2 environment and

performance was good.

If we compare (2) and (3) we see that they are similar except for the max operation in (3).
Consider the match set [M]', and recall that in general it contains classifiers advocating various ac-
tions; that is, it contains severalfdifent potential action sets, one for each advocated actien. W

could imagine modifying the update rule (2) as follows

B

Sta] < Timm*Y MaX Spap @)

[Al' DM

imm

where now the max means the potential action set in [M]' with the highest total strength. Expres-

sion (4) would then closely parallel the Q-learning rule (3). THerdifice is, brieflythat where-

2. See Schwartz (1993) for a reinforcement algorithm that is not based on discounting future payoffs.
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memoryless system. That is, how well could a system do whichhadwa map of Bbds7, but

was prohibited from remembering any past inputs or outputs? Perhaps surptisiagigicula-

tion is difiicult. The reason is that the ambiguity of sensory inputs introduces the possibility of
loops which can apparently only be avoided by stochastic behavior or elaborate planning. In fact,
the problem of calculating the optimal performance of a memoryless, sensory-limited system in a
Class 2 environment is NP-complete (Littman 1994). Howévéine same paper the author goes

on to use a branch and bound technique to find and prove optimal a memoryless politset-in ef

a set of classifiers—which achieves a performance of 3.10 stegusW leaving learning clas-

sifier systems like ZCS appreciable room for improvement.

4. ZCS and Q-learning

The performance and reinforcement cycles of ZCS have strong resemblances to Q-learning
(Watkins 1989), perhaps the most widely used reinforcement learning algoritheee The con-
nection it is helpful to return to (1) and rewrite it in Schwar{2993) notation using the update

operator (i defined for scalar variablesandy by

x Ey=x o x+B(y-x)

B . . :
Note that €— s just the Wirow-Hoff (1960) learning procedure, whetés corrected at

. B . .
learning ratéd by an erroy-x. Interms o0 €— expression (1) can be written

B
which says that the reinforcement cycle adjusts the total strength of each action set to estimate im-

mediate reward plus the discounted strength of the succeeding action set.

In Q-learning, an evaluation function estim@téx, a) is updated at each time-step. Here
represents the current sensory inputanepresents an output action from the set of available ac-

tions, A. The update operation can be written
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Figure 6. Performance in Woods7. Dotted curve, discounted bucket brigade of equation
(or 2); solid curve, Q-like bucket brigade of equation 4 (Section 4); dashed curve, absoll
optimum. Parameters the same as in Figure 3. Curves are averages of 10 runs.

for somewhat dferent reasons in the two cases. loddkl, it was due to path habits; with better
exploration, ZCS might well have reached the absolute optimum, sinedsw/is a Class 1 envi-
ronment and the absolute optimum is achievable by a memoryless systemodsi/\\perfor-

mance was probably also limited becausmoué7 is Class 2, and thus ddre “solved” without
temporary memory (or more elaborate sensors). Qualitat&€l$ exhibits considerable drive
toward food in Wdods7: when non-blank objects enter its sensory field, it either takes food imme-
diately if adjacent, or tends to move around a rock to get the food on the other side as though it
“knows it's there”. When surrounded by blanks, ZCS tends to drift in a general direction which
is maintained through several problems (for an explanation, sé& @lifllock 1993). However

upon encountering a rock, or rock paiCS sometimes goes the long way around to reach food,
or may even bang the rock, showing a residual uncertainty apparently because with its lack of
temporary memory it canfesolve which of two or more situations it is actually facinge B&-

lieve the shortfall in performance is due at least in part to this inevitable uncertaintpas ¥y

and not solely to the formation of path habits.

Ideally, in judging ZCSS performance we would like to compare it with an optimal temporary
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Figure 5. Environment Woods7.

this holds for Wdods1 but not for \Wbds7. Stated somewhatfdiiently, to know ones position in
Woods1 (with respect to the basic configuration), it ifgeht to know the current input. In
Woods7, howeverit is necessary either to see more than one step anmayremember some re-
cent sensory inputs. Since ZCS has no temporary mearatyts view in these experiments is
limited to adjacent cells, ZCS cannot in general be expected to gain foabdsWat the rate
possible for a system without these restrictions (Littman 1993). Howeigestill of interest to

see how well ZCS can do.

