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With respect to Holland’s original framework, the main element greatly lost sight of in ZCS is 

of course the message list and the concommitent potential for multiple parallel thought lines and 

the formation of complex mental models.  One sees in principle how these things could emerge in 

a classifier system, but we don’t yet understand the mechanics well enough to make it happen.  

We hope that further research on simpler systems like ZCS will contribute to bringing the full sys-

tem to maturity.
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sions.  It is straightforward to represent a classifier’s condition as an s-expression built from and, 

or, and not.  Other operators such as a thresholded sum and conditional comparison can be in-

cluded in the system’s function set, so that very flexible conditions can be evolved with a set of 

primitives that is still quite small.  An “s-classifier” would thus have an s-expression as its condi-

tion; its action would be a bit string as usual (though one can imagine the action also as an s-ex-

pression).  The advantage of s-classifiers over standard ones would be to permit the evolution of 

generalizations which suit the S[A]  functions of arbitrary environments better than can the stan-

dard classifier’s conjunctive syntax.

6. Summary and Conclusions

This paper has presented ZCS, a basic classifier system for reinforcement learning that retains 

much of Holland’s original framework while simplifying it so as to increase understandability and 

performance.  ZCS’s relation to Q-learning was brought out, and its performance shown to be 

quite similar in two experimental environments. Four extensions of ZCS were proposed: tempo-

rary memory, more sophisticated action selection, a niche GA, and “s-classifiers”.  

There would appear to be several principal advantages of a classifier system like ZCS in rein-

forcement learning problems.  First, ZCS is a Q-like system which has its own built-in basis for 

generalization—the classifiers themselves.  This contrasts with look-up table implementations of 

Q-learning which either don’t generalize or must be supplemented by clustering methods (Ma-

hadevan & Connell 1992), and with neural-network-based Q-learners which generalize through 

the sometimes slow process of backpropagation.  In addition,  the proposed s-classifier extension 

to ZCS may permit achievement of efficient generalizations with respect to the underlying space.  

Second, ZCS appears to be extensible to handle environments calling for temporary memory and 

hierarchical behavior using a memory register technique not seen in other approaches to rein-

forcement learning.  Finally, like any classifier system, ZCS offers a Darwinian perspective on re-

inforcement learning that contrasts with the many approaches that rely principally on error 

correction.
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niches later in a chain.  Finally, the panmictic GA would be retained, but at a reduced probability 

of invocation, to offset any inbreeding tendency of the niche GA, and to give some degree of em-

phasis to clearly more remunerative niches.  Since the niche GA crosses classifiers in the same 

[M], the offspring are guaranteed to match the same input, so the generation of never-matching 

classifiers in sparse environments should be greatly reduced.  An experimental classifier system 

has been developed along the above lines (Wilson, in preparation).

5.4    S-classifiers

As discussed in Section 4, ZCS’s population [P] at any moment constitutes a mapping from 

x,a pairs to action set strengths S[A]  which control the system.  The objective of the reinforcement 

and discovery components is to evolve mappings [P] that produce better and better performance 

in the environment.  In this section we consider the mapping’s underlying units, the classifiers, 

and how their representation might usefully be modified. Classifiers as we usually know them are 

somewhat limited beasts in that their conditions are expressed as conjunctive predicates.  That is, 

they match, or are true, if and only if all of the bits specified in the condition match.  A classifier 

can express a generalization, but only in a particular way: by saying “these bits must be just so, 

and the rest don’t matter”, i.e., the generalization must be a hyperplane.  It is not possible, in a sin-

gle conjunctive classifier, to express a generalization such as “bit 3 or bit 5 must be a one”, or “at 

least two of bits 3, 5, and 7 must be ones”.  Of course, binary classifiers completely ignore the 

world of continuous variables.  Some work (e.g., Grefenstette 1992) has been done with classifi-

ers whose conditions are specialized for certain domains, and, as mentioned earlier, there is work 

on continuous inputs via fuzzy classifiers.  However, there is only a little work (Booker 1991) to-

ward a general reformulation of classifier representation that would permit expression of arbitrary 

generalizations.  The main reason has been that it was not clear how to apply genetic operations to 

arbitrary logical expressions, whereas one did see how to do it for conjuncts expressed in the 1,0,# 

language.  Now, however, the development of genetic programming (Koza 1992) has shown how 

genetic operations can be applied successfully to arbitrary functions encoded as Lisp s-expres-
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In contrast, environments like Woods1 and Woods7 are “sparse” in the sense that the set of in-

puts which occur in them form a very small subset of the possible strings under that encoding.  

Consequently panmictic crossover in ZCS often produces offspring that never match and so re-

main dead wood in [P] until deletion happens to eliminate them.  This restricts the population 

computation space—the set of evaluable classifiers—and does not contribute to the search for bet-

ter classifiers in the niches that exist.  While ZCS is largely successful in Woods1 and Woods7, it 

is possible that a non-panmictic niche-based GA would improve performance.  Booker (1982, 

1989) has investigated and long advocated a niche GA for classifier systems, for many of the rea-

sons noted here.  His implementation is part of a larger system having many aspects not present in 

ZCS, and to keep to ZCS’s spirit of minimalness we propose here a niche GA that contains some 

but not all of the mechanisms in Booker’s implementation.  One of his insights was that niches are 

effectively identified by the various match sets that occur, so that a GA designed to search the 

niches should be restricted to classifiers in [M].  A further suggestion was that if, under exact 

matching, [M] was empty or small, classifiers that nearly or partially match the input should be al-

lowed to participate in the niche GA.  The idea was that partial matchers contain some, albeit im-

perfect, information relevant to the niche, and so should participate if there were few exact 

matchers.  We are unsure of the value of using partial matches, since the mismatches are a form of 

noise, and we leave this aspect out for now.

