Classifier Systems

A useful approach to machine learning?

Master's Thesis
by
Bart de Boer
Leiden University

August 31, 1994

Preface

This thesis was written as a final project in artificial intelligence research for
the subject of applied computer science at the university of Leiden (Rijksuniver-
siteit Leiden), the Netherlands, internal report number IR94-02. It was written
from august 1993 until march 1994 and was supervised by dr. Ida Sprinkhuizen-
Kuyper and drs. Egbert Boers without whose support, suggestions and critique
I would never have been able to do what I have done.

I also want to thank Jos de Graaff for correcting the mistakes in my english.
Of course all the remaining errors are entirely my responsibility.

Abstract

Classifier systems are sub-symbolic or dynamic approaches to machine learning.
These systems have been studied rather extensively. In this thesis some theo-
retical results about the long-term behaviour and the computational abilities of
classifier systems are derived. Then some experiments are undertaken. The first
experiment entails the implementation of a simple logic function, a multiplexer
in a simple classifier system. It is shown that this task can be learned very well.

The second task that is taught to the system is a mushroom-classification
problem that has been researched with other learning systems. It is shown that
this task can be learned. The last problem is the parity problem. First it is
shown that this problem does not scale linearly with its number of bits in a
straightforward classifier system. An attempt is made to solve it with a multi-
layer classifier-system, but this is found to be almost impossible. Explanations
are given of why this should be the case.

Then some thought is given to analogies between classifier systems and neu-
ral networks. It is indicated that there are mappings between certain classifier
systems and certain neural networks. It is suggested that this is a main concern
for future classifier systems research.

Contents

Introduction

Learning

2.1 Definitions o

2.2 Waysoflearning
2.2.1 Environments
2,22 Algorithms

2.3 Applications

The Genetic Algorithm

3.1 Technical details,

3.2 Some theoretical explanation.

3.3 Variations

Classifier Systems and the Bucket Brigade

4.1 The Layers of the System

4.2 What is a classifier system?
4.2.1 The Message List
422 TheRules

4.3 What is the Bucket Brigade?
4.3.1 Why Should it Work?

4.4 The Genetic Part o

4.5 Other Types of Classifier Systems

Formal Definition of a Classifier System

5.1 The Classifier System
5.1.1 the classifiers 0L
5.1.2 The messagelist

5.2 The function ¥
5.2.1 The matching-function
5.2.2 The conversion of an action into a message
5.2.3 The definition of the transition-function

10
11

13
13
14
14
15
16
17
18
19

5.2.4 Calculating the bid-value
5.2.5 The functions f,and f,
5.2.6 Tterating
5.3 The bucket-brigade algorithm
5.3.1 Paid and paying classifiers
5.3.2 The amounts paid
5.3.3 Exceptions: input and output

Analysis of the Behaviour of the Classifier System

6.1 Steady-State Behaviour
6.1.1 Classifier System without Life-Tax
6.1.2 Classifier System with Life-Tax
6.1.3 Discussion

6.2 Starting-Parameters

6.3 Time-Complexity

Computational Strength of Classifier Systems

7.1 Practical Computational Strength

7.2 Example: Wildcards versus no Wildcards

7.3 The Use of a Message List
7.3.1 Informal Definition
732 M>S5. .
733 S>M . ..

7.4 Conclusions and Suggestions

A simplified Classifier System

8.1 The simplified system
8.2 Experiments with the correct rules present
8.3 Experiments without the Genetic Algorithm
8.4 Experiments with the Genetic Algorithm.
8.5 Parameters used in the Experiments

Further Experiments

9.1 The Mushrooms,
9.1.1 Interpretation of the Learned Classifier System
9.1.2 A larger Population
9.1.3 Generalization
9.1.4 Parameters

9.2 The Parity Problem
9.2.1 The Problem
9.22 TheTest Runs
9.2.3 Parameters

ii

29
29
30
31
32
34
36

39
39
40
41
41
42
42
44

47
47
48
50
52
95

10 Classifier Systems seen as Networks 69

10.1 Implementingito 69
10.1.1 The activation 70

10.1.2 The payingof bids 70

10.2 Problems with Passthroughs 71
10.3 Speedup 72
10.4 Neural Network Analogy? 73
10.4.1 The activation-function 74

10.4.2 The learning-rule L. 75

11 Conclusions 77
11.1 Possibilities 77
11.2 Problems 78
11.3 Suggestions for Future Research 79

A Symbols used in this Thesis 81
B The Program Used for the Experiments 85
B.1 The modules 85
B.1.1 The Support-Module 86

B.1.2 The Learning-Module 88

B.1.3 The Task-module 89

iii

v

List of Figures

2.1 Reinforcement learning

3.1 A roulette-wheelo
3.2 Crossover. Bits are genes
3.3 Inversion. Bits are genes

4.1 Model of a classifier system as a learning system [BGH89]
4.2 The cycle of a classifier system

14
15

4.3 A classifier with conditions, action, strength and possibly an output 16

4.4 The bucket brigade in action

6.1 Values of the steady-state bids for different specificity-functions
and values of life-tax Lo

7.1 Example of an activation graph
7.2 The reduced activation graph

8.1 TFailure of the (too) complex classifier system
8.2 A 4-bit multiplexero
8.3 Monkey wrenches with roulette-wheels
8.4 Monkey wrenches with noisy bids
8.5 Random classifier system without genetic algorithm
8.6 Good, Bad and no answers of a random CS without GA

8.7 Bids of a random CS without GA
8.8 Performance of a CS with GA using crowding

9.1 Results of experiment with mushrooms
9.2 Result of mushrooms with larger population
9.3 Single-layer classifier system learning parity-problem
9.4 Parity-problem with monkey wrenches
9.5 Failure of the parity problem with monkey-wrenches when apply-
ing a genetic algorithm 0L

10.1 The classifier system as a network

17

10.2 The activation of a classifier in a network 71
10.3 Classifier system with passthroughs as an augmented network . 72

vl

List of Tables

6.1 Example values for bids and strengths in the steady state 31
6.2 Estimated number of cycles of classifier system to steady state . 38
8.1 Default hierarchy for the four-bit multiplexer 49
8.2 Values of the parametersused 55

9.1 The ten most fit classifiers after 100 generations and descriptions

of the parameters 59
9.2 Values of the parameters used in the mushroom-experiment . . . 62
9.3 Four-bit parity problem with internal messages 64
9.4 Values of the parameters used in the parity-experiment 68

vii

viil

Chapter 1

Introduction

The differences between humans and computers are huge. Where computers are
able to perform repetitive tasks with astounding accuracy and speed, humans
are good at adapting to circumstances they have never encountered before and at
finding solutions to completely new problems. Adaptation and finding solutions
are closely related to the ability to learn. If computers are to perform well in the
same areas as humans, it would be a good idea to investigate machine learning.

Therefore machine learning is a major topic in artificial intelligence research.
There are many ways in which machines can learn. This thesis is concerned with
one of these methods, John Holland’s classifier system with bucket brigade, see
for example [HOL75, HOL80, BGH89, GB89].

First in chapters 2, 3 and 4 an introduction is given into what machine
learning is, after which the focus will be on what classifier systems are and
how they learn. Then some results of mathematical research are presented.
In chapter 5 a formal definition of a classifier system is attempted. A formal
definition is something which is almost never given in papers about classifier
systems. This is unfortunate, because such a definition provides a tool with
which the research and the implementation of classifier systems i1s made much
easier.

Then a mathematical analysis of the behaviour of a classifier system is un-
dertaken in chapter 6. The results of this analysis are applied in a practical way
by calculating parameters of the systems used in the experiments.

After that a method with which the computational strength of classifier
systems can be investigated is presented in chapter 7. This method proves to
be useful in determining whether adding features to a classifier system really
increases its computational capabilities or if they are just superfluous.

In the practical part of this thesis several problems are taught to the classifier
system. In chapter 8 an experiment done by Goldberg [GB89] is repeated in
order to show that a classifier system is able to learn and how it learns. The
problem is very simplistic however, and many difficulties that occur with larger

tasks do not appear here.

Chapter 9 is concerned with more serious problems. Two different tasks
are taught with two different purposes. The first task is to learn to distinguish
between edible and poisonous mushrooms. This can be learnt by a very simple
classifier system, but involves quite a lot of information, so the classifiers used
will be rather large.

The second problem is an eight-bit parity problem. This cannot easily be
solved by a simple classifier system, so it is used to test the different learning-
abilities of different classes of classifier-systems.

In the last chapter of this thesis an idea is put forward on how to imple-
ment classifier systems in a more efficient way by looking at them as a kind
of activation-networks. No experiments were done, but some light is shed on
how an implementation could be made and a discussion of speedup is presented.
Also a few thoughts are given to the similarities between neural networks and
classifier systems.

Chapter 2

Learning

One aspect that is usually associated with intelligence is a capability to adapt
or to learn. In the study of artificial intelligence this has led to a large amount
of research into learning systems. It is one of the classical areas of interest of Al.
The research has not been entirely academic, though. Learning systems have
been applied in many different domains.

2.1 Definitions

Before we can talk any further about learning systems, we must try to find a
definition of learning. Different authors have used different, but similar defi-
nitions. They have also used different criteria to classify learning systems and
different perspectives on which to base their research.

Narendra and Thathachar use the following, rather behaviouralist definition:
“Learning s the ability of systems to improve their responses based on past ex-
perience” [NT89]. In the same book they give a more technical definition as
well: “Researchers [...] have consistently used the term ‘learning automaton’
to describe both deterministic and stochastic schemes used in discrete systems
that improve their performance in random environments”. Michalski, Carbonell
and Mitchell define learning from a more cognitive point of view: “Learning
processes include the acquisition of new declarative knowledge, the development
of motor and cognitive skills through instruction and practice, the organization
of new knowledge into general, effective representations, and the discovery of
new facts and theories through observation and experimentation” [MCM83b].
Simon, a psychologist, uses a similar definition to Narendra and Thathachar’s:
“Learning denotes changes in the system that are adaptive in the sense that
they enable the system to do the same tasks drawn from the same population
more efficiently and effectively the next time.”[SIM83] Hilgard and Bower, in
their standard work on learning theories in psychology, avoid the subject alto-

gether: “The controversy is over fact and interpretation, not over definition.[...]
Learning is one of those loose “open-textured” concepts that include a variety
of different species. [...] ...in casual conversation, it is satisfactory to continue
to mean by learning that which conforms to the usual socially accepted meaning
that is part of our common heritage” [HIBOT5].

These definitions have in common an improvement in the behaviour to-
wards an environment, originating from repeated interactions with that envi-
ronment. But whereas Narendra, Thathachar and Simon define learning from
a behaviouralist point of view by looking only at the changing behaviour of a
system, Carbonell, Michalski and Mitchell define it in a broader sense, including
changes in a system which may not be directly apparent to the outside world.
This last way of regarding learning is often used in artificial intelligence research,
but in this paper we will mainly be considering the behaviour of systems.

It is also possible to give a more formal definition of a reinforcement learning
system. For this we will need to define the learning system and its environment.
We will need two sets: A, the set of states of the environment and B, the set
of actions the learning system can perform on the environment. The learning
system can now be defined as a (possibly stochastic) function ¥ = M(¢,t) in
which ¢ € B the action the learning system performs, ¢ € A the state of the
environment and ¢ € Nt the time at which this happens.

The reaction of the environment can now be described by the (possibly
stochastic) function p = F(¢, ¢,t) in which ¢, ¢ and ¢ are the same as above
and p € R* the payoff of the environment. This is a measure of how good the
action of the learning system was. The higher p, the better.

A system can now be said to learn if it is true that:

(F(M(¢4,t), 04, 1)) > (F(M(dg—1,t — 1), 41,1 — 1))

in which () is used to denote the expected value of a function. The variables ¢,
and ¢;_1 are the states of the environment at times t respectively t-1.

Note that this is not a very accurate definition of a learning system and
that it doesn’t cover every possible learning system. In particular it only covers
monotonically learning stimulus-response systems. However, to get an idea of
what is meant by a learning system in this paper it is sufficient.