A simple routine which marks every open cell with its minimum distance from food and then
averages the distances reveals that the absolute optimum performance (again defined as the best
possible performance of a creature having arbitrary memory and sensory capability) under the
random restart regime is 2.2 steps iodds7. On the other hand, moving randomly until food is
encountered averages 41 steps. 2Z@Brformance as shown by the two upper curves in Figure 6
is about 5 steps after a few thousand prob1erms|us here, as in ®dds1, ZCS is very good with

respect to random, but still about twice the absolute optimum. Honw&u8is shortfall may be

1. For comparison, the original animat’s (Wilson 1985) performance on Woods7 was asymptotically about
equal to ZCS'’s, but it learned faster due to its look-ahead classifier creation heuristic.
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Figure 4. Example of predominant learned move directions in Woods1.

on. Thus the system tends toward “path habitsitkilis 1993)—trajectories that due to local

payofs and incomplete exploration, are sub-optimal. The present example is particulasly clear

but the efiect has been observed to some degree in many experiments. The tendency to path hab-
its may be a consequence at least in part of the exploration/exploitationftrangbdioft in the ac-
tion-selection and reinforcement regimes. In particaldage value oft causes any reasonably

good move to quickly dominate [M] and tends to prevent its being replaced by a better one. This
may be desirable for fast learning, but can limit maximum performance, as observed here in

Woods1.

ZCS was tested in a second environmerttodlé 7, shown in Figure 5 (the top and bottom edg-
es of Wods7 are connected, as are the left and right edges). Though they have the same object
types, the two environments f@if fundamentally in that, viewed as a finite state machine taking
inputs (actions) and producing outputs (sensations and rewamxs®is Markovian with de-
layed rewards. \Bbds7, on the other hand, is non-Markovian with delayed rewards. In the termi-
nology of Wison (1991), they are Class 1 and Class 2 environments, respeciively
Markovian property means in this context that given any sensoryxniha sensory inpyt(and

the reward) resulting from taking an actmrs always exactly predictable. Inspection will show
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Figure 3. Performance in Woods1. Dotted curve, discounted bucket brigade of equatic
1 (or 2); solid curve, Q-like bucket brigade of equation 4 (Section 4); dashed curve, absolL
optimum. ParameterdNl = 400,P; = 0.33,§) = 20.03=0.2y=0.711=0.1Xx=0.5,u
=0.002,p =0.25,0=0.5. Curves are averages of 10 runs.

equipped system having the same actions can do bettexadsd/ Thus the performance

achieved by ZCS is very good relative to random, but still roughly twice the absolute optimum.

The primary reason for the shortfall can be seen in Figure 4, which symbolizes, for each dis-
tinct position in Vods1, the probability of each of the eight directions of movement at 10,000
problems in a particular run. The length of a line segment in a cell (starting at theaxa#r) is
proportional to the total strength of the [A] for that direction of movement, and so to the move-
ments probability Note that in many cells the most probable movement dominates the others,
and points toward the F by the shortest path. An exception is the cell just east, eftibecRhe
dominant move direction is south; the system is apparently blind to the fact that food is just one
step west! A possible explanation is that, early in learning, ZCS found and strengthened the
northwest move in the cell just southeast.ofllRis made that cell a source of strong bucket bri-
gade paydffor any move into it. Then, if from the cell just east of F the system happened to dis-
cover a southerly move before one to the west, the former move could well come to dominate
[M], even if the latter were later generated by the GA. Once the path from the cell east of F be-

came indficient, the same inB€iency would be passed up along paths leading to that cell, and so
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Figure 2. Environment “Woods1” with animat. Empty cells are indicated by “.”

An experiment typically proceeded as follows. The classifier population was randomly ini-
tialized and then * began executing “problems”, each consisting of being placed into a randomly
chosen blank cell of 6ds1 and moving under control of the system until a food was eaten, at
which point the food instantly re-grew and a new problem began. This process was repeated for
several thousand problems, with the measure of performance being a moving average over the
previous 50 problems of the number of steps (action selections) in each problem. The technique
of random restarts with instant re-growing was used to avoid the complication of a non-stationary
environment. The bucket brigade was re-initialized gAgt to nil) at each restart since there

was no learnable connection between problems.

Curves typical of the best average results achieved by ZC8add¥ are shown in Figure 3.