In line with Booker’s basic concept, we propose an extension to ZCS in which a niche GA 

supplements the existing panmictic one.  The niche GA would simply act on [M] with a certain 

probability ρniche; there would be no special triggering conditions.  The GA would operate as usu-

al, except that if [M] contained just one classifier, only mutation and not crossover could occur.  

Deletion would occur from [P] as a whole, using a variation on a niche balancing technique that 

Booker developed.  We would have each classifier keep an estimate (by exponential averaging) of 

the number of classifiers in its match sets.  Then a classifier’s probability of deletion would be 

proportional to this quantity, so that niches would tend to have the same number of members, in-

dependent of niche strength.  This avoids the panmictic GA’s problem of giving more resources to 
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problem usually means solving a set of subproblems each due to an aspect of the system’s envi-

ronment.  Thus the GA in a classifier system faces a multiple optimization problem in which it 

must allocate resources—classifiers—to search more or less separate niches of the space.  The sit-

uation is further complicated by the fact that, often, success in a niche is contingent on success in 

another niche.  For instance, this occurs if, as in ZCS, classifiers form chains to reach reward: 

each step in the chain can be regarded as an environmental niche for which good classifiers must 

be found; if not, the chain as a whole is weakened or broken.  Under such circumstances it is not 

obvious that a panmictic GA is the best way to identify and search the niches, since it is not clear 

that the recombination of classifiers from an arbitrary pair of niches will be relevant to either of 

them or to any other niche.

Quite separately from mate choice, the practice in a panmictic GA of selecting the first parent 

from the population as a whole, or globally, is problematic for classifier systems in which a classi-

fier’s fitness is based on strength.  Different niches may quite normally have different reward lev-

els, and therefore different strengths in the corresponding classifiers.  If the niches are separate 

and unrelated, it makes sense to base selection on strength because then greater resources will go 

to the more remunerative niches.  However, if the niches belong to the same chain, and the rein-

forcement cycle has a discount factor γ < 1, then early niches will necessarily have less strength 

than later ones.  It is not clear that the early niches should get fewer resources, though, since they 

“set up” and so permit reward ultimately to be received in the later ones.

The classifier system BOOLE (Wilson 1987a) successfully used a panmictic GA to learn the 

Boolean multiplexer, a highly nonlinear logical function.  There, however, the niches, which cor-

responded to disjuncts of the function, had equal reward schedules, dependent only on whether 

the system was right or wrong, and the problem was not sequential.  In addition, the environment 

was “dense” in the sense that the system would see every possible input string eventually.  That 

meant that every classifier produced by panmictic crossover would eventually match and receive 

an evaluation, so that every cross was in some degree fruitful and contributed to the search.



21  

this direction see Lin (1993) and Dorigo (1993).

Consider a system which integrates rewards over time, subtracting its metabolic costs to yield 

a current energy reserve E(t). The system might be initialized with a reserve E0.  Would it not 

make sense for the system’s explore/exploit balance to depend on E(t)? For instance, the probabil-

ity of exploration Prob(explore) could be given by a function f(E(t)) where f would have been set 

by evolution.  For high values of E, there could be strong tendency to explore, corresponding to 

play or curiosity in an animal.  A large value of E0 would then mean considerable exploration 

while young, yielding to greater exploitation as E(t) fell and the system had to gain its own food.  

Later, through learning, E(t) could start rising, leading eventually to prosperity that would again 

permit exploration or play.  Of course this picture is too simple: if the system got in trouble and 

E(t) began falling precipitously, greater exploration might suddenly be in order. Whatever the 

characteristic forms of Prob(explore), the point is that the system’s overall success is relevant to 

action selection in a way that deserves study.  One approach we are investigating is to let the T in 

the exponential roulette wheel above depend on E(t) through various plausible functions f.  This 

can be applied straightforwardly to ZCS with the slight addition that actions ai such that [M]i is 

empty should still be represented, with low strength values, in the probability calculation. Then, if 

such an action is chosen, a classifier would be created to execute it.  In this way ZCS could break 

out of path habits for cases where the best action is not represented in [M].

5.3   Niche GA

The genetic algorithm employed in ZCS’s discovery component is panmictic: a classifier has 

an equal probability of mating (crossing) with any other classifier in [P] having a given strength.  

The GAs used in function optimization problems are usually panmictic (with the notable excep-

tion of parallel implementations where a notion of geographic distance between strings may con-

trol the mating probability).  It is felt that in problems such as optimization where a single best 

point is sought, samples from all parts of the space should be capable of recombination.  The situ-

ation is different, however, for spaces being searched by classifier systems. There, solving the 
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ment temporary memory than the complex message list of the canonical framework.  Quite 

separately, the approach forms an interesting contrast to the use of recurrent neural networks to 

implement temporary memory in reinforcement learning (Elman 1990, Lin 1993). In the latter, ef-

fective “history features” are generated by unfolding the recurrent net and training via back prop-

agation.  In the ZCS memory register approach, potential history features take the form of bits 

placed in the register which are matched by succeeding classifiers.  Then features which indeed 

matter for performance would cause selection of the classifiers which they couple.  The difference 

between the two approaches to temporary memory is a difference between learning by error cor-

rection and learning by a Darwinian process of variation and selection.