2.2 Ways of learning

Many different approaches have been used in machine learning. These depended
on the task to be learnt, the way in which the task was taught and on what was
fashionable at the time the research was done.

The first classification of learning systems that we can make is on how the
material to be learnt is presented to the system. Michalski, Carbonell and
Mitchell [MCM83b] use the following classes, ordered approximately in descend-
ing need of supervision from a teacher: rote learning and direct implementation

of new knowledge, learning from instruction, learning by analogy, learning from
examples and learning from observation and discovery.

Rote learning and direct implementation is the least interesting way of learn-
ing; it amounts to directly inserting knowledge into a system, either by program-
ming it or putting it into a database. The system itself does nothing with the
knowledge, except for executing it or storing and reproducing it.

Learning from instruction is more interesting. It is very much like education
at school. The learning system must be able to understand the instruction it
gets, store it and integrate it with what it already knows. This is a very in-
teresting artificial intelligence problem, but the learning problems are relatively
minor.

The third category, learning from analogy, gives a learning system more
difficulties. It has to find in its knowledge something similar to the task to be
learnt and change the knowledge already present until it is applicable to the
situation at hand. Then it has to store this newly acquired knowledge in its
knowledge base.

Learning from examples is the kind of learning that will be discussed in this
paper. The system is presented with samples or examples from an environment,
together with information to associate with this example. This information
can be an indication whether an example is positive or negative, whether the
response of the system was good or bad, or it can be some action to associate
with the example. If the information is given at the same time as the example,
it is called “true learning with examples”. If the information is given after the
system has generated a response, it can be called reinforcement learning, which
is exactly the kind of learning that will be discussed in this paper.

response
examples

reinforcement

V
Learning system

Figure 2.1: Reinforcement learning

The last class, learning from observation and discovery or unsupervised
learning, is a kind of learning in which the learning system is left on its own to
explore its environment and try to make classifications of phenomena it sees or
form theories about it.

2.2.1 Environments

Another way to classify learning systems is on the kind of task or environment
it learns to operate. The environment can be static or dynamic, deterministic
or stochastic and discrete or continuous. A static environment does not change
during the time a learning system is active, a dynamic environment does.

A deterministic environment always gives the same response in the same
situation and it never gives examples that are flawed. Stochastic environments
do not have these properties. They can have inherent stochastic features, (as
in quantum-dynamic systems, gambling problems or predictions of real-life phe-
nomena, like the weather) or be troubled by noise.

In finite environments, there is a finite number of actions a learning system
can take and a finite number of responses it can get. In a continuous environment
either the number of actions is infinite, or the number of responses is infinite,
or both.

2.2.2 Algorithms

The last distinction between learning systems we will mention is the algorithm
they use to learn with. The least precise way to make the distinction is to
divide them by the line which divides all Al-research: the symbolic/sub-symbolic
distinction. Winston [WIN92] gives a more precise list of different methods.
They include learning by analyzing differences, learning by managing multiple
models, learning by correcting mistakes, learning by recording cases, learning by
building identification trees and learning by explaining experience. Most of these
are symbolic methods, concerned with noise-free static environments. Two other
methods Winston mentions are learning by training neural nets and learning
by simulating evolution, both subsymbolic and more applicable to changing
environments with noise. Classifier systems, the learning method used in this
research, are not mentioned by Winston. They are also sub-symbolic and the
hypothesis is, that they are also suited for noisy and changing environments.

2.3 Applications

Learning systems have been applied to many different tasks. Michalski, Car-
bonell and Mitchell [MCM83b] give an extensive list of areas where learning
systems have been used. These include such things as game-playing [GB89),
(one of the first areas of application) speech-recognition [HKP91, SERO87] and
hand-writing-recognition (in commercial systems, like the Apple Newton), driv-
ing a car [POTO89, POMS89], classification of objects, collecting expert-system
knowledge, determining the spatial structure of proteins, controlling industrial
processes [WIN92, LEE&6], intelligent user-interfaces, [SUTY91] but learning
computer systems are also used by psychologists to investigate human learning.

Chapter 3

The Genetic Algorithm

It is hard to believe that a seemingly random process can create very complex
and efficient structures. Still Darwin [DAR1859] made it very likely that that
is exactly the way nature has produced its dazzling variety of living organisms.
His idea was that infinitesmal, more or less random changes in individuals, com-
bined with an outside pressure, (’struggle for life’) that gave the best adapted
ones the greatest chance to produce offspring, can add up to produce the most
astoundingly complex structures, like eyes, insect societies, or even brains.

To apply this simple technique to the area of computer search and discovery
seems like a rather good idea. But it was not until the seventies that these
ideas were applied to computers. Holland [HOL75, HOL80, GB89] was one of
the pioneers of genetic algorithm research. Research into and applications of
genetic algorithms have boomed ever since.

How do genetic algorithms work and what makes them different from other
search methods? First of all genetic algorithms do not work with a single object
in the search space. They work with an entire population of different objects.
The individuals in the population are assigned a fitness-value. This value is an
indication of how good a solution a certain individual is. Fitness is calculated
by an objective evaluation-function. It must be stressed that there are many
differences between genetic algorithms and evolution as found in nature. The
way nature does genetics can be found in for example [ALB83].

This evaluation-function is the only domain-specific part of the genetic search.
The genetic process itself is not guided by domain-specific knowledge. Even the
individuals are encoded in neutral ’chromosomes’, which are usually just bit-
strings. All genetic operations are conducted on these chromosomes. Because
genetic algorithms do not use domain specific information to guide the search,
they are almost universally applicable, especially in domains where very little
is known about what is being searched for.

With the old population and the fitnesses of its members the next generation
is created. This goes analogously to natural evolution: the best individuals have

the biggest chance of producing offspring. Offspring are like their parents, but
usually not entirely. The newly made individuals eventually replace the older
(and less well adapted) ones.

In this way we cover a large part of a search space in a short time. It can be
proven that fit individuals will grow in number and less fit ones will disappear.
The search will end up in an optimum in the search-space, and because we work
with a large number of individuals, this will probably be a good optimum.

3.1 Technical details

There are three basic actions in the genetic algorithm: selection, creation of a
new individual from parents and the replacement of older individuals. These
actions operate on encodings of the sought parameters, not on the parameters
themselves. Thus the genetic algorithm does not have to know anything about
the parameters themselves.

Every parameter can be encoded as a gene on a chromosome. In the tech-
nique that will be studied in this paper, genes are characters and chromosomes
are strings, but they can be almost anything. The only thing the genetic algo-
rithm must be able to do is to copy individual genes and chromosomes.

As mentioned before, genetic algorithms cause fit individuals to proliferate
and less fit individuals to disappear. This is brought about by selecting some of
the best individuals, crossing these with each other and then supplanting some
of the least fit ones of the old generation with this new offspring.

Selection of individuals for procreation is the first step. The ones with the
highest fitness will have the highest probability of being selected. Picking of
individuals is usually done in one of two ways. Roulette-wheel selection or
rank-based selection. In roulette-wheel selection every individual is assigned a
certain probability which is proportional to its fitness. All probabilities of all
individuals should add up to one. Candidates for procreation are then selected
according to these probabilities. This is a bit like spinning a roulette-wheel.

Figure 3.1: A roulette-wheel

In rank-based selection individuals are ordered according to their fitness.
Individuals are then assigned fixed probabilities according to their rank, that is,
their position in the list. Candidates are again selected with these probabilities.

The difference between rank-based selection and roulette-wheel selection is
not very big. When using roulette-wheel selection one should be careful that
the ratio between the highest and lowest probability is not too great; otherwise
certain individuals will very quickly start to dominate the population. It will
usually be necessary to scale the probabilities. Goldberg [GB89] suggests that
the ratio should be between 1.2 and 2.

Rank-based selection has the problem that all the individuals have to be
sorted first. It is much easier to control the different probabilities of the indi-
viduals in the population, however.

The next thing that happens in the genetic algorithm is the creation of new
individuals from the selected parents. This is usually done with three techniques:
crossover, mutation and inversion. In this research inversion will not be used,
but we will explain it anyway, because it is a very basic technique of genetic
algorithms.

Crossover is the mixing of two parents (usually there are two parents per
child). The chromosomes of the parents have to be of the same length. A
random point (between two genes) in one of the parents is chosen. The child
will now consist of the genes before this point of the one parent and the genes
after this point from the other parent. The purpose of crossover is to mix the
genes of two parents, so good things (‘partial solutions’) from one parent will
be mixed with good things from the other parent. This could be considered an
exchange of information.

_Parent 1\‘
1001010101 _Child

Parent2 (1001001001

0101ob1093\\\\\-_’////f

Figure 3.2: Crossover. Bits are genes

Mutation is a very simple operation. The value of a gene in the child is
changed at random. This is done with a certain, rather small, probability.
Its purpose is to introduce new solutions into the population, which were not
present at the outset or were lost during the search.

Inversion is a more complex thing. Two points in a chromosome are chosen
at random. The sequence of the genes in this part of the chromosome is then
inverted. This is done to put partial solutions that reinforce each other closer
together in the chromosome, so that they are less likely to be separated with

Crossover.

Figure 3.3: Inversion. Bits are genes

These techniques will not be used with every child. Sometimes a child is just
a copy of one of its parents. Crossover, mutation and inversion are only used
with a certain probability.

Supposing that we work with a fixed population-size, it is necessary for a
genetic algorithm to replace old individuals in order to accommodate the new
ones. This can be done in many different ways. One can choose individuals
with a fitness lower than the new ones (and if these cannot be found, discard
the new ones,) but it is also possible to replace the entire old population with its
offspring, and there are many other possibilities [GB89, MIC92]. The method
chosen depends on the application of the genetic algorithm.

3.2 Some theoretical explanation.

Why do all these very simple actions make such a powerful search-technique? To
answer this question we must look a bit into the theories of genetic search. This
section is partly based on the thesis by Boers and Kuiper [BK92] and [GB89].
First we define a thing which we will call a schema. A schema is a description
of a class of chromosomes. It consists of a string with the possible values of the
genes of the chromosome and a so-called wildcard. For convenience we will
take bits for genes. A schema will then be of the form {0, 1, *}l, where * is the
wildcard-character and [is the length of the chromosome. A schema describes
a class of chromosomes with a 0 at the place where the schema has a 0, a 1 at
the place where the schema has a 1 and either a 0 or a 1 at the place where a
schema has a *. For example, the schema 1 % *0 matches with 1000, 1010, 1100
and 1110. A chromosome satisfying a certain schema is called an instance of it.
The defining length 6 of a schema is the number of possible crossover-points
between the first and the last non-wildcard character. The defining length of
the schema x x 101 * x10%, for example, is 6.
A highly fit schema with a short defining length is called a building block.
We will now give a simple proof that good schemas will grow exponentially
in number when using a genetic algorithm that replaces the entire population.
First we define the average chance, pqyy s that an instance of schema S gets
chosen for procreation. This can be calculated by adding up all the probabilities

10

of all the instances of § and dividing it by the number, n, of these instances.
Then the total number of instances of S selected is given by pay.s -n - N,
where N is the number of individuals in the population. Note that this gives a
value greater than n if psyy s > ﬁ, which happens to be the average over the
probabilities of being chosen of all the individuals in the population.

In order to calculate the number of instances of & that will appear in the
new population, we need to know what the probability is that a certain schema
is not destroyed by crossover. This is given by the formula:

)
ps>l_ =

z l_lpc

where p; is the probability of not being destroyed, ds is the defining length of
S, I the length of a chromosome so [— 1 is the number of crossoverpoints in
the chromosome, and p. the probability of crossover. The formula has a greater
than or equal sign because a schema can survive a crossover, for example when
both parents are instances of it. Also note that we do not look at the possibility
of a mutation. One is allowed to do this, because the chance of a mutation
occurring is usually so small as to be negligible.

By combining these two formulas we find the number of instances of § in
the new population by:

)
n' = Pavy,8 Tl,N(l— l_sl)pc
dividing this by n to find the ratio, r, gives:
)
= Pavyg,8 N - (1 - l_sl)pc

which is greater than one only for better than average schemas with a short
defining length. Schemas satisfying these conditions, however, will grow expo-
nentially in number. This gives a mathematical foundation for the intuitive idea
that genetic algorithms can be a very efficient way of searching for a solution to
a problem.