The dotted curve represents ZCS as described in Section 2, with parameter values as given in the
figure caption. The lower curve is for a slight extension of ZCS which will be examined in Sec-
tion 4. Both curves fall very rapidly from adgrinitial number of time-steps per problem (rough-

ly equal to the average number of time-steps to food for random moves from a random start,
which is 27 in V@ods1) to about 4 steps, then descend gradually by another step or so. For com-
parison, the best that * could possibly do, if from every start she proceeded by the shortest path to

the nearest food, would be 1.7 steps. This is the absolute optimum since no more elaborately



3. Performance in Wo Environments

ZCS represents a simplification of the original classifer system framework in several respects.
First, elements of the canonical framework, such as the message list, bid competition, and speci-
ficity dependence in bids and payments, were eliminated from the start in order to focus on a more
understandable—albeit perhaps in principle less powerful—system. Second, a considertible ef
was made to minimize the number of remaining mechanisms while still getting reasonable perfor-
mance in two test environments. Many plausible mechanisms were experimented with, including
explicit generalization pressures, partial matching of conditions against inputs, random classifier
injection, and various taxations. Our experiments were not exhaustive, but it appeared that none
of these produced improvements (if any) which justified including them. Convehseiyecha-
nisms that are included in ZCS appear to be necessamore preciselythe functions they serve
in the system should be present one way or another or there will be a loss of performance in the
two environments we have studied. In Section 5 we suggest extensions for more complicated en-

vironments.

The first test environment, &ds1, is a 2-dimensional rectilinear grid containing a single
configuration of objects that is repeated indefinitely in the horizontal and vertical directions (Fig-
ure 2). The objects are of two types, “food”, with sensor cadarid “rock” with code 10; blank
cells have code 00. The classifier system, here regarded as an anlsmat {@85) or artificial
animal, is represented by *.0 Bense its environment, * is capable of detecting the sensor codes
of the objects occupying the eight nearest cells (sensing 00 if a cell is blank). For example, in the
position shown, s detector input is the 16-bit string 00000000001Q100he left-hand two bits
are always those due to the object occupying the cell directly north of *, with the remainder corre-
sponding to cells proceeding clockwise around Fes available actions consist of the eight one-
step moves into adjacent cells. If a cell is blank, * simply moves there. If the cell is occupied by
a rock, the move is not permitted to take place, though one time-step still elapses. If the cell con-

tains food, * moves to the cell, “eats” the food, and receives a rewgagg< 1000).



on knowledge already in the population, as does the GA. Howbkeermpty [M] condition is in-
evitable in most systems, and something must be done when it occurs. Rather than merely acting
randomly covering allows the system to act randomly but test a hypothesis (the condition-action

relation expressed by the created classifier) at the same time.

The foregoing description of ZCS has mentioned most of the sgspawmdmeters. They are

all summarized below
N Population size.

Py Probability of a # at an allele position in the conditiom afassifier created through
covering, and in the conditions cfssifiers in the initial randomly generated popula-

tion.

S Strength assigned to each classifier in the initial population.

B Learning rate for strength updates under the bucket brigade.
Y Discount factor for the bucket brigade.

T Fraction of strength deducted from classifiers in [M] - [A].

X Probability of crossover per invocation of the GA.

VI Probability of mutation per allele in anfgpring. Mutation take8,1,# equiprobably

into one of the other allowed alleles.

p Average number of new classifiers generated by the GA per timetstepperfor-
mance cycle.
(0] If the total strength of [M] is less thatimes the mean strengtii [P], covering oc-

curs.



tion of the apparent best increasingly displaces exploration. Hovtkges are better techniques
for approaching the explore/exploit tradeaine of which will be proposed in Section 5.2. The
systems exploration tendency is more properly handled in the performance, not the reinforce-

ment, cycle, and thetechnique should be regarded as provisional.

Thediscoveryor classifier generating, component of ZCS consists of a basic panmictic genet-
ic algorithm supplemented by a covering operation. The GA operates in the background, at an av-
erage rate keyed to the performance cycle. Each time it is invoked, the GA selects two classifiers
based on strength, copies them to forfsming, crosses and/or mutates thisming with fixed
probabilities, then inserts thefgpring into the population. cTmaintain [P] at a constant size, two
classifiers are deleted with probability proportional to the inverse of their strengths. The initial
strengths of dépring classifiers are set so as to conserve the total strength of parents and of
spring. Half of each pareststrength is deducted from the parent and assigned to its ikopy
crossover occurs, the copy strengths are reset to their mean. The rate of GA invocation is prob-
lem-dependent. On the average, classifiers should be evaluated (be in some fi&jeatsuim-
ber of times before being selected, in order that their strengths settle to values which approximate
steady-state values. If the GA is run too fast, strengths will on average be too noisy; if run too
slowly, the system will not achieve its best rate of improvement. In ZCS, the GA rate is controlled
by a probability of invocation per time-step, which must be chosen by theTesémniques for
automatic rate control are known (Booker 1982), based on each clask#igping a count of its

evaluations.