5.2   Performance-Based Action Selection

ZCS uses the relatively primitive roulette wheel action selection described in Section 2.  The 

probability of selection of an action ai, Prob(ai), is proportional to the total strength  of 

classifiers in [M] advocating ai.  A more flexible method is to let 

then let T be large at the start of a run where more exploration is presumably desirable, and reduce 

it with time in order to make the judged best actions  more probable.  Still, the “annealing sched-

ule” T(t) must be determined in advance, unrelated to the system’s actual success or lack thereof.  

In the reinforcement learning literature, a class of more sophisticated methods keeps track of the 

variance or uncertainty of Q (say) estimates, and explores with the aim of progressively reducing 

uncertainty but with a bias toward apparently better actions.  Kaelbling’s interval estimation is 

one such method, in which Prob(ai) is proportional to the sum of the Q estimate and its variance.  

While effective in many problems, the uncertainty reducing methods can still miss achieving opti-

mality if the parameters of the explore/exploit balance are not within appropriate ranges.  We 

wondered whether these essentially formal methods could benefit from a perspective which took 

into account the system’s overall performance or prosperity.  For other work which takes a step in 
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steps but with a minimum of mechanism so that evolution of appropriate classifiers would occur 

with reasonable probability.  At the same time, it seemed that in many problems of interest, the 

amount of information that needed to be transferred was quite small.  For instance, often a deci-

sion depends simply on whether or not some prior event has occurred, i.e., just one bit may suf-

fice.  Accordingly, we propose to extend ZCS using a memory-register approach.  For this, 

consider an expanded classifier format of which the following is an example

#100,11# : 01,##0 .

Here the condition has two parts, an environmental part #100, and a memory register part, 11#, 

both of which must match for the condition to be satisfied.  The memory register itself is a three 

bit register whose contents are set and changed by a supplement to the action side of the classifier, 

as follows.  The first part of the action side, 01, is an action (including the null action) affecting 

the external world.  The new second part, ##0, codes an internal action affecting the memory reg-

ister: a 0 or 1 writes that value to the corresponding register position, a # leaves its corresponding 

position alone.  (In a variant, there would be just one action part coding either an external action 

or an internal one affecting the register.)

The simplest experiment would implement a 1-bit register in an environment designed so that 

exactly one bit of temporary memory would be important in certain situations.  If the GA indeed 

took advantage of the register, more elaborate experiments with a progressively larger register 

could be tried. An interesting possibility would be that, having found some register bits useful, the 

system would evolve classifiers referring not only to those bits but to others representing refine-

ments of the information in the first bits.  Certain positions of the register might in this speculation 

evolve to denote tags which labeled behavioral modules, or intentions, with other bits controlling 

the more detailed action of the modules, in effect implementing a behavior hierarchy (Wilson 

1987b).  Of course, all such outcomes imply extensive further research (including additions to the 

performance and reinforcement cycles), but we suggest at this point that a memory register ap-

proach, due to its simplicity, is at the moment a better test of classifier systems’ ability to imple-



18  

architecture.  Dynamic planning requires that the system keep track of the sensory input conse-

quent to an action taken in a given state; from this information the system can perform Q-value 

updates on hypothetical as well as actual events.  Because classifiers do not encode or predict the 

input that will follow their activation, Roberts introduced a bounded data structure called a fol-

lowset, associated with each classifier, to record this information as it is gained.  While Dyna-Q-

CS appears to be a promising approach to model building in classifier systems, updates using the 

followsets are intricate.  In addition, Dyna-Q-CS’s results on Woods7—21.7 steps to food asymp-

totically—suggest the system is not yet fully shaken down.

5. Extensions to ZCS 

Having in the last few sections described ZCS, illustrated its performance, and shown its rela-

tion to Q-learning, we now go on to suggest ways in which ZCS, as a basic, understandable clas-

sifier system foundation, can be extended.  For this we will take the foundation to be as described 

in Section 2, except that instead of the update expression (2) we will from now on define ZCS to 

use the more completely Q-like expression (4).

5.1   Temporary Memory

In Holland’s original framework, information could in principle be carried over from one 

time-step to the next by posting a message to the internal message list, then matching it on the 

next cycle.  Unfortunately, possibly for reasons of formal simplicity, internal messages were de-

fined as strings of length equal to strings from the detectors, so that the internal messages tended 

to be long.  Temporary memory and other uses of messages depend on classifiers which post mes-

sages that other classifiers can match.  Unless special non-GA triggered operators are employed 

(Riolo 1989), evolution of appropriately coupled classifiers becomes increasingly improbable the 

longer the messages are.  In fact, there appears to be only one investigation in the literature (Smith 

1991) reporting significant generation of couplings by the GA alone, and there the messages were 

short.

We sought a simple extension to ZCS that could permit transfer of information between time-
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as Q-learning estimates a function of input-action combinations, the modified bucket brigade of 

(4) updates rule set-action combinations.  While S[A]  is not obviously a function in the sense 

Q(x,a) is, we can gain perspective by considering that for every input x and action a, the system 

will in general produce an action set [A], with strength S[A] , whose members all match x and ad-

vocate a.  Thus the current population [P] can be regarded as embodying a mapping from Χ x Α to 

strengths S.  As noted in Section 2, the mapping is capable of generalization because, due to #’s in 

the classifiers, a given [A] will often match more than one x.  While we have no proof that what 

we shall call the Q-bucket brigade (QBB) of (4) leads to a population that maps optimally, we can 

still compare its experimental performance to that of better understood relatives like Q-learning.  