3.3 Variations

A great many variations on the basic theme of the genetic algorithm are possible.
There has been extensive research on this subject and it is not at all clear what
kinds of variations are possible or what their effects are.

For example, it is possible to use pairs of chromosomes with dominant and
recessive genes, as they exist in nature, instead of the single chromosomes de-
scribed above. This would be useful in preserving information which is not
directly of use to an individual, but which might be useful at a later time.

11

Another possible variation is the use of diversity next to fitness as a criterion
for choosing individuals for the next generation. This means that we pick indi-
viduals for reproduction not only because they are fit, but also because they are
different from the individuals that are already present in the new population.
This prevents loss of information through inbreeding and prevents the genetic
search from ending up in a local maximum.

We can also vary the parameters of the genetic algorithm: the mutation
rate, the probability of crossover, the number of individuals in the population,
the ways of replacement and selection, etcetera, etcetera. A lot of research into
these subjects is being conducted at the moment. This is not, however, the
subject of this paper.

12

Chapter 4

Classifier Systems and the
Bucket Brigade

The learning system that is going to be studied in this paper is called a classi-
fier system with bucket brigade [HOL80, HOL86, GB89, SMI92]. These systems
can be considered an intermediate between real non-symbolic systems (neural
networks) and symbolic systems (especially expert systems). The classifier sys-
tem was invented by Holland [HOL75, HOL80, HOL86] and was researched
by many others [BGH89, BOO85, DOR91, FOR&5, SMI92, WES85, ZHOUS85].
The classifier systems with bucket brigade algorithms that were researched are
basically the same, but have all kinds of subtle differences which are not directly
apparent from the literature. The aim of this chapter and the next is to give
an informal description of what a classifier system is and what it can do (this
chapter) and then give a formal definition of the classifier system, in order to
make clear exactly what we are talking about (chapter 5). Classifier systems
are by no means simple or even standardized. As Goldberg et al. [GHD92]
write: “classifier systems are a quagmire—a glorious, wondrous, and inviting
quagmire, but a quagmire nonetheless.”

4.1 The Layers of the System

Just like every other reinforcement learning system the classifier system with
bucket brigade consists of three layers (see figure 4.1). The first layer sees to
it that the system is able to provide answers (be they right or wrong) to the
problems it is confronted with. This is the classifier system. The second layer
tries to evaluate the performance of the first layer. It can also adjust that layer’s
performance by using the payoff provided by the environment. This payoff is
high if the behaviour of the system is good and low if the behaviour is not. It
cannot, however, change the behaviour in a creative way, as it can only adjust

13

things that are already present in the system. The algorithm used for this aspect
in this paper is called the bucket brigade. The task of the third layer is to try
to find new ways in which the learning system can perform its function. This is
done by a genetic algorithm (see chapter 3). Farmer [FARI0] calls these layers
the transition rule, the learning rule respectively the graph dynamics.

Search for new rules

A Evaluation of rules v

Y Performance Subsystem
Classifiers
/‘ Bucket Brigade

Input

Output

/ Genetic Algorithm

payor/

Figure 4.1: Model of a classifier system as a learning system [BGH89]

4.2 What is a classifier system?

A classifier system is a kind of production system. In general a production
system is a set of rules that trigger each other and perform certain actions.
The rules consist of a condition and an action. The action can make true the
condition of another rule. This is the way in which rules influence each other.
The action of a rule can also perform actions on the outside world. Examples
of production systems in action can be found in compilers and some expert
systems.

Classifier systems are parallel production systems, whereas expert systems
are usually non-parallel. A parallel production system is a production system in
which more than one rule can be active at the same time. There is no difference
in computational power between parallel production systems and production
systems in which there is only one active rule at once. Post [POST43] has
shown that production systems can achieve computational completeness with
only one active rule at once. Minsky [MING7] gives a simplified proof of this.

4.2.1 The Message List

In order to make possible the parallel activation of rules the classifier system
has an extra part: a message list. A rule will be activated if the messages
in the list satisfy its conditions. All rules are checked this way. Activated
rules may then place their actions in a new message list. Whether an active
rule is actually allowed to place its message is determined by its strength. The

14

stronger a classifier is, the bigger the chance that it can place its message when
it is activated.

The old message list is discarded. With the new message list, the rules can
be activated again. In this way we can make an iterating system. The iterating
is started by inserting a message from the outside world in the message list and
it stops when one of the classifiers produces an action that affects the outside
world. This is called output.

Classifiers Message list

Actions

Messages

a0 —

Output Input

Figure 4.2: The cycle of a classifier system

The message list can also be omitted. The classifiers will then calculate an
output directly from the input. Such a system is called a single-layer classifier
system. A classifier system that does have a message list is sometimes called a
multi-layer system.

4.2.2 The Rules

The rules of a classifier system are very simple. The conditions are strings
consisting of zeroes, ones and wildcards. These will be matched against the
messages in the message list, which are ordinary bitstrings (consisting of only
zeroes and ones). Wildcards (written *) are characters that match both zeroes
and ones. A condition can also be unmatched true. This means that it is
activated if there are no messages in the message-list matching it. Otherwise
it is called matched true. One rule can have more than one condition. The
classifier-system discussed in this paper has a fixed number of conditions per
rule.

The action of a rule consists of two parts: a part that can be placed in
the message list and a part that can influence the environment. The first part
consists of a string made up of zeroes, ones and passthroughs (written #). If the
rule is activated and its action is to be placed in the message-list, passthroughs
will be filled up by the corresponding characters from one of the messages that
activated the rule. The other part is the action of the rule that can affect the
outside world, also called the output. It is optional. The output can be almost
anything.

15

Condition 1
10*1001**1 l
.| Action
1010##10#1
Condition 2 . l
011**+*1010 !
: Output h
i 11010010101] |

Figure 4.3: A classifier with conditions, action, strength and possibly an output

In short we can say that a classifier system takes an input, coded as a mes-
sage. This message then activates rules which can then activate other rules or
produce an output to the outside world. As a production system is computa-
tionally complete, a classifier system can compute every function between input
and output. Note, however, that it is not a learning system yet. For that we
need an extra algorithm, the bucket-brigade.

4.3 What is the Bucket Brigade?

The algorithm that is used to evaluate the rules of the classifier system is called
the bucket-brigade-algorithm [HOL80]. In order to understand its funny name,
we have to understand the way it works.

In the bucket-brigade every rule is rewarded if it is able to activate another
rule. This reward is paid by the activated rule. Rules that are able to produce
output are rewarded (or punished) by the environment. As we have seen, rules
have a strength that is used to determine which rules are allowed to perform
their action. This strength is used to determine a bid. The higher the strength
of a classifier, the higher its bid. Also, the more specific its condition, the
higher its bid. A classifier is called more specific than another if it contains
fewer wildcards in its conditions. This way special classifiers are preferred over
general classifiers, if they have the same strength. Specific classifiers are believed
to be more applicable to a given situation.

Because of the fact that bids are dependent on the specificity of the classifiers,
so called default hierarchies can be formed. In these a very general rule takes
care of most of the cases, while more specific rules take care of the exceptions
(and even more specific rules can take care of the exceptions on the exceptions.)
As the specific rules are preferred over the more general ones these will handle
all the cases in which they are applicable, while the more general rules will
only be activated if there are no other suitable rules, and so effectively act as a
default-rule.

16

After the bids are collected, a kind of auction is held. Only the classifiers
with the highest bids are allowed to perform their actions. This is done in a non-
deterministic way, to give less strong classifiers a chance as well. Now the bucket-
brigade algorithm takes care that every classifier that was allowed to perform its
action gets to pay its bid to the classifiers that helped in activating it. Usually
the bid-value is distributed equally among the contributing classifiers. The bid
of the activated classifier gets subtracted from its strength and the amounts paid
to classifiers get added to their strengths. Furthermore the strength of every
classifier that takes part in the auction is decreased by a certain percentage.
This is called the bid-tax. There can also be an existence-tax for classifiers
which means that in every cycle of the system their strength is decreased. This
is done to reduce the strength of classifiers that do not have interactions with
the outside world. These would otherwise survive and hinder the functioning of
the genetic algorithm (see section 4.4.

V)
@

Activation ——»

Reward

Output

Payoff -——

Figure 4.4: The bucket brigade in action

This process is sometimes compared to a service-economy with suppliers,
consumers and middle men. It is a rather good analogy, but the analogy with
a medizeval fire-brigade handing buckets to each other, from which the name is
derived, is also interesting.

4.3.1 Why Should it Work?

The paying of classifiers for being activated is hoped to reinforce chains of good
rules. This process is known as rule chaining. Chains of rules will be necessary,
because if the function that has to be computed by the classifier-system 1is
suitably complex, then it cannot be computed by single rules anymore in a
small system. So if the answers given by the chain of rules are usually good, the
last rule (the one producing the output) will get good rewards, so its strength
will increase. The rules that help it to become activated will then get good
payments, so their strength will increase as well. This way the good rewards
‘flow’ down the chain. Bad chains of rules will get very little reward (maybe even

17

a negative reward, which can be called punishment). Rules that activate the
rule that produces the bad output will also get small rewards, so their strength
will decrease and the strength of all the rules in the chain will, too.

If the strength of good rules increases and the strength of bad rules decreases,
then the good rules will become activated more often and the performance of
the system is expected to improve. The system, however, will still not be able
to respond properly to inputs to which no chain of rules matches. To make this
possible, new rules have to be invented. And that is what the genetic part does.

4.4 The Genetic Part

Genetic algorithms have been discussed in chapter 3. But the special case of the
classifier system with bucket brigade puts some special demands on the genetic
algorithm. In the classifier system with bucket-brigade one takes the rules as
individuals in the population. It is also possible to take complete classifier
systems as individuals, but this is not usually done with the bucket-brigade.

In the bucket-brigade the bid-value of individual rules is a very good candi-
date for use as a fitness, after an appropriate scaling to make the ratio between
the highest and lowest fitness right. In order to get a good picture of which rules
are good and which rules are bad, the classifier system will be cycled many times
with the bucket-brigade learning-algorithm determining the fitness of the clas-
sifiers. When the strengths (and the bid-values) of the rules have stabilized,
the genetic algorithm performs its action. Individual rules will then be selected,
crossed and mutated to form a new population. This new population is then
used as the classifier system.

A rather special constraint applies to genetic algorithms searching a classifier
system. As there is not usually a single classifier that solves the learned problem,
we need a set of cooperating rules. It is necessary then to use a genetic algorithm
that allows (or indeed prefers) multiple optima. In this paper a scheme called
crowding [GB89] is used. Crowding consists of finding a weak individual that is
very similar to the newborn child as the candidate for replacement. Preliminary
tests showed that a straightforward implementation of the genetic algorithm
didn’t work at all.

The purpose of the classifier system with the bucket-brigade algorithm is
to have good on-line performance. The system should not forget what it has
learnt between two steps of the genetic algorithm. Therefore the probability
of crossover and mutation must be chosen very low or only a small part of the
ruleset must be supplanted every generation. The set of rules will then remain
rather constant under the action of the genetic algorithm.

With these three layers of the classifier system with bucket-brigade, it is
possible to create a system that learns in an environment about which it knows
nothing at all. It starts by performing random actions. The environment pun-
ishes it for bad actions and rewards it for good ones. Rules which produce bad

18

actions will tend to be active less and less often, and good rules will be active
more often, so the overall performance of the system will improve. After a while,
when the system cannot do better with the information it has, the genetic al-
gorithm invents some new rules which, it is hoped, will be able to improve the
action of the system. This is rather like learning as seen by animals.

4.5 Other Types of Classifier Systems

The research into classifier systems has brought forward many kinds of classifier
systems. As Smith [SMI92] writes: “...in many ways the LCS is more of an
approach: a set of conceptual details that define a certain direction for developing
methods.” (Where LCS stands for Learning Classifier System.) A classifier
system is usually seen as a set of rules in the form of bitstrings. However it is
also possible to view other learning systems with multiple cooperating simple
“devices” as classifier systems.