The covering operation deals with the situation occurring when [M] is engfyno classifier
in [P] matches the input, or when the total strength in Bf};, is less than a fractiapof the
population mean strength. Covering creates a new classifier whose condition matches the input
and contains a probabilistically determined number f Fhe classifies action is chosen ran-
domly, and the strength is set to the population average. The new classifier is inserted into [P] and
a classifier is deleted as in the GA. Then the system forms a new [M] and proceeds as usual.

Covering is a relatively crude operation resembling rote learning or imprinting; it does not build



whichfollows[A] in time. Then the process can be written as a re-assignment

This expression can be seen to parallel Holebdtket brigade, with three main exceptions:
classifier specificities are ignored; there is no “bid competition”; and the quantity passed by the
“brigade” is reduced by a factorylat each step. ZCS ignores specificities on the basis of earlier
experiments (Wson 1988) indicating that their presence in classifier “payments’—the amounts
transferred between classifiers—is undesirable. Other experiments reported in that study found
no advantage for the bid competition (in which, iieet; the action is selected from among the
classifiers in a high-strength subset of [M]). In contrast, a discount fesigmificantly less than

1.0 appears to be essential in (1) for problems of the kind studied herfeuid that ify is omit-

ted or set near 1.0, then dithering, lack gfaucy in attaining rewards, and looping behavior oc-

cur which smaller values of the discount factor greatly reduce.

The sharing of the reward and the bucket amount in the second and third reinforcement steps
prevents the genetic algorithm from allocating excessive numbers of classifiers to any given re-
warding “niche”; for an analysis see the appendix iz (1987a). Note also, in contrast to the
canonical framework, that the “payments” in ZEBucket brigade do not pass via the intermedi-
ary of posted messages, since there is no message list. Instead, the payments go to the previously
active classifiers as though each posted the same message, and that message was matched by each
of the presently active classifiers. This technique, first usedls#oM(1985), was termed in

Goldbeg (1989) anmplicit bucket brigade

The reinforcement cycle has one further step in which the strengths of classifierseindifie
ference[M] - [A] are reduced by a small fractianJ3. That is, matching classifiers which advo-
cate action®therthan the selected action are weakened. This causes the system, over many
cycles, to become increasingly definite about its action choices in the situations it encounters. In
effect, the use of the “taxt’ combined with roulette wheel action selection represents an explora-

tion strategy in which selected actions become increasingly likely to be selected, so that exploita-



stochastic method: a roulette wheel with sectors sized according to the strengths of members of
[M]. Thus a particular actioais selected with probability equal to the sum of the strengths of the
classifiers in [M] which advocate that action, divided by the total strength of classifiers in [M].
Next, anactionset[A] is formed, consisting of all members of [M] which advocaedrinally, a

is sent to the &ctor interface, and the corresponding motor action is carried out in the environ-

ment.

ZCS's generalization capability is expressed in the action set [A]. In the first place, individual
classifiers of [A] may have #in their conditions, so they match more than one distinct input. But
second, the conditions present are generalfgréifit: there may be d#rent numbers of 8, or
the specified bits may be in fdifent positions. This diversity reflects Z&Skarch for the “best”
classifiers in each situation; these are in general classifiers which have high relative strength while
matching a lage number of inputs. There appears to be an inherent pressure in ZCS and similar

classifier systems toward such classifierdggvi 1987a).

ZCS'sreinforcementor credit assignment, cycle centers around [A] and the action set on the
previous time-step, [A]. The procedure goes as follows. First a fixed fra@igh< 3 < 1) of
the strength of each member of [A] is deducted from the méméteength and placed in an (ini-
tially empty) common “bucket” B. 1§, is the total strength of members of [A], théeet is to
deduct3§,; from §p; and place it in the bucket. Second, if the system receives an immediate re-
wardrjy,mfrom the environment after taking actiara quantitypr;{|A| is added to the strength
of each classifier in [A] (|A] is the number of classifiers in [A]). Thecefs to increasgp; by
Brimm Third, classifiers in [A] (if it is non-empty) have their strengths incrementegBijA 4],
wherey is a discount factor (8 y< 1), Bis the total amount put in the bucket in step 1, ang |A

is the number of classifiers in [A] Finally, [A] replaces [A]; and the bucket is emptied.