To do this let us first explain that the solid curves in Figures 3 and 6 were obtained via the 

QBB update rule (4), whereas the dotted curves are for rule (2), without the “max”.  Q-learning 

was tried informally on Woods1 by Kaelbling (1993) who employed her interval estimation 

(Kaelbling 1990) exploration technique.  The result was very rapid descent in steps to food to very 

nearly the optimum,  faster and better than ZCS using QBB.  On Woods7, the comparison was 

closer.  Kaelbling’s system reached approximately 4 steps to food on average (vs. 5 for ZCS), 

somewhat more rapidly.  Littman (1993) reports “Q-learning identified a Class 1 agent that aver-

ages 0.27 foods per step [3.70 steps to food]”—i.e., this was the best performance of several runs.  

Both Kaelbling and Littman implemented the Q function as a lookup table.  We interpret the re-

sults of these informal and preliminary comparisons as follows.  On Woods1, Q-learning per-

formed essentially perfectly, as it should, because the environment is Class 1 and effective 

exploration occurred.  Our hypothesis is that ZCS performed less well on Woods1 because the ex-

ploration technique was less effective and in particular had no way of exploring action sets not 

represented in [M].  On Woods7, the comparison is much closer, with performance for both Q-

learning and ZCS limited primarily by the fact that Woods7 is Class 2.  We hypothesize that 

ZCS’s more primitive exploration technique accounts for the performance difference. 

Besides ZCS, there are Q-learning-like mechanisms in Roberts’s (1993) classifier system 

Dyna-Q-CS, which is designed to do dynamic planning along the lines of Sutton’s (1991) DYNA 
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(3)

where  is the input on the next time-step.  It has been proved (Watkins 1989) that if the environ-

ment is Markovian (Class 1) and all x,a combinations are tried sufficiently often, this update pro-

cedure will cause  to converge to a function Q(x,a) such that by carrying out the action 

which maximizes Q(x,a) for each x, the system will optimize the discounted sum of future re-

wards,  , that it receives. Thus if the discounted sum is accepted2 as a reasonable 

measure of return— it rates rewards received sooner higher than equal rewards received later, and 

so emphasizes expeditious behavior—and if the environment is Class 1 and sufficiently explored, 

Q-learning offers a technique for achieving optimal performance with the advantage of being 

quite well understood analytically.  Similar proofs do not exist for Class 2 environments, nor for 

the case where the set of possible inputs x is so large that explicit estimation of Q(x,a) for every x 

is impractical and the technique must be modified to generalize over “similar” x’s.  Nevertheless, 

Q-learning can work quite well in practice, as shown for instance in Lin (1993).  There a neural 

network, which generalized over inputs, learned a Q-like function in a Class 2 environment and 

performance was good.

If we compare (2) and (3) we see that they are similar except for the max operation in (3).  

Consider the match set [M]', and recall that in general it contains classifiers advocating various ac-

tions; that is, it contains several different potential action sets, one for each advocated action.  We 

could imagine modifying the update rule (2) as follows

(4)

where now the max means the potential action set in [M]' with the highest total strength.  Expres-

sion (4) would then closely parallel the Q-learning rule (3).  The difference is, briefly, that where-

2. See Schwartz (1993) for a reinforcement algorithm that is not based on discounting future payoffs.
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memoryless system.  That is, how well could a system do which, say, had a map of Woods7, but 

was prohibited from remembering any past inputs or outputs?  Perhaps surprisingly, this calcula-

tion is difficult.  The reason is that the ambiguity of sensory inputs introduces the possibility of 

loops which can apparently only be avoided by stochastic behavior or elaborate planning.  In fact, 

the problem of calculating the optimal performance of a memoryless,  sensory-limited system in a 

Class 2 environment is NP-complete (Littman 1994).  However, in the same paper the author goes 

on to use a branch and bound technique to find and prove optimal a memoryless policy—in effect 

a set of classifiers—which achieves a performance of 3.10 steps in Woods7, leaving learning clas-

sifier systems like ZCS appreciable room for improvement.

4.   ZCS and Q-learning

The performance and reinforcement cycles of ZCS have strong resemblances to Q-learning 

(Watkins 1989), perhaps the most widely used reinforcement learning algorithm.  To see the con-

nection it is helpful to return to (1) and rewrite it in Schwartz’s (1993) notation using the update 

operator    defined for scalar variables x and y by

 

Note that      is just the Widrow-Hoff (1960) learning procedure, where x is corrected at 

learning rate β by an error y-x.  In terms of   expression (1) can be written

(2)

which says that the reinforcement cycle adjusts the total strength of each action set to estimate im-

mediate reward plus the discounted strength of the succeeding action set.