Moreover there are two main directions into classifier system research, the
Michigan approach and the Pitt (=Pittsburgh) approach. The Michigan ap-
proach can be summed up by saying that it concentrates on single rules coded as
chromosomes an thus on cooperation between chromosomes. The Pitt approach
concentrates on optimization of complete rule-sets coded as chromosomes. It
is not possible to say which one of the approaches is the best. A combination
of both approaches is even conceivable, for example by coding small clusters of
classifiers as chromosomes.

19

20

Chapter 5

Formal Definition of a
Classifier System

In order to know exactly what we mean when we are talking about a classifier
system, we have to make a formal definition of it. This not only makes clear
to everybody what the properties of a classifier system in this paper are; it
also facilitates its mathematical analysis and its implementation as a computer
program. Unfortunately defining a classifier system in a mathematical way
is something which is almost never done in the literature. So this effort is
completely my own. It must be noted that in other research into classifier
systems other definitions are used.

5.1 The Classifier System

A classifier system x is a tuple of the form (C, B, F) in which

o C is a set of classifiers. The size of this set |C| is called M .
e B a set of messages, the message list.

e F a function F(C, B) — (B’,T), that converts a message list and a set of
classifiers into another message list B’ and output Y. The output T can
be empty.

5.1.1 the classifiers
A classifier is a tuple (I', A, T, S} in which

o T'is a set of tuples, the conditions. They are of the form (g, C'), in which
g € {false,true}, which will be called the boolean part of a condition,

21

and C' a string of the form {0,1,%} (I € N*) which will be called the
string part of a condition. For all ¢ € C it is true that || = k, in which
k € Nt(k > 1), is a parameter of the system. One of the conditions is
called the preferred condition, or vyp,.; and is used in the substitution of
passthroughs.

If the boolean part of a condition is true, then the condition will be a
matched-true condition. If it is false then the condition will be unmatched-
true.

e A is a string of the form {0,1, #} (I € N¥), the action.
e T is string of the form {0, 1}1 (I € Nt) or an empty string, €, the output.
e S € R, the strength.

Note that in all these definitions I, called the length of the messages, must
have the same value. It is a parameter of the system. The individual 0, 1, * and
#£’s will be referred to as characters.

5.1.2 The message list

B is a set of tuples of the form < 0,¢ >, the messages. In these 8 is of the
form {0, 1}[. This is the string-part of the message. The classifier that was
responsible for placing this message in the message list is stored in ¢ € C U e.
Note that this can also be no classifier at all in the case when the outside world
is responsible for the message. This part is called the classifier-part.

The upper limit of the size |B| of the message list is called N and is a
parameter of the system.

5.2 The function F

In order to define the function F that converts an old message list into a new
one, we first define a function to match characters: fy, : {0,1} x {0,1,%} —
{false,true} as:

fm(0,0) = true

fm(0,1) = false
fm (0, %) = true
fm(1,0) = false
fm(1,1) = true

fm(L, %) = true
Because the x character in a condition always gives true when matched
against another character, it may be called a wildcard.

22

5.2.1 The matching-function

With this we define a matching-function for messages and conditions: Fy, :
0,1} x {0, 1, %} — {false, true} (I € N*, as above) as:

Fm(X,Y) = Al_ fm(2;, y:), in which 2; (;) the i-th element of X (V).

A condition y is satisfied by a message z, if Fry(z, Cy) = true, in which C,
is the string part of the condition y. A classifier ¢ is activated if:

(g =true A Fbe B: (for which it is true that C. is satisfied by b))
VyeTl.: Y,
(g4 = false A ¥Ybe B: (C, is not satisfied by b))

in which T'; is the set of conditions of classifier ¢, g, the boolean part of a
condition v, C., the string part of condition y and B the message list (as above).

5.2.2 The conversion of an action into a message

In order to define a function F, that converts the string part of a message, a
condition with wildcards and an action with passthroughs into a new string part
of a message, we use a function with the aid of a conversion-function for single
characters: f, : {0,1,¢e} x {0,1,%} x {0,1,#} — {0,1}:

fo(2,0,0)=0
fo(2,0,1) =1
fo(2,0,#) =10
fo(z,1,0)=0
fo(z,1,1) =1
folz,1,#)=1
fo(z,%,0)=0
fo(z,%,1) =1

fo(z,*,#) =z if 2 is 0 or 1. If 2 = ¢ then the output of f,(¢, *, #) is either
0 or 1 both with probability 0.5.

The function F, : ({0,1} U€) x {0, 1, *}IX{O, 1,#} — {0,1}" is now defined
as:

Bi = fo(mi,'yi,Ai) forz=1...1
in which m;, B;, 7; and A; are the i'" symbols of m, B, 4 and A, respectively.

5.2.3 The definition of the transition-function

We now assume two functions: one that determines if a certain classifier is
allowed to place its action in the message list and another to determine if a
classifier is allowed to generate output. The first function will be f,(¢,C) —
{false,true} (¢ € C), the second function f,(¢,C) — {false,true} (¢ € C), in
which C is the set of classifiers. Furthermore we can say that the cardinality

23

of the set {¢ € C | f.:(¢,C) = true} is less than or equal to one. This means
that at most one classifier is allowed to generate output. We will postpone the
definition of these functions until later.

We are now ready to define the first part of the function F, the part that
determines the new message list, which we will call Fg as follows:

v A< Fo(m, yprep Ac), e >| ¢ € C Acis activated Afg(c,C)} if Fy(C,B
Fn(C,B) = {(2) if Fy(C, B

In which A, is the action-part of classifier ¢ and Fv is the transition-function
F which we will define below.

The second part of F,the part that determines the output of the system,
which we will call Fv, is now defined as:

Fr(C, B) = {{TC |c € CAtfy(e,C)} ifde€C:(cis the best and Y. # 0)

’ 0 if Ac € C: (¢ is the best and T, # 0).
Where with the best we mean that a classifier is activated and has the highest
bid. Of course other schemes of determining whether a classifier system is
allowed to produce output are possible, but this was found to be one of the best
in the experiments (see chapter 9).

The total function F can now be calculated by combining Fg and Fy. The
output of the first is used as the output B’ of F and the latter is used as the
output T of F.

It appears as if the message list (the argument B) is not used by function
F, but it ¢s used to determine if a classifier is activated.

5.2.4 Calculating the bid-value

From the strength of a classifier we can calculate the bid-value. This is a value
which is going to be used to determine which messages are going to be in the
new message list. The bid-value is calculated from the strength of a classifier
and its specificity as follows:

B, = 6 : fspec(c) - S,

in which B, is the bid of classifier ¢, # a constant 0 < f < 1 that determines
which fraction of the strength is used in the bidding, fspe.(¢) a function of the
specificity of the classifier ¢ and S, the strength of classifier c.

The function fspec(c) can be defined in many different ways, but it should
give a higher value for classifiers that match with fewer messages (i.e. are
more specific), because if a classifier matches with fewer messages than another
classifier, it can be considered more relevant for the messages with which it does
match.

24

A possibility for fope.(c) is:

L-WwW
L

in which « is a constant that determines the importance which is assigned to
the specificity of a classifier. In this equation W is the number of *-characters in
the conditions of a classifier. L is equal to the total number of characters in the
conditions of a classifier, and can be calculated by multiplying ! (the number of
characters in a single condition) by k (the number of conditions in a classifier).
Note that this function does not necessarily give a value between zero and one.

fspec(c) = + «

5.2.5 The functions f, and f,

The functions f, and f, that pick the classifiers that place an action, respec-
tively an output, can be defined in many ways, but they both have to fulfill
certain conditions, one of which (about the cardinality of f,) has been men-
tioned in section 5.2.3. For a classifier system to function well, they should not
be completely deterministic (otherwise the system will tend to favour the status
quo too much) and they should give classifiers with greater strength a higher
possibility to get a value of true. Furthermore these functions should base their
behaviour on all the classifiers that are activated.

In this thesis we will use a definition of f, and f, that is also used by
Goldberg [GB89], which consists of taking the bid-values of all active classifiers,
adding a value taken from the normal distribution N(0,¢) and then assigning
the value of true to at most M highest active ones (M € N*) in the case of
[y and to the highest active one in the case of f,. This seems to be the most
effective choice for the functions and it is the one that is used in the practical
experiments described in this paper. In chapter 8 some other possibilities (the
roulette-wheel scheme) are tried and shown inferior.

5.2.6 Iterating

With these definitions we can make an iterating system. On each message-list
and set of classifiers we can apply the function F(C, B) to get a new message
list. On this message-list we can apply the function again. We get a system of
the form: By11 = Fp(C, B;) (Fp is the message-part of function F). We now
have to define By and a criterium on which to stop the iteration-process.

The definition of By is easy: we generate a message ¢ , which we will call
the input to the system. Now we take By = {¢} (i.e. a set in which the only
member is ¢). The stopping criterium is as follows:

FT(C,Bt)¢th>T

in which Fy is the output-part of function F and T is a parameter that gives
the maximum number of iterations of the system.

25

5.3 The bucket-brigade algorithm

We have now defined a system with which we can compute a set of functions.
We can now try to define an algorithm with which we can make this system
learn certain functions. There are several possible approaches [GB89] of which
the so called bucket-brigade [HOL80] is one. The formalization of the learning
system will be based on this algorithm.

This learning algorithm is based on modifying the strengths of the classifiers.
This modification will happen between two steps of the classifier system. All
modifications of the strength will have to be done before a new input is fed to
the system.

5.3.1 Paid and paying classifiers

To determine which classifiers will be “paid” and which have to “pay” we define
a few sets. First the set P; of classifiers that have placed a message on the
message list or generated an output at timestep ¢:

Py = {c|c€CAcis activated at timestep ¢ A (f;(¢,C) V£, (¢,C))}

Then Q. the set of classifiers that have placed messages in the message list
that have made classifier ¢ true at timestep ¢.

Qei={z |z € P_1ATFEB:(by = xATy €T, : (Fm(bg,cy) = true and z is the preferred classifier))}

In which z, or the preferred classifier of a condition is the one classifier chosen
randomly from the classifiers that had messages placed in the message list that
matched with this condition. In other words: only one classifier is rewarded per
condition, even if there might have been more that placed a suitable message.
I'. is the set of conditions of classifier ¢, A, is the action part of classifier # and
¢+ 1s the string-part of condition 7.

5.3.2 The amounts paid

With these sets we can determine the changes in strength of the classifiers, in
other words: the amounts that have to be paid by and to the classifiers.

Vee Cle ¢ Pi1): (S, = Seit—1 — Thipe - Seit-1)

Which means that all classifiers that were not active on time ¢ — 1 are paying
a certain tax between steps of the system. The constant 7;r.,0 < 7. < 1 is
a parameter of the system that determines how much tax is paid. And for the
classifiers that were active and took part in the bidding there is an additional
tax, called the bidtax :

Vee Clc € Pio1) : (Sh; = Seitm1 — (Thid + Tiige) Se,i—1)

26

In which 0 < Tpig < 1.
Then two other modifications take place:

Vee Py :(S), =S,,— B.)

In which B, is the bid made by classifier ¢ in order to get activated. This makes
classifiers that have their action placed pay for it. Obviously we have to make
sure that (7ire + Thid)Se,1—1 + Be < Sep—1, so S. will always be positive.

1
G B

This rewards classifiers that helped making other classifiers active, because we
reward all classifiers that helped to make ¢ active (from the set Q.; with an
equal share of the bid-value of c.

For all other classifiers we take the strength at time ¢ (S.+) equal to either
SY, (if present) or S, ,.

Ve€ P: (Ve € Qpt i (Set = S;c,t +

5.3.3 Exceptions: input and output

This definition of the bucket-brigade algorithm obviously works for classifier
system steps that have nothing to do with input and output. But what happens
when there is input or output?

At the input-stage, we put only one message in the message-list, By = ¢, and
the sets P_q, which is the set of active classifiers before the system starts and
Q.0 (for all ¢) are empty, so there are no classifiers to reward. The strength
of the classifiers that have become active are still decreased, though. The net
result is that the total strength of the system decreases. It is possible to see
this as a payment to the outside world.