To see the overall fefct of this process a8, it is helpful to define [A]' as the action set
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Figure 1. Schematic illustration of ZCS.

being regarded either as computing the presence or absence of input features, or as thresholding
analog input variables— the canonical framework makes the same assumption. While this finess-
es the problem of learning the features or thresholds in the first place, ZCS still has tddearn ef
tive classifier conditions, that is, feature-like combinations of detector output bits. The use of
discrete actions is also a simplification, since many creature actions range over a continuum, e.g.,
turn a little bit left. Classifier systems will ultimately need to deal with both continuous inputs

and outputs; research in fuzzy classifier systerak(uela-Rendén 1991, Parodi & Bonelli

1993) is one step in that direction.

In theperformanceor sense-act, cycle of ZCS, the condition of each classifier in [P] is com-
pared with the detector string. If the bit at every non-# position in a classtfegrdition matches
the corresponding bit in the detector string, the condition is satisfied and the classifier becomes a
member of the currembatch sefM]. Next, an action is selected from among those advocated by

members of [M]. Many schemes are possible and useful, but ZCS employs perhaps the simplest



of ZCSsuficient to allow implementation. Section 3 gives results in two experimental environ-
ments. In Section 4, the relationship of ZCS to the technique called Q-learning is discussed. Sec-
tion 5 suggests extensions to ZCS, including: simple temporary memory; more sophisticated
action selection; a niche genetic algorithm; and a general representation for classifier conditions.
Section 6 concludes by summarizing advantages of ZCS as a reinforcement dearneith re-

spect to Holland full framework, notes the price in elements given short shrift.

2. Description of ZCS

Figure 1 gives a broad picture of ZCS. The system is seen in interaction with an environment
via detectors for sensory input anfeefors for motor actions. In addition, the environment at
times provides a scalar reinforcement, here termed reward. The basic idea of a system sensing
and learning to act in an environment so as to gain reward appeared early in Blatakd’Hol-
land 1976). It has more recently become known as the reinforcement learning problem, and en-
compasses many aspects of the general problem of intelligence (Sutton 1992). ZCS descends
from the classifier system developed ifldéh (1985) but dfers significantly in omitting several
heuristics and operators that aided that system. These included: a look-ahead classifier creation
heuristic, a statistic estimating distance to reward kept by each classifier and used in the perfor-

mance cycle and elsewhere, and a genetic interference operator

Within Figure 1, the box labeled [P] (“population”) contains the systenr'rent set of classi-
fiers. They are built on the binary alphabet, plus thetdamé symbol #; a colon separates the
condition and action. The condition, in this example of length fear single conjunct to be
matched against the indicated detector bits; the action part encodes a motor action. Shown associ-
ated with each classifier is a scalar strength. As is apparent, and unlike lddiamework,
ZCS has no internal message list. It is thus incapable of temporary mamibgo cannot act on
accumulated information detected on any previous time-step, or according to internally generated

intentions or controls.

The use of binary detector variables is a restriction in the interest of simpheityetectors



1. Introduction

A classifier systens a learning system in which a set of condition-action rules called classifi-
ers compete to control the system and gain credit based on the systegipt of reinforcement
from the environment. A classifisrcumulative credit, termesirength determines its influence
in the control competition and in an evolutionary process using a genetic algorithm in which new
plausibly betterclassifiers are generated from strong existing ones, and weak classifiers are dis-
carded. The original classifier system concept is due to Holland, who described it most complete-
ly in Holland (1986). Responding to perceived shortcomings of existing artificial intelligence
systems, particularly with regard to adaptation and practical induction, Holland laid out a compet-
itive/cooperative message-passing framework addressing desiderata including: temporal credit as-
signment under conditions of sparse or delayed reinforcement; distributed and generalizable
representations of complex categories; default responses subject to exceptions; and graceful adap-
tation of system knowledge through gradual confirmation/disconfirmation of hypotheses. Though
a number of researchers were inspired by Holfrdmework to investigate classifier systems
(for a review see Wson & Goldbeg 1989) and it also had some influence on the related field of
reinforcement learning (Barto 1992)faats to realize the frameworkpotential have met with
mixed success, primarily due tofeitilty understanding the many interactions of the classifier
system mechanisms that Holland outlined. The most successful studies tended in fact to simplify
and reduce the canonical framework, permitting better understanding of the mechanisms which

remained.

Recently we set out to carry this simplification to the point where all remaining processes
might be well understood, while retaining what we deemed to be the essence of the classifier sys-
tem idea: a system capable of action through time to obtain external reinforcement, based on an
evolving set of internally reinforced, generalizable condition-action rules. The result, a sort of
“zeroth-level” classifier system, ZCS, has points of analytical contact with systems studied under
the heading of reinforcement learning, and appears to provide a viable foundation for building to-

ward the aims of Holland'full framework. The next section of this paper presents a description
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