In Q-learning, an evaluation function estimate   is updated at each time-step. Here x 

represents the current sensory input and a represents an output action from the set of available ac-

tions, A.  The update operation can be written

β

x y← x x β y x−( )+←≡β

β

β

S A[ ] r imm γS A[ ] ′+←β

Q̂ x a,( )
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for somewhat different reasons in the two cases.  In Woods1, it was due to path habits; with better 

exploration, ZCS might well have reached the absolute optimum, since Woods1 is a Class 1 envi-

ronment and the absolute optimum is achievable by a memoryless system.  In Woods7, perfor-

mance was probably also limited because Woods7 is Class 2, and thus can’t be “solved” without 

temporary memory (or more elaborate sensors).  Qualitatively, ZCS exhibits considerable drive 

toward food in Woods7: when non-blank objects enter its sensory field, it either takes food imme-

diately if adjacent, or tends to move around a rock to get the food on the other side as though it 

“knows it’s there”.   When surrounded by blanks, ZCS tends to drift in a general direction which 

is maintained through several problems (for an explanation, see Cliff & Bullock 1993).  However, 

upon encountering a rock, or rock pair, ZCS sometimes goes the long way around to reach food, 

or may even bang the rock, showing a residual uncertainty apparently because with its lack of 

temporary memory  it can’t resolve which of two or more situations it is actually facing.  We be-

lieve the shortfall in performance is due at least in part to this inevitable uncertainty in Woods7, 

and not solely to the formation of path habits. 

Ideally, in judging ZCS’s performance we would like to compare it with an optimal temporary 
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Figure 6.  Performance in Woods7.  Dotted curve, discounted bucket brigade of equation 1
(or 2); solid curve, Q-like bucket brigade of equation 4 (Section 4);  dashed curve, absolute
optimum.  Parameters the same as in Figure 3.  Curves are averages of 10 runs.
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this holds for Woods1 but not for Woods7.  Stated somewhat differently, to know one’s position in 

Woods1 (with respect to the basic configuration), it is sufficient to know the current input.  In 

Woods7, however,  it is necessary either to see more than one step away, or to remember some re-

cent sensory inputs.  Since ZCS has no temporary memory, and its view in these experiments is 

limited to adjacent cells, ZCS cannot in general be expected to gain food in Woods7 at the rate 

possible for a system without these restrictions (Littman 1993).  However, it is still of interest to 

see how well ZCS can do.

A simple routine which marks every open cell with its minimum distance from food and then 

averages the distances reveals that the absolute optimum performance (again defined as the best 

possible performance of a creature having arbitrary memory and sensory capability)  under the 

random restart regime is 2.2 steps in Woods7.  On the other hand, moving randomly until food is 

encountered averages 41 steps.  ZCS’s performance as shown by the two upper curves in Figure 6 

is about 5 steps after a few thousand problems1.  Thus here, as in Woods1, ZCS is very good with 

respect to random, but still about twice the absolute optimum. However, ZCS’s shortfall may be 

1. For comparison, the original animat’s (Wilson 1985) performance on Woods7 was asymptotically about
equal to ZCS’s, but it learned faster due to its look-ahead classifier creation heuristic.
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Figure 5.  Environment Woods7.
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on.  Thus the system tends toward “path habits” (Watkins 1993)—trajectories that due to local 

payoffs and incomplete exploration, are sub-optimal.  The present example is particularly clear, 

but the effect has been observed to some degree in many experiments.  The tendency to path hab-

its may be a consequence at least in part of the exploration/exploitation tradeoff implicit in the ac-

tion-selection and reinforcement regimes. In particular, a large value of τ causes any reasonably 

good move to quickly dominate [M] and tends to prevent its being replaced by a better one.  This 

may be desirable for fast learning, but can limit maximum performance, as observed here in 

Woods1.  

ZCS was tested in a second environment, Woods7, shown in Figure 5 (the top and bottom edg-

es of Woods7 are connected, as are the left and right edges).  Though they have the same object 

types, the two environments differ fundamentally in that, viewed as a finite state machine taking 

inputs (actions) and producing outputs (sensations and rewards), Woods1 is Markovian with de-

layed rewards.  Woods7, on the other hand, is non-Markovian with delayed rewards.  In the termi-

nology of Wilson (1991), they are Class 1 and Class 2 environments, respectively.  The 

Markovian property means in this context that given any sensory input x, the sensory input y (and 

the reward) resulting from taking an action a is always exactly predictable.  Inspection will show 

Figure 4.  Example of predominant learned move directions in Woods1.
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equipped system having the same actions can do better in Woods1.  Thus the performance 

achieved by ZCS is very good relative to random, but still roughly twice the absolute optimum.

The primary reason for the shortfall can be seen in Figure 4, which symbolizes, for each dis-

tinct position in Woods1, the probability of each of the eight directions of movement at 10,000 

problems in a particular run.  The length of a line segment in a cell (starting at the cell’s center) is 

proportional to the total strength of the [A] for that direction of movement, and so to the move-

ment’s probability.  Note that in many cells the most probable movement dominates the others, 

and points toward the F by the shortest path.  An exception is the cell just east of the F, where the 

dominant move direction is south; the system is apparently blind to the fact that food is just one 

step west!  A possible explanation is that, early in learning, ZCS found and strengthened the 

northwest move in the cell just southeast of F.  This made that cell a source of strong bucket bri-

gade payoff for any move into it.  Then, if from the cell just east of F the system happened to dis-

cover a southerly move before one to the west, the former move could well come to dominate 