For output the situation is equally simple. The one classifier that was se-
lected to generate the output is rewarded by the outside world with an amount
p, which is determined by how good the response of the system was in the given
situation. This amount is added to its strength. S, = S. + p, in which S is the
strength of the classifier that generated the output. Negative rewards are not
possible in this system. This prevents the strength of classifiers from becoming
negative.

Obviously many variations are possible in the details of a classifier system,
some of which will cause a notable difference in performance and some of which
hardly have any influence at all. Especially in the bucket-brigade part a lot of
subtle interdependencies of the strengths of the classifiers exist. This definition
was therefore not made from an entirely theoretical basis, but was finetuned by
using the results of the experiments which formed the basis of chapter eight.

27

28

Chapter 6

Analysis of the Behaviour
of the Classifier System

In order to get a good understanding of the operation of a classifier system it
is necessary to analyze it mathematically. This analysis can be conducted from
different points of view. We can try to figure out what the best values of the
parameters of the system are. We can also try to find out what the behaviour
of the system in the long run is and together with that, how long it will take
for the system to run.

Another interesting subject of research is the computational strength of the
different possible variations of the classifier system. The mathematical approach
necessary for that is quite different from the one that will be used in this chapter,
so we will postpone it until chapter 7.

6.1 Steady-State Behaviour

The classifier system with the bucket-brigade algorithm is a very complex sys-
tem in which many interactions take place. These interactions consist of the
activations of classifiers, the paying of bids and the updating of their strengths.
This process 1s too complicated to analyze completely with mathematical tools.
It is possible, however to say something about the long-term behaviour of the
system and especially about its steady-state behaviour. The steady state is an
abstract state of the classifier system in which all the classifiers have a fixed
strength and a fixed bid. This is obviously something which will not happen
quickly in any practical classifier system as there will always be conflicting rules
and random variations in the input that cause perturbations. We should be
very careful with these results then. As Forrest and Miller [FOMI90] write:
“Any learning system that must interact with a dynamic environment is highly
unlikely to reach a meaningful asymptote in any space of reasonable dimensions.

29

Further, even if it did we would be at least as interested in understanding how it
approached asymptotic behavior as in understanding what particular asympitote
it reached.”

It is a very useful tool, however to estimate certain things about expected
behaviour of classifiers and it is also useful to determine the values of the pa-
rameters of the system.

We therefore define the steady-state strength S;; as the strength and the
steady-state bid Bgs as the bid that a classifier will have in the long run assuming
that a) there are no conflicting classifiers and b) a classifier always gets the
same reward R,s; for every action it generates. These assumptions are not
unreasonable if we consider a classifier system after it has been trained fully.
They are, by the way, the same assumptions as we will make about a classifier
system in chapter 7 when we deal with the computational strength.

It must also be stressed that in the formulas we will derive in this section and
in the following section we will be dealing with a classifier system that contains
only classifiers that have one condition that is of the matched-true type (k =1
and g = true for every condition and every classifier). The formulas presented

are based on the work of Goldberg [GB89).

6.1.1 Classifier System without Life-Tax

The first formula that we will derive is exactly the same as the one Goldberg
[GB89] presents. Its limitation is that it is only valid for a classifier system
that has no life-tax. This means that the strength of non-bidding classifiers
is never reduced. A possibility that individuals that do nothing will dominate
the population in genetic search arises in this case. Therefore life-tax is quite
important (although it would be possible to choose a low starting-strength for
new individuals as well).

But although life-tax has great influence, the derivivation of the formula
for the steady-state behaviour without life-tax proves very enlightening. The
steady-state behaviour of a system with life-tax will be derived in the next
paragraph.

The steady-state strength S, is given by:

Sss = Sss — Bss — Thid * Sss + Rss (61)

where B, and R,; as above. The constant 73;4 1s the tax-constant for the bid-
tax, the tax that must be paid by classifiers taking part in the bidding. The
steady-state bid Bss is given by:

Bss = fspec(c) ﬂ - Sss (6'2)

where fspec(c) gives the specificity-value for the classifier under consideration.
An example of this function can be found in chapter 5. Combining equations

30

Sse Bss
R R

0| 7.4074 | 0.925926
8.4507 | 0.915493
9.8361 | 0.901639

11.7647 | 0.882353

14.6341 | 0.853659

19.3548 | 0.806452

28.5714 | 0.714286

wildcards

O O | W DO —

Table 6.1: Example values for bids and strengths in the steady state

6.1 and 6.2 and solving for S, gives:

R.S‘S
S.. = 6.3
* fspec(c) : ﬂ + Thid ()
And for Bss we combine equations 6.3 and 6.2 and get:
speclC) - ' Rss
B, = fspee(e) - B (6.4)

B fspec(c) ﬁ + Thid

With these functions we can calculate the strengths and bids of classifiers
in their steady-state. An example is shown in table 6.1 where the parameters
and the specificity-formula of the simple classifier system from chapter 8 were
used. This table shows the values for classifiers getting maximum reward only.
The values are divided by the reward, so as to make the table independent of
the reward. It is easy to see that for bad classifiers that do not get any reward
at all, the strength and the bid will go to zero.

6.1.2 Classifier System with Life-Tax

In the case where we have a non-zero existence- or life-tax, the formulas describ-
ing the steady state of the system will be different. This is because of the fact
that when the classifier is not being activated, its strength decreases anyway.
Whereas in the steady-state without life-tax we could ignore the cycles in which
the classifier does not become active —nothing happens after all— in the case
where we have life-tax, we have to take into account the number of cycles a
classifier is inactive between activations.

We will estimate the number of inactive cycles between two activations.
First we assume that the input messages to a classifier are bit-strings that all
have an equal probability of occurring. In practical situations this is somewhat
unrealistic, because inputs to a classifier system represent a certain domain
which hopefully is not random. Also for internal classifiers, the classifiers that
get their inputs from the actions of other classifiers, the inputs can hardly be

31

considered random. For the sake of simplicity, however we assume that the
probabilities are equal for all messages.

Now we can say something about the relation between the number of wild-
cards in a condition and the probability that it will be matched by a message.
The probability is given as:

P =2v"! (6.5)

where P is the probability that a match occurs, [is the length of a condition
and w is the number of wildcards in the condition. The expected value of the
number of steps between two activations is then given by:

E:P~§:i-(l—P)i
i=1

which can be simplified to:

1
E=+ (6.6)

We can now write down an equation for S in the case of non-zero life-tax:
Sss = (1 - Tlife)E(Sss — Bss — Thia - Sss) + R (67)
By using equations 6.2, 6.5, 6.6 and 6.7 and solving for S, we get:

Ry
Sss = =
1- ((1_Tlife) (1 = fopec(c) 'ﬁ—sz’d)>

In the same way we can derive the formula for Bss by applying equation 6.2.
See also [MON93] for a similar formula.

It is clear that this equation is equal to equation 6.3 in the case that 7, is
zero. This is obviously necessary. To gain some understanding of the influence of
the specificity-function and the life-tax constant on the bids in the steady state,
graph 6.1 shows the steady state bids for various values of 74, and various
specificity-functions. These specificity-functions are all based on the formula
Fopec(C) = I_T“’ + « for different values of alpha. The bids were calculated for
classifiers with length 57, the same length as the ones used in chapter 9. The
constant @ had the value of 0.1, the constant 73;4 had the value of 0.01.

From this graph we can see that we must be very careful in choosing the
values of alpha (when using this particular fs,e.) and especially the value of the
lifetax-constant. This is because if this constant get too high, the steady-state
bids of the more specific classifiers will be lowerthan the less specific ones, which
is exactly the opposite of the desired situation.

(6.8)

6.1.3 Discussion

Whereas life-tax is important in decreasing the strengths of inactive classifiers,
it can also cause the disruption of default-hierarchies. It must also be stated

32

Bids for values of alpha and lifetax

All wildcards —
5 Non-wildcards ----
10 non-wildcards -----

CO00000000
oRNMwhUuo~N®©

0.00001

0.0001 Lifetax

Figure 6.1: Values of the steady-state bids for different specificity-functions and
values of life-tax

that the steady-state strength of a classifier with life-tax is not so steady as the
name might suggest. The classifier has a (much) higher strength just after being
activated and receiving payoff than after a lot of cycles of inactivity.

There are many other interesting questions that can be asked about the long-
term behaviour of a classifier system, many of which also give possibilities for
practical experiments. How long does it take for a classifier to reach its steady
state? How does the real steady-state-behaviour of a classifier differ from the
predicted one? What are the differences between internal classifiers (the ones
that generate messages that activate other classifiers) and external classifiers
(the ones generating output) ?

The predicted behaviour of the classifiers with life-tax also casts some doubt
at the likelihood of classifiers with few wildcards occurring. The bids of clas-
sifiers with very few wildcards tends to decrease dramatically due to the long
intervals between activations (and possible rewards). This causes them to have
almost no chance at all in the bidding, so they will never become strong. How
should we then detect classifiers that are inactive but of practical use and clas-
sifiers that just do nothing? These problems are interesting topics for further
research.

33

6.2 Starting-Parameters

As we have seen in the previous section the parameters of the system can have
an enormous influence on its performance. In the formula that was presented
in that section we have an instrument for estimating the starting-values of the
life-tax constant and the specificity-function.

With this formula we can also get an indication of the value for the variance
of the noise added to the bids of the classifier system. This noise should not be
so big as to obscure the differences between the bids, but it should also be not
so low as to have no influence at all (the graph 8.5 shows evidence that a totally
deterministic system does not learn optimally). The value of ¢ = 0.05 used
throughout this paper was determined by experiments, not by using theoretical
arguments. What the ratio of the differences between the steady-state bids and
the ideal value of ¢ is remains a matter of further research.

Another interesting parameter is the number of wildcards in the classifier-
system with which the learning-process is started. If there are too few classifiers,
the system will not be able to respond to the problems it is confronted with.
If there are too many wildcards the system will just produce nonsense and
will hardly learn either. We therefore derive a formula to estimate the ideal
starting-probability of wildcards in a given classifier-system.

It is quite easy to give an approximation of the number of wildcards necessary
to have a fixed probability e that there will be a matching classifier for any
message that is input to the classifier system.

We start by determining the probability that an individual condition of
length ! with w wildcards is matched by a message. This probability is given
by equation 6.5. If there are M messages, the probability that a condition is
matched by at least one of these messages is:

1—(1—2v71

The probability that a classifier with & matched-true conditions becomes acti-
vated is now: .
(1= (=2v)™)

So if there are N classifiers the probability that one of them is matched is:
N

k
1- (1 — (1= (1=22H")) (6.9)
If we express the number of wildcards in a condition in terms of the probability
p of a wildcard occurring then we can say:
l—w=(1-p)l (6.10)

Provided the desired € is in the range:

M

N

1—<1—(1—(1—2-’)M)k> <e<1

34

solving p from equation 6.9 and 6.10leads to:

log, <1 ~xfi- W}
-]

P +1 (6.11)
With this equation we can estimate the probability we should choose for wild-
cards to occur when initializing a classifier system.

As an example we can calculate the values for the necessary probability of
wildcards occurring for the mushroom-example we tested in chapter 9. We will
not calculate the probability for the simple example in chapter 8 as the number
of classifiers (50) in that system is rather large compared to the possible number
of messages (2° = 64) and conditions (35 = 729). Equation 6.11 is not really
applicable in such cases, as there are too many equal messages and conditions.

In the mushroom-example the number of possible messages is extremely
large compared to the number of classifiers in the system, so we are allowed
to apply our formula. We will first choose a probability e. We have 57 bits in
a message, we have only one message (as the classifier system is single-layer),
only one condition per classifier and 50 classifiers. The value of ¢ must now lie
between:

1-(1-275)" <e<1

The first term of this equation is almost zero (it can be shown that it is smaller

than 1 — 62_51) so we can choose almost every value between zero and one. We
will choose the value of 95% for ¢. The desired probability for wildcards will

then be:
b= log,(1 — %¥/1 —0.95)
a {

Which seems quite near the probability that was chosen for the experiments,
which was 90%), but it corresponds to an € of 0.62, which points to € being quite
sensitive to small fluctuations in p.