[M], even if the latter were later generated by the GA.  Once the path from the cell east of F be-

came inefficient, the same inefficiency would be passed up along paths leading to that cell, and so 
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Figure 3.  Performance in Woods1.  Dotted curve, discounted bucket brigade of equation
1 (or 2); solid curve, Q-like bucket brigade of equation 4 (Section 4); dashed curve, absolute
optimum.  Parameters:  N = 400, P# = 0.33, S0 = 20.0, β = 0.2, γ = 0.71, τ = 0.1, χ = 0.5, µ
= 0.002, ρ = 0.25, φ = 0.5.  Curves are averages of 10 runs.
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An experiment typically proceeded as follows.  The classifier population was randomly ini-

tialized and then * began executing “problems”, each consisting of being placed into a randomly 

chosen blank cell of Woods1 and moving under control of the system until a food was eaten, at 

which point the food instantly re-grew and a new problem began.  This process was repeated for 

several thousand problems, with the measure of performance being a moving average over the 

previous 50 problems of the number of steps (action selections) in each problem.  The technique 

of random restarts with instant re-growing was used to avoid the complication of a non-stationary 

environment.  The bucket brigade was re-initialized ([A]-1 set to nil) at each restart since there 

was no learnable connection between problems.

Curves typical of the best average results achieved by ZCS in Woods1 are shown in Figure 3.  

.......................................................
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Figure 2.  Environment “Woods1” with animat.   Empty cells are indicated by “.”

*

The dotted curve represents ZCS as described in Section 2, with parameter values as given in the 

figure caption.  The lower curve is for a slight extension of ZCS which will be examined in Sec-

tion 4.  Both curves fall very rapidly from a large initial number of time-steps per problem (rough-

ly equal to the average number of time-steps to food for random moves from a random start, 

which is 27 in Woods1) to about 4 steps, then descend gradually by another step or so.  For com-

parison, the best that * could possibly do, if from every start she proceeded by the shortest path to 

the nearest food, would be 1.7 steps.  This is the absolute optimum since no more elaborately 
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3.   Performance in Two Environments

ZCS represents a simplification of the original classifer system framework in several respects.  

First, elements of the canonical framework, such as the message list, bid competition, and speci-

ficity dependence in bids and payments, were eliminated from the start in order to focus on a more 

understandable—albeit perhaps in principle less powerful—system.  Second, a considerable effort 

was made to minimize the number of remaining mechanisms while still getting reasonable perfor-

mance in two test environments.  Many plausible mechanisms were experimented with, including 

explicit generalization pressures, partial matching of conditions against inputs, random classifier 

injection, and various taxations.  Our experiments were not exhaustive, but it appeared that none 

of these produced improvements (if any) which justified including them.  Conversely, the mecha-

nisms that are included in ZCS appear to be necessary, or, more precisely, the functions they serve 

in the system should be present one way or another or there will be a loss of performance in the 

two environments we have studied.  In Section 5 we suggest extensions for more complicated en-

vironments.

The first test environment, Woods1, is a 2-dimensional rectilinear grid containing a single 

configuration of objects that is repeated indefinitely in the horizontal and vertical directions (Fig-

ure 2).  The objects are of two types, “food”, with sensor code 11, and “rock” with code 10; blank 

cells have code 00.  The classifier system, here regarded as an animat (Wilson 1985) or artificial 

animal, is represented by *.  To sense its environment, * is capable of detecting the sensor codes 

of the objects occupying the eight nearest cells (sensing 00 if a cell is blank).  For example, in the 

position shown, *’s detector input is the 16-bit string 0000000000101011.  The left-hand two bits 

are always those due to the object occupying the cell directly north of *, with the remainder corre-

sponding to cells proceeding clockwise around her.  *’s available actions consist of the eight one-

step moves into adjacent cells.  If a cell is blank, * simply moves there.  If the cell is occupied by 

a rock, the move is not permitted to take place, though one time-step still elapses.  If the cell con-

tains food, * moves to the cell, “eats” the food, and receives a reward (rimm = 1000).
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on knowledge already in the population, as does the GA.  However, the empty [M] condition is in-

evitable in most systems, and something must be done when it occurs.  Rather than merely acting 

randomly, covering allows the system to act randomly but test a hypothesis (the condition-action 

relation expressed by the created classifier) at the same time.  

The foregoing description of ZCS has mentioned most of the system’s parameters.  They are 

all summarized below.

N Population size.

P# Probability of a # at an allele position in the condition of a classifier created through 

covering, and in the conditions of classifiers in the initial randomly generated popula-

tion.

S0 Strength assigned to each classifier in the initial population.

β Learning rate for strength updates under the bucket brigade.

γ Discount factor for the bucket brigade.

τ Fraction of strength deducted from classifiers in [M] - [A].

χ Probability of crossover per invocation of the GA.

µ Probability of mutation per allele in an offspring.  Mutation takes 0,1,# equiprobably 

into one of the other allowed alleles.

ρ Average number of new classifiers generated by the GA per time-step of the perfor-

mance cycle.

φ  If the total strength of [M] is less than φ times the mean strength of [P], covering oc-

curs.
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tion of the apparent best increasingly displaces exploration. However, there are better techniques 

for approaching the explore/exploit tradeoff, one of which will be proposed in Section 5.2. The 

system’s exploration tendency is more properly handled in the performance, not the reinforce-

ment, cycle, and the τ technique should be regarded as provisional.

The discovery, or classifier generating, component of ZCS consists of a basic panmictic genet-

ic algorithm supplemented by a covering operation. The GA operates in the background, at an av-

erage rate keyed to the performance cycle.  Each time it is invoked, the GA selects two classifiers 

based on strength, copies them to form offspring, crosses and/or mutates the offspring with fixed 

probabilities, then inserts the offspring into the population.  To maintain [P] at a constant size, two 

classifiers are deleted with probability proportional to the inverse of their strengths.  The initial 

strengths of offspring classifiers are set so as to conserve the total strength of parents and off-

spring.  Half of each parent’s strength is deducted from the parent and assigned to its copy.  If 

crossover occurs, the copy strengths are reset to their mean.  The rate of GA invocation is prob-

lem-dependent.  On the average, classifiers should be evaluated (be in some [A]) a sufficient num-

ber of times before being selected, in order that their strengths settle to values which approximate 

steady-state values.  If the GA is run too fast, strengths will on average be too noisy; if run too 

slowly, the system will not achieve its best rate of improvement. In ZCS, the GA rate is controlled 

by a probability of invocation per time-step, which must be chosen by the user.  Techniques for 

automatic rate control are known (Booker 1982), based on each classifier’s keeping a count of its 

evaluations.

The covering operation deals with the situation occurring when [M] is empty, i.e., no classifier 

in [P] matches the input, or when the total strength in [M], S[M] , is less than a fraction φ of the 

population mean strength.  Covering creates a new classifier whose condition matches the input 

and contains a probabilistically determined number of #’s. The classifier’s action is chosen ran-

domly, and the strength is set to the population average.  The new classifier is inserted into [P] and 

a classifier is deleted as in the GA.  Then the system forms a new [M] and proceeds as usual.  

Covering is a relatively crude operation resembling rote learning or imprinting; it does not build 



6  

which follows [A] in time.  Then the process can be written as a re-assignment

(1)

This expression can be seen to parallel Holland’s bucket brigade, with three main exceptions: 

classifier specificities are ignored; there is no “bid competition”; and the quantity passed by the 

“brigade” is reduced by a factor 1-γ at each step.  ZCS ignores specificities on the basis of earlier 

experiments (Wilson 1988) indicating that their presence in classifier “payments”—the amounts 

transferred between classifiers—is undesirable.  Other experiments reported in that study found 

no advantage for the bid competition (in which, in effect, the action is selected from among the 

classifiers in a high-strength subset of [M]).  In contrast, a discount factor γ significantly less than 

1.0 appears to be essential in (1) for problems of the kind studied here.  We found that if γ is omit-

ted or set near 1.0,  then dithering, lack of urgency in attaining rewards, and looping behavior oc-

cur which smaller values of the discount factor greatly reduce.

The sharing of the reward and the bucket amount in the second and third reinforcement steps 

prevents the genetic algorithm from allocating excessive numbers of classifiers to any given re-

warding “niche”; for an analysis see the appendix to Wilson (1987a).  Note also, in contrast to the 

canonical framework, that the “payments” in ZCS’s bucket brigade do not pass via the intermedi-

ary of posted messages, since there is no message list.  Instead, the payments go to the previously 

active classifiers as though each posted the same message, and that message was matched by each 

of the presently active classifiers.  This technique, first used in Wilson (1985), was termed in 

Goldberg (1989) an implicit bucket brigade.

The reinforcement cycle has one further step in which the strengths of classifiers in the set dif-

ference [M] - [A] are reduced by a small fraction τ ≅ β.  That is, matching classifiers which advo-

cate actions other than the selected action are weakened.  This causes the system, over many 

cycles, to become increasingly definite about its action choices in the situations it encounters.  In 

effect, the use of the “tax” τ combined with roulette wheel action selection represents an explora-

tion strategy in which selected actions become increasingly likely to be selected, so that exploita-

S A[ ] S A[ ] βS A[ ]− βr imm βγS A[ ] ′+ +←
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stochastic method: a roulette wheel with sectors sized according to the strengths of members of 

[M].  Thus a particular action a is selected with probability equal to the sum of the strengths of the 

classifiers in [M] which advocate that action, divided by the total strength of classifiers in [M].  

Next, an action set [A] is formed, consisting of all members of [M] which advocated a.  Finally, a 

is sent to the effector interface, and the corresponding motor action is carried out in the environ-

ment.

ZCS’s generalization capability is expressed in the action set [A].  In the first place, individual 

classifiers of [A] may have #’s in their conditions, so they match more than one distinct input.  But 

second, the conditions present are generally different: there may be different numbers of #’s, or 

the specified bits may be in different positions.  This diversity reflects ZCS’s search for the “best” 

classifiers in each situation; these are in general classifiers which have high relative strength while 

matching a large number of inputs.  There appears to be an inherent pressure in ZCS and similar 

classifier systems toward such classifiers (Wilson 1987a).

ZCS’s reinforcement, or credit assignment, cycle centers around [A] and the action set on the 

previous time-step, [A]-1.  The procedure goes as follows. First a fixed fraction β (0 < β ≤ 1) of 

the strength of each member of [A] is deducted from the member’s strength and placed in an (ini-

tially empty) common “bucket” B.  If S[A]  is the total strength of members of [A], the effect is to 

deduct βS[A]  from S[A] and place it in the bucket.  Second, if the system receives an immediate re-

ward r imm from the environment after taking action a, a quantity βrimm/|A| is added to the strength 

of each classifier in [A] (|A| is the number of classifiers in [A]).  The effect is to increase S[A]  by 

βr imm.  Third, classifiers in [A]-1 (if it is non-empty) have their strengths incremented by γB/|A-1|, 

where γ is a discount factor (0 < γ ≤ 1), B is the total amount put in the bucket in step 1, and |A-1| 

is the number of classifiers in [A]-1.  Finally, [A] replaces [A]-1 and the bucket is emptied.  