Another interesting starting-parameter is the number of classifiers in a classi-
fier system, which should be polynomially proportional to the number of bits in
a classifier. If this were not the case classifier systems would not be practical. A
method for dividing classifier systems in classes that have a polynomially compa-
rable amount of classifiers for certain problems is given in chapter 7. What the
ideal number of classifiers is remains an open question. What the ideal length
for the message-list is, is also unknown. This can be especially task-dependent.

Another open problem is the length of the messages. The lengths do not have
to be equal to the number of bits required for coding a problem. It is sometimes

+1=0.93

useful to use more in a multi-layer classifier system. This technique is called
tagging [BGH89] and is used to divide the messages into types. The data derived
from formula 6.8 gives an indication that there could be a maximum length for
a classifier’s conditions. When the conditions get very long and the number
of non-wildcards is not too small, the difference in steady-state bids becomes

35

negligible or even negative. Also the difference between the steady-state bids
of classifiers with zero and one non-wildcard is much larger than the difference
between classifiers with, say, ten and eleven non-wildcards. This can cause a
stable default-hierarchy to be practically impossible and classifiers to become
overly general. This is quite a big drawback of classifier systems working in
this particular way and maybe a solution should be found for this problem by
implementing the calculation of bids (or even the paying of credit as Dorigo
[DORI]1] did) in a different way.

A starting-parameter that may not be considered a parameter is the type
of classifier system used for a given problem. Some classifier systems are more
applicable to a given problem than others (see chapter 7). In section 9.2 a
problem is implemented which 1s not really learnable by the simplest kind of
classifier system and it is investigated which additions to the basic system will
improve the ability to learn.

6.3 Time-Complexity

The time it takes for a classifier system to learn a given problem is another
unknown factor. In the experiments of chapter 8 we will see that approximately
2000 cycles are needed to reach a state in which no major changes in performance
take place in the classifier system without genetic algorithm. Unfortunately a
fundamental basis for this number is altogether missing.

It is quite easy however, to say something about the time-complexity of a
single cycle of a classifier system in a computer program. In a straightforward
implementation every message in the message-list is compared to every condition
of every classifier. After that the activating classifiers are paid and the messages
of the activated classifiers get placed in the new message-list. In the following
M will be the number of messages, N will be the number of classifiers, £ will
be the number of conditions per classifier and [is the length of a message.

The first step costs @(M - N - k) comparisons. One comparison costs O(l)
time (we use the O-notation because a comparison of two I-character strings
usually costs less than [comparisons as we usually find that they are not equal
before we have seen all characters). The total time is then O(M - N - k - 1) for
the comparisons. The time taken for the paying-step is O(N - k) and the time
for the placing of messages is O(N -1). The dominant term is obviously the first
as both other terms will be smaller (especially when M is a function of N, as it
usually is). If we estimate that M = O(N), the total time-complexity becomes
O(N?-k-I). Tt is obvious that larger classifier-systems will run more slowly than
small ones, a fact which is neatly confirmed by the experiments. In chapter 10
we will investigate a way of reducing the amount of work needed for a classifier
system cycle.

We can try to make an estimation of the time it takes for a classifier system
to become stable or in other words: to reach strengths which are very near the

36

steady-state strengths. To keep things simple we will do this only for a classifier
system without life-tax. The steady-state is more clearly defined in this case
and the formulas are a bit simpler.

In order to estimate the time we need an expression for the strength of a
classifier at a certain moment of activation a. Note that we do not use ¢ here,
because ¢ counts all the cycles of the classifier system, whereas a counts only
the number of times a classifier is activated. This expression is as follows:

Sa = Sa—l(l - (Tbid + fspec(c)ﬁ)) + Ra

Which is essentially the same as the expression for the steady-state strength,
equation 6.1. It is a recurrence that can be solved in the usual way. For
convenience we will write 9 for 1 — (Tpiq + fspec(C)F) which gives:

1
1

,’7(1
'R 6.12
” (6.12)

Sa=n""So+ —
Where we assume that the reward R, after every activation has the same value,
R. We now want to know the number of times a that a classifier must be
activated so that its strength differs only € from the steady-state strength. This
can be written as:

n (So— f=R), if So> (L R;
€=1S, — Sys| = (X 1) . 11” (6.13)
n (ER— SO) s if 50 S TﬂR
which can be solved for a straightforwardly to:
€
a = log, T (6.14)
(50— 258

This gives us an equation to determine the number of times a classifier
should be activated to reach a strength near its steady-state strength. Note
that it does not give the same value for every classifier. The value of 1 depends
on the number of wildcards in the classifier. We will give in table 6.2 the values
of a for different numbers of wildcards where the other parameters are the same
as in chapter 8. Together with a we will give the value of a-2!=% ([is the length
of and w the number of wildcards in a classifier) which is the expected value of
the number of real classifier system steps for a classifier to reach its steady-state
strength with ¢ = 0.01 (which is well within the variance of the bids, which was
o = 0.05).

If we compare these results to the value used in chapter 8 we see that they
are almost equal (2000 cycles versus the maximum number in the table, 2452).
It is not at all clear, however how far the formula 6.14 is applicable.

37

a| 2% .q

Table 6.2: Estimated number of cycles of classifier system to steady state

w

0| 38.323 | 2452.67
1| 40.042 | 1281.35
2| 26.087 | 417.39
3| 58.236 | 465.89
41 86.728 | 346.91
5 | 128,957 | 257.91
6 | 211.266 | 211.27

38

Chapter 7

Computational Strength of
Classifier Systems

Although it can be shown in principle that a production system is equivalent to
a Turing machine [MING67, POST43] and although a classifier system is a kind
of production system, it is not at all clear from the proofs of Post and Minsky
what the computational strength of a classifier system is in practice. The proof
of Minsky and Post is based on conditions and actions of variable length and on
special pattern matching abilities of the conditions that an ordinary classifier
system does not have. So we must try to find out what kind of functions we
can compute with a finite classifier system.

7.1 Practical Computational Strength

It is rather obvious that a classifier system can compute any function from its
inputs to its outputs. Suppose we have the simplest possible classifier system,
consisting only of condition-action pairs of the form: ({0,1},{0,1}"). Where
the first part is the condition, which only matches with a message equal to it
and the second part is the action. Any function f : {0, 1}1 — {0, 1]»}C can now
be implemented as a classifier system in the following way: for every string S
from the domain of f we make a classifier consisting of condition matching with
S (in effect equal to S) and taking the string f(S) as the action. Of course, for
any practical function the resulting classifier system will be extremely large.
Therefore we will try to define something which we will call the practical
computational strength of a class of classifier systems. A class of classifier sys-
tems is intuitively the classifier systems that are possible according to some
definition of classifier systems, or: the classifier systems with certain features.
We have for example, the class of classifier systems with single condition and
action, no wildcards and no message-list (as in the above proof of computational

39

completeness) or the class of classifier systems with conditions with wildcards,
multiple conditions and message-list. All these classes can be defined formally,
but we will use a more informal definition to keep the discussion compact. We
will make an appeal to the reader’s intuition to understand the semantics of the
classes of classifier systems we will discuss. For a more thorough definition of
the syntaxis and semantics of a classifier system, see chapter 5.

The practical computational strength of a class of classifier systems is intu-
itively the ability to implement a class of problems with a number of classifiers
that scales linearly with the number of symbols in the system itself.

Of course this is not a very useful definition. What is a class of problems
and how do we scale them? These are questions that are very hard to answer
so we will not bother to find a solution. We will only use the term practical
computational strength in a relative sense. We will say that a certain class of
classifier systems = has the same or higher practical computational strength as a
class of classifier systems Z’' if we can find a function f that converts a classifier
system from Z’ to one from = that computes the same function. Together with
that function there must be a constant { € R so that for all x € Z' | f(x)| < {|x|-
The |x| means the number of classifiers in classifier system y. We will write this
as: 2 > &/,

—_

Two classes Z and =’ have the same practical computational strength if
E > Z and Z > Z. We write this as 2 = Z’. If for two classes = and &' we
have = > =’ but not 2’ > = we can write = > Z’, or E has higher practical
computational strength than =’. For convenience we can use the notation &’ < =

= > and & < Zif = > =

7.2 Example: Wildcards versus no Wildcards

In order to illustrate the notation defined above, we will consider two classes
of classifier systems and prove something about their practical computational
strength. The first class, xiny will be the class of classifier systems without
wildcards, message-list or multiple conditions, writable as a set of tuples of the
form: {{0,1}',{0,1}"}. The first part is the condition, matching with messages
that are exactly the same and the second part is the action, or the function
value associated with the input-message.

The second class, 2w, will be the class of classifier systems with wildcards,
but still without multiple conditions or a message-list, writable as a set of tuples
of the form: {{0,1,*}',{0,1}*,b}, where b € R*. The real number b is used to
resolve conflicts between classifiers. If two conditions match with a given input,
the action of the classifier with the highest b is chosen. It is actually the bid
of a classifier. This system is the same as the one implemented by the simple
classifier system in chapter 8.

To prove that the practical computational strength of Zy is greater than or
equal to that of Z we need a function f : N — W that maps every classifier

40

system n € N to the identical classifier system in w € W, by making the
conditions and actions of the classifiers in w the same as the ones of the classifiers
in n and setting the values of b in the classifiers from w to 1. The value of b
does not matter as there are no wildcards in the conditions of the classifiers.

The number of classifiers in w is now obviously equal to the number of
classifiers in n, so the condition |f(n)| < (|n| is satisfied for every ¢ > 1. We
can now conclude that W > N.

We will now check that it is not true that N > W. For this it is sufficient
to look at classifier systems from Zy, that contain only one classifier. There is
no function f that maps these to equivalent classifier systems from Zn so that
there is a constant ¢ that satisfies the condition | f(w)| < ¢|w|. Suppose we think
that we have found such a (. It is then possible to construct a counterexample
by making a classifier system w from =y with only one classifier that has a con-
dition containing more than [log, (] + 1 wildcards. The corresponding classifier
system n from Zy must then contain 2982 C1+1 > ¢ classifiers as it must have
as many classifiers as there are messages matching the condition of the classifier
from w. For this particular system (does not satisfy the condition. Thus it
is not true that N > W. We can now conclude that W > N or that classifier
systems that allow wildcards have a greater practical computational strength
than classifier systems without them. Their real computational strength is of
course equal.

7.3 The Use of a Message List

A rather less trivial question is whether a message-list enhances the practical
computational strength of a classifier system. It appears, as will be proven in
the following section, that a classifier system without a message list that uses
wildcards, but only has single matched-true conditions and that does not use
passthroughs, has the same practical computational strength as such a classifier
system with a message list.

7.3.1 Informal Definition

We will first briefly restate the definition of the classifier systems used. The one
without the message-list is identical to the one with wildcards used in paragraph
7.2. We will call this system Zg (Single layer). For convenience we will define
this as a triple: (Q, O, P)!, where @, the condition part, is of the form: {0, 1, *}l,
O, the output part, is of the form: {0, l}lC or has the value undefined, which we
will need later in the proof and P € R¥ is the bid.

For the other classifier system, which we will call 2y (Multi layer) we must
extend this definition a little bit. Classifiers in this system are of the form:

tQ=r,0o=717,P= fspec(C)BS in the formal definition of classifier systems in chapter 5

41

(C,A,B,T)* | where C is the condition, of the form {0, 1,*}’, B € Rt the
strength, 7" is the type and A either the action or the output. If A is an action
then it is of the form {0,1}" and k = I (I is the length of the condition) and
T = internal. If A is an output, then it is of the form {0,1}" and T = output.

When this classifier system is active, in the first phase classifiers are matched
against the input. If the activated classifier with the highest bid has type T' =
output then this one is chosen to generate the output of the system and the
computation stops. If the classifier with the highest bid does not have T =
output then the actions produced by the active classifiers are used as the inputs
for the next, similar cycle of the classifier system.

There is a possibility that the classifier system will not produce an output.
This can happen because there are no activated classifiers or because the system
ends in a cycle. We will not bother about these situations, because we will allow
for inputs that have no outputs defined for them. It can be shown that it is
possible to find out whether a given classifier system of this form has cycles or
not.

732 M2>S

In order to prove that =y has greater or equal practical computational strength
than Zg, we must find a function from classifier systems =g to classifier systems
in Zp; that has the property: Vs € S : |f(s)| < (|s|, where (€ Rt.

For this we take the function that translates a classifier from =g into a
classifier from Ej3s in the following way:

C=Q
A=0
B=P
T = output

It is obvious that this function generates a classifier system that is equivalent
as all the classifiers produce output directly, and are for the rest of the same
form. The number of classifiers in both systems is equal, because there is a
direct one-to-one mapping. So for every { > 1 the condition is satisfied. The
practical computational strength of Zas is higher than or equal to the practi-
cal computational strength of Zg, which was rather obvious from the start as
intuitively S C M.

733 S>M

The proof that S > M is considerably less trivial. For this we must define a
function that maps every classifier system m € M to a classifier system s € S.
In order to be able to do this, we first must define a graph that describes the
behaviour of a multi-layer classifier system. This graph will be a directed graph

=T, A=A=7T,B= fepecS in the formal definition of classifier systems in chapter 5

42

(V, E) with the set of vertices V the input-messages, the classifiers themselves
and the set of possible outputs. There will be an edge (a, b) in the set of edges
FE in between two vertices @ and b if a is a message and the message activates
classifier b or if a is a classifier (T = internal) whose action activates classifier
b or if a is a classifier (T' = output) and b is the output produced by that
classifier. The input messages have only got outgoing edges, outputs only have
incoming edges. Such a graph will be called an activation graph. An example
of an activation graph is illustrated in figure 7.1.

E?«Z/\o—- = QOutput

?O—" O Classifier
;éw_‘. O Input Message

Figure 7.1: Example of an activation graph

All vertices representing input-messages and classifiers will have at most
one outgoing edge. For classifiers with T" = output this is obvious as every
classifier can have at most one output. For input-messages and classifiers with
T = internal this is less clear but it does become clear when you take B into
account. An input message or the A (action) of an internal classifier will be
able to match with multiple conditions of other classifiers, but they will only be
able to activate one, as there is only one with the highest B (because B € R¥)
and the one with the highest B will be the activated one.

We can see that from every vertex there is a path leading to at most one
vertex representing an output or to a cycle. It is now possible to reduce the
original graph G to a graph G’ representing a single-layer classifier system.
This is done in the following manner: We remove every vertex that represents
a classifier and has no incoming edges connecting it to a vertex representing an
input-message. We then remove all the edges that go into a vertex representing
a classifier but that do not come from an input-message. In the last step we
add a vertex representing the output undefined and lay edges between a vertex
representing a classifier m and a vertex representing an output O if there is a
path in the original graph G from the classifier m to the output O. If there is a
path from classifier m to a cycle, we have an edge from the vertex representing
m to the vertex representing the output undefined. The result for figure 7.1 is
shown in figure 7.2.

This system is equivalent to a single layer classifier system. The classifiers
from 2y can be converted to classifiers from Zg in the following way: there
will be as many classifiers in the new system as there are vertices representing
classifiers in the graph G’. For every such vertex we make a classifier with

43

Ei?> ® Qutput

';70—" O Classifier
O Input Message

Figure 7.2: The reduced activation graph

a condition) equal to the condition C' of the classifier from =y, that was
assoclated with that vertex, with an output O that is the same as the output
A associated with the vertex with which it is connected and with a strength P
that is equal to the strength B of the original classifier.

The resulting classifier system computes the same function as the original
one, because every classifier becomes activated from the same input-messages as
in the original system, and every such classifier is connected to the same output,
except for the ones that did not have an output in the original system because
they ended in a cycle. These still have a value undefined, which can be used as
a sign that the function value is undefined. We need this special value because
we couldn’t have left classifiers that end in a cycle out of the new system, as
the activating messages could have activated other classifiers and altered the
function.

The new system also has a number of rules that is equal to or less than the
number of classifiers in the original system. We have only removed vertices from
the graph representing the original system. After that we have made exactly
one classifier per remaining vertex that represented a classifier, so the number
of new classifiers must necessarily be less than the original number. For every
¢ < 1 it is true then that |f(m)| < {|m| which means that S > M. Quod erat
demonstrandum.

7.4 Conclusions and Suggestions

The term practical computational strength can be used to show that classifier
systems will need a comparable number of rules to compute a certain function.
We have derived a non-trivial result in this way in proving that a message
list makes no difference in a classifier system with simple conditions. It must
be possible to prove other results in this way. The practical implications of
this rather theoretic discussion are important: with a little theoretic effort we
can save a lot of programming and computer time, as we can now choose the
system that is the easiest to implement of all systems with equal computational
strength.

44

Note however that from the conclusions in this chapter nothing can be de-
rived about the learning-behaviour of the classifier systems. It is quite possible
that certain systems that have an equal practical computational strength per-
form very differently on learning the same task.

The theoretic research into practical computational strength is also very
interesting. Many things still need to be proven. It is for example still necessary
to order the different extensions to classifier systems as mentioned in chapter
5 according to their practical computational strength. It is also an interesting
question which classes of functions can be computed by the different classifier
systems.

45

46

Chapter 8

A simplified Classifier
System

Although the idea of classifier systems is rather simple, in practice these sys-
tems can become rather complicated. They have many free parameters and
the implementing code tends to get very intricate. As Goldberg [GB89] says:
“It 1s very difficult to debug a classifier system as one monolithic block because
of its size and its randomness.” My first version of a full-featured classifier
system failed to learn almost anything at all; so I decided to implement a sim-
pler version to check what exactly went wrong and to extend it step by step.
Figure 8.1 shows how my classifier system failed miserably to learn the simple
multiplexer-problem (which will be explained later.)

8.1 The simplified system

The system I then implemented is equivalent to Goldberg’s [GB89](chapter 6),
simple classifier system. This classifier system is extremely simple. It only
has rules with a single condition and the conditions are only true if they are
matched with a messages (so there are no unmatched-true conditions), it has
no passthroughs and most important of all it has no message-list. Without a
message-list it is only capable of implementing a single layer classifier system.
This is a classifier system that only has rules which produce output directly
from their input. There is no possibility of rule-chains being formed. Because
of this the bucket-brigade algorithm also simplifies considerably.

Another change from my first attempt was the use of a different mecha-
nism for bidding. In order to determine the classifier that is allowed to produce
output, the classifier system uses a non-deterministic bidding-mechanism com-
parable to an auction. The mechanism that was used in my first, failed system
was a roulette-wheel selection on the bids of the activated classifiers. It ap-

47

solid: Good, dotted: Wrong and dashed: Unsolved

80

Percentage

0 50 100 150 200 250 300

Generations

Figure 8.1: Failure of the (too) complex classifier system

peared after a few test-runs of the simplified system that this mechanism had a
too high probability of choosing classifiers with a low bid. Therefore Goldberg’s
mechanism of adding a normal-distributed noise to the bids of active classifiers
and then choosing the highest bid was adapted. His scheme also allowed for a
higher level of control over the bidding.

8.2 Experiments with the correct rules present

Experiments were done with the same multiplexer system as Goldberg [GB89]
describes. A multiplexer is a logic circuit that has data and an address as its
inputs. The length of the address is k bits and the length of the data is 2%
bits. The output of the multiplexer then is the value of the bit in the data on
the position given by the address (see figure 8.2). The size of the multiplexer is
given as the number of bits in the data.

Address
1 0

Input AL A Output

11—

11—

0—13

Figure 8.2: A 4-bit multiplexer

48

00 % %% 1
01 % x1%

10 % 1 * %
11Tk k|
ok ok ok ok |

Table 8.1: Default hierarchy for the four-bit multiplexer

The first experiment that was done was meant to test the ability of the
classifier system to discern applicable rules from less applicable ones. This was
done by constructing a classifier system that contains the correct rules for a
given problem (given in table 8.1) together with a large number of random
ones, which are called the monkey-wrenches. The total number of rules was
fifty. The system must now be able to reach a 100% correct performance with
these rules even without a genetic algorithm because the necessary rules are
already present. If it would not able to do so the classifier system with bucket
brigade cannot be considered a good way of determining the fitness of rules.

The experiments were done with two different bidding-schemes, with some
different parameters. The graphs will show on the y-axis the average over 10000
runs of the system of the average of the payoff over ten consecutive answers of
the classifier system. This payoff is 1 for a right answer and zero for either no
answer or a wrong answer. This average of averages is necessary to prevent the
graph from becoming too noisy. On the x-axis the number of training cycles
that the classifier system has had are shown.

The first bidding-scheme was the roulette-wheel. The selection was done on
the bids, the squares of the bids and the cubes of the bids. The results (see
figure 8.3) were less than impressive even though the squared and cubed bids
improved the performance a bit.

The second scheme was the noisy auction that Goldberg [GB89] has used.
The amount of noise added was varied across the experiments. It shows from
the results (see figure 8.4) that a certain small amount of noise gives the best
results. The amount of noise should not be too low as a completely determin-
istic scheme does not appear to work very well probably because it tends to
preserve the status quo too much. The deterministic scheme also is the only
one that has a decrease in performance during the learning process. If this
is significant it could be due to a phenomenon called overtraining, a problem
that is also encountered in neural network research [HKP91]. Overtraining is
a disproportional adaptation to the idiosyncrasies of the data set on which the
system 1s trained. A noise-factor that decreases as the system is trained can be
tried. However, this has not been attempted in this research.

These results show clearly that a classifier system can give credit to the right
rules in a very effective way if the bidding system is right and if the rule set
beforehand contains the rules that are sought for. Whether a classifier system

49

T T T T T T T T T
‘random’ —
12 - roulette wheel ----- b
squared roulette wheel -----
cubed roulette wheel --

1 - -
08 SN AN
0.6 ,
04 F E
0.2 B

0 1 1 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8.3: Monkey wrenches with roulette-wheels

with this credit assignment-scheme is also able to discover the right rule set is
an altogether different question which we will discuss in the next paragraph.

8.3 Experiments without the Genetic Algorithm

If the classifier system is started with a random rule set it must be able to
improve its performance by decreasing the influence of rules that give wrong
answers. It would be a very great coincidence, however if the system would
be able to reach a 100% correct answers with only fifty random rules as it is
not very likely that these will contain all the necessary information to solve
the problem at hand. Therefore we will introduce the genetic algorithm as a
mechanism of inventing new rules for the system.

Before this we first need to consider the performance of a classifier system
that starts with a random rule set, but that does not introduce new rules into
the system, i.e. it will not use a genetic algorithm. This is shown in figure
8.5, which shows the same average of averages against the number of cycles
as in the previous figures. In order to check if the bidding schemes influence
the performance, the graph is repeated for four different values of sigma, the
variance of the noise added.

From these results it is clear that the random classifier system without ge-

50

T T T T T T T T T
‘random’ —
12 - deterministic ---- b
Sigma =0.05 -----
Sigma=0.1 -
sigma=0.2 ---
1 -
08
0.6
//Vf -
04 ,
0.2 B
0 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8.4: Monkey wrenches with noisy bids

netic algorithm is not a very good learning system. Whereas the performance of
a random system would have been 50% correct, the performance of the tested
system is 75% correct in the best case. This is reached after about 2000 cycles
of the system and gives us an indication of how many cycles of the classifier
system should be performed before the classifier system reaches a stable state
and the genetic algorithm can safely take action.

The mediocre performance of the system can of course be explained by the
fact that not all the rules that are necessary to solve the multiplexer problem are
present at the outset and that no new rules are introduced. But we must also
check if the ill-performing rules are weakened relatively to the well-performing
ones. We expect that in situations where a good rule as well as a bad rule are
applicable, the good rule will be the only one producing answers after a while.
This is shown in figure 8.6.