To see the overall effect of this process on S[A] , it is helpful to define [A]' as the action set 
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being regarded either as computing the presence or absence of input features, or as thresholding 

analog input variables— the canonical framework makes the same assumption.  While this finess-

es the problem of learning the features or thresholds in the first place, ZCS still has to learn effec-

tive classifier conditions, that is, feature-like combinations of detector output bits.  The use of 

discrete actions is also a simplification, since many creature actions range over a continuum, e.g., 

turn a little bit left.  Classifier systems will ultimately need to deal with both continuous inputs 

and outputs; research in fuzzy classifier systems (Valenzuela-Rendón 1991, Parodi & Bonelli 

1993) is one step in that direction.

In the performance, or sense-act, cycle of ZCS, the condition of each classifier in [P] is com-

pared with the detector string.  If the bit at every non-# position in a classifier’s condition matches 

the corresponding bit in the detector string, the condition is satisfied and the classifier becomes a 

member of the current match set [M].  Next, an action is selected from among those advocated by 

members of [M].  Many schemes are possible and useful, but ZCS employs perhaps the simplest 
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Figure 1.  Schematic illustration of ZCS.
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of ZCS sufficient to allow implementation. Section 3 gives results in two experimental environ-

ments.  In Section 4, the relationship of ZCS to the technique called Q-learning is discussed.  Sec-

tion 5 suggests extensions to ZCS, including: simple temporary memory; more sophisticated 

action selection; a niche genetic algorithm; and a general representation for classifier conditions.  

Section 6 concludes by summarizing advantages of ZCS as a reinforcement learner, and, with re-

spect to Holland’s full framework, notes the price in elements given short shrift.

2.   Description of ZCS

Figure 1 gives a broad picture of ZCS.  The system is seen in interaction with an environment 

via detectors for sensory input and effectors for motor actions.  In addition, the environment at 

times provides a scalar reinforcement, here termed reward.  The basic idea of a system sensing 

and learning to act in an environment so as to gain reward appeared early in Holland’s work (Hol-

land 1976).  It has more recently become known as the reinforcement learning problem, and en-

compasses many aspects of the general problem of intelligence (Sutton 1992).  ZCS descends 

from the classifier system developed in Wilson (1985) but differs significantly in omitting several 

heuristics and operators that aided that system.  These included: a look-ahead classifier creation 

heuristic, a statistic estimating distance to reward kept by each classifier and used in the perfor-

mance cycle and elsewhere, and a genetic interference operator.

Within Figure 1, the box labeled [P] (“population”) contains the system’s current set of classi-

fiers.  They are built on the binary alphabet, plus the don’t care symbol #; a colon separates the 

condition and action.  The condition, in this example of length four, is a single conjunct to be 

matched against the indicated detector bits; the action part encodes a motor action.  Shown associ-

ated with each classifier is a scalar strength.  As is apparent, and unlike Holland’s framework, 

ZCS has no internal message list.  It is thus incapable of temporary memory, and so cannot act on 

accumulated information detected on any previous time-step, or according to internally generated 

intentions or controls.  

The use of binary detector variables is a restriction in the interest of simplicity, the detectors 



2  

1. Intr oduction

A classifier system is a learning system in which a set of  condition-action rules called classifi-

ers compete to control the system and gain credit based on the system’s receipt of reinforcement 

from the environment.  A classifier’s cumulative credit, termed strength, determines its influence 

in the control competition and in an evolutionary process using a genetic algorithm in which new, 

plausibly better, classifiers are generated from strong existing ones, and weak classifiers are dis-

carded. The original classifier system concept is due to Holland, who described it most complete-

ly in Holland (1986).  Responding to perceived shortcomings of existing artificial intelligence 

systems, particularly with regard to adaptation and practical induction, Holland laid out a compet-

itive/cooperative message-passing framework addressing desiderata including: temporal credit as-

signment under conditions of sparse or delayed reinforcement; distributed and generalizable 

representations of complex categories; default responses subject to exceptions; and graceful adap-

tation of system knowledge through gradual confirmation/disconfirmation of hypotheses.  Though 

a number of researchers were inspired by Holland’s framework to investigate classifier systems 

(for a review, see Wilson & Goldberg 1989) and it also had some influence on the related field of 

reinforcement learning (Barto 1992), efforts to realize the framework’s potential have met with 

mixed success, primarily due to difficulty understanding the many interactions of the classifier 

system mechanisms that Holland outlined.  The most successful studies tended in fact to simplify 

and reduce the canonical framework, permitting better understanding of the mechanisms which 

remained.

Recently we set out to carry this simplification to the point where all remaining processes 

might be well understood, while retaining what we deemed to be the essence of the classifier sys-

tem idea: a system capable of action through time to obtain external reinforcement, based on an 

evolving set of internally reinforced, generalizable condition-action rules. The result, a sort of 

“zeroth-level” classifier system, ZCS, has points of analytical contact with systems studied under 

the heading of reinforcement learning, and appears to provide a viable foundation for building to-

ward the aims of Holland’s full framework.  The next section of this paper presents a description 
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