However in situations where only a bad rule is applicable (approximately in
25% of the cases as it appears from the graph) the bid of this rule will become
less and less and the rule will be rooted out by the genetic algorithm. The bids
of rules giving good and bad answers are shown in figure 8.7. This graph shows
the same average over 10000 runs of ten consecutive problems as the previous
graphs.

We now have good evidence that application of a genetic algorithm on the
rule set will improve the performance if we use the bid of a rule as the fitness

51

‘random’ —

12 - deterministic ---- b

Sigma =0.05 -----
Sigma=0.1
sigma=0.2 ---

04 g

0.2 - B

0 I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8.5: Random classifier system without genetic algorithm

of individuals in the population.

8.4 Experiments with the Genetic Algorithm

The application of a genetic algorithm to classifier systems when coding single
rules as chromosomes is not really straightforward. An ordinary genetic algo-
rithm tends to populate only one optimum, which translates to a search for
a single best rule in a classifier system. But in a classifier system there must
be a set of cooperating rules in order for it to be able to solve the multiplexer
problem. We must therefore change the genetic algorithm so that it will not
only optimize the fitness of the chromosomes but also their diversity.

A scheme that will do this is described by de Jong [DEJ75], and was adapted
by Goldberg [GB89]. Tt is called crowding. The scheme used in the tests in this
paper is directly adapted form Goldberg’s book. In this scheme two parents are
selected with roulette-wheel selection and crossed using crossover and mutation
with a certain probability to produce a child. A chromosome with low fitness
and which is very similar to the new child is then selected in the following way:
a number of random subpopulations is generated. From each of these the least
fit individual is chosen, and from this set of unfit individuals, the one chosen
for replacement is the one that is the most similar to the new child.

52

right answers ——
12 wrong answers ----- |
no answers ---

0.8 ~

0.4 - i

02 ~

0 k=
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8.6: Good, Bad and no answers of a random CS without GA

That the use of a replacement-scheme using crowding is really necessary was
shown by some preliminary results produced by the classifier system using a
straightforward genetic algorithm. The performance soon dropped to less than
40% correct answers, where a random system would have reached 50%. This
occurred probably because a lot of genetic information was lost as only one
classifier was favoured.

With the use of crowding however the performance of the system shows a
steady rise, shown in figure 8.8. The graph is shows the average of 500 runs of
the classifier system, where every run has 50 generations of 2000 classifier system
cycles each. The different graphs show the performance for different values of
the ratio between the worst and best fitness used in roulette-wheel selection. In
order to show more detail the graph is only shown for the performance-values
in the range [0.7-0.95].

The graphs show a definite periodicity. This is caused by the action of the
genetic algorithm, which tends to disturb the relations between the different
classifiers a bit so that after the operation of the genetic algorithm the perfor-
mance is somewhat less. Because the set of classifiers is a bit better though, the
final performance after training is better on average so the overall performance
is increasing.

The experiments have shown that a classifier system with bucket brigade
is a useful way of machine learning. They also gave some clues as to how the
learning-process proceeds. We can now start to study the learning-capacity of
the system by presenting it with some real-world problems and by extending
it with some extra features, like multiple conditions. These experiments are
described in chapter 9.

53

1 T T T T T T T T T

Bids of bad classifiers —
\ Bids of good classifiers ----

0.2 ~

0 ! ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 8.7: Bids of a random CS without GA

0.95 T T T T T T T T T
ratio=1.2 —
ratio =15 -

ratio = 4
ratio = 10
09 ,

0.85

0.75 ™ .

0.7 1 1 1 1 1 1 1 1 1

Figure 8.8: Performance of a CS with GA using crowding

54

name | value | description

populationsize 50 | Number of chromosomes in the population

chromosomelength 20 | Length of the chromosomoes in genes

classifiersystemsize 50 | Number of classifiers in the classifier system

messagelength 6 | Length of a message

crossoverprobability 0.8 | Probability of crossover between two chromosomes

mutationprobability | 0.001 | Probability of mutation of a gene

alpha 0.25 | Ratio between the bids of two classifiers of equal strength,
one without wildcards and one consisting of only wildcards

initialstrength 10 | Initial strength of a classifier after initialization

bidconstant 0.1 | Percentage of the strength of a classifier that is used as a bid

wildcardprobability 0.33 | Probability of a wildcard when initializing a classifier

badreward 0 | Reward for a bad answer

goodreward 1 | Reward for a good answer

bidtaxconstant 0.01 | Taxz imposed on a bidding classifier

lifetaxconstant 0.0005 | Tax imposed on every classifier at every cycle of the
classifier system

bidsigma 0.05 | Variance of the noise added to the bid of a classifier.
Varied in the experiments without GA

gen2gen 2000/ | Number of training cycles of the classifier system between

5000 | two steps of the genetic algorithm

worstbestratio 10 | Ratio between the worst and the best fitness in the population.
Varied in the experiments

maxgen 50 | Number of generations tested

crowdingfactor 3 | Number of subpopulations tested to find most
similar chromosome to new child

crowdingsubpop 10 | Number of chromosomes in the subpopulation

replaced 10 | Number of individuals replaced in a genetic step

Table 8.2: Values of the parameters used

8.5 Parameters used in the Experiments

The results of these experiments must of course be reproducible. The software
used can be obtained separately and will be described in an appendix In table
8.2 we will give the values of the most important parameters of the system.

56

Chapter 9

Further Experiments

In order to get a better picture of what the ability of classifier systems in practice
are, some further experiments were done. These were performed with somewhat
more realistic problems. The first problem was chosen to be bigger than the sim-
ple multiplexer problem. The second problem was chosen to be computationally
more complicated.

9.1 The Mushrooms

In the first experiment, the classifier system was trained with data about the
edibility of mushrooms. The dataset used is compiled by Schlimmer [SCH&7]
and contains 8124 samples of a poisonous and edible mushrooms from the agar-
icus and lepiota families. The mushrooms are described in terms of their form,
colour, smell, habitat etcetera, etcetera. In total there are 22 attributes describ-
ing a single mushroom. From these 22 attributes the edibility of the mushrooms
can be determined with about 95% accuracy. See [SCH87, IWL88, THOR92].
The database is available on internet [MURS7].

The mushrooms were coded as 57-bit messages and were given to a single-
layer classifier system consisting of classifiers with single matched-tue conditions.
There was no message list. The outputs consisted of a single bit, which was
zero for a poisonous mushroom and one for an edible mushroom. The results
obtained are shown in figure 9.1. This graph shows the average over the results
of ten runs of 500 generations of classifier systems which were all trained with
2000 examples. These examples were randomly picked from a subset of 2000
mushrooms from the original database. This subset contained 1025 poisonous
and 975 edible mushrooms.

The results show that this problem which is much more complicated than
the multiplexer of chapter 8 because of its size can also be learned rather well,
although the results are less good than the 95% accuracy obtained by other

a7

: : :
Average good answers —

08 +H

04 4

fraction

02 —

0
0 25 50 75 100 125 150 175 200 225 250
generations

Figure 9.1: Results of experiment with mushrooms

learning-techniques.

9.1.1 Interpretation of the Learned Classifier System

It would be interesting to interpret the rules in the classifier system that results
from the learning of the mushroom database. The strongest rules from the
classifier system consisting of 50 rules originally after 100 generations of 2000
training-cycles each are presented in table 9.1. The system classified about
75% of the mushrooms correctly, which is not extremely good, but satisfying
nevertheless. The value for life-tax used was 0.00005.

The interpretation of the classifiers is rather difficult. The bids give an
indication as to which classifiers will be chosen for certain messages, but the
noise added to them can change the answers of the system. Remember that
the standard-deviation of the noise added is 0.01. The system is also rather
ambiguous: a single message can activate different classifiers and classifiers that
classify mushrooms as poisonous are activated by the same messages as classifiers
classifying mushrooms as edible and vice versa. Furthermore no understandable
default hierarchies are present, although it can be seen that some rules are
preferred over others for certain messages.

However, some conclusions can be made, the most obvious one being that
most parameters seem not to have any relation at all to the edibility of the
mushrooms. These are the parameters that only have wildcards in all table-
entries (parameters 2, 4, 6, 13, 16, 17, 18, 19 and 21). This does not say very
much as another experiment (with some different parameters) gave a rather
different classifier system. Some of the columns that have only wildcards in
them in the experiment shown also had only wildcards in the other, but other
columns had non-wildcards in them.

General patterns of which properties are important for the edibility and

58

1|2| 3|4| 5|5|7|8| 9|]0|]1|]2
FH() | K | FPEE | F | RREE | FE [k() | F | RQEE | ¥ | FRE | FF
FH] | FE | RRRE | k| SRRk | RE | () | K | k(RE | F | KRk | HE
FEE | Rk | kRRE | k| SRRk | RE | K() | () | FEQF | 0 | OFF | *F
FH() | R | FREE | K| (FF() | FE | () | F | FREE | * | wRE | FF
FR() | KE | RRE | K | kR | R | () | K | KRk | F | KRk | FE
FHR] | R | FREE | | RREE | FE | () | F | RQEE | * | FRE | FF
FHRFE | K | FRFE | K | RREE | KK | () | F | FREE | K | K(F | FF
FH] | Kk | RRRE | k| dokkk | Rk | RE | k| dokkk | k| Rk | RE
FHR] | R | FEEE | K | RREE | K | K | 0 | FFO* | 0 | 00 | *0
FHEE | Rk | kRRE | k| SRRk | RE | F() | () | FELE | 0 | OFF | FF
13 14 | 15 |16 17| 18| 19 | 20 | 21 | 22 | edible? | bid
FE [AFRR | K[RK | K | Kk | Rk | KRR | HRRK | RRK | KO | yog 0.48
FE [RRRE | K[RE | k| Bk | Rk | RRK | RRRE | RRR | KO | yeg 0.40
TF | FFkE | FkEk | k| Rk | Rk | KRk | RRRE | Rk | Rk | yeq 0.39
Tk | RRE | KRRk | k| ok | Rk | RRk | RREE | kR | R(F | yoo 0.37
FE [HRRRE | K[RK | K | Kk | KK | KKK | FRRK | KKK | KO | yog 0.28
FE | RREE | KRR | k| Rk | Rk | Rk | oRkk | RRE | KOF | vog 0.28
TR | RRRE | RR(F | k| R | Bk | BRE | [RRE | SRR | R | o 0.32
Tk | RRE() | RREE | k| R | Rk | Rk | RRRE | RRE | FF | no 0.30
Tk | RHEE | R Hk | k| ok | Rk | KRk | kkk | kkE | RRE | o 0.28
TF | FFFE | FR(F | F | Bk | FE | Rk | [FRE | FRE | FOF | 1o 0.24
number | description || number| description
1 | cap-shape 12 | stalk-surface above ring
2 | cap-surface 13 | stalk-surface below ring
3 | cap-colour 14 | stalk-colour above ring
4 | presence of bruises 15 | stalk-colour below ring
5 | odour 16 | veil-type
6 | gill-attachment 17 | veil-colour
7 | gill-spacing 18 | ring-number
8 | gill-size 19 | ring-type
9 | gill-colour 20 | spore-print-colour
10 | stalk-shape 21 | population
11 | stalk-root 22 | habitat

Table 9.1: The ten most fit classifiers after 100 generations and descriptions of
the parameters

which ones are not are almost impossible to detect. This could be due to the
fact that the percentage of correctly classified mushrooms is still too low or to
the fact that the classifiers are too general.

Other conclusions are also very hard to draw. One thing to notice is that
none of the classifiers seem to have more than one non-wildcard per parameter.
This i1s a bit strange, because it was to be expected that in a rather random
coding of the mushrooms (as the coding from mushroom-descriptions into bi-
nary strings obviously is) the relevant parameters should have to be specified
completely. Maybe this is related to the fact that the starting probability of
wildcards occurring was 90%. The percentage of wildcards in this final system is
93%, which is about the same. Further experiments would have to be conducted
to find out what the influence of the starting-probability of wildcards is on the
final classifier system.

The number of wildcards mirrors the results of section 6.1.2 in that the
number of wildcards in the fittest classifiers seems to be dependent on the
value of lifetax. In an experiment with higher lifetax (=0.0005) the number
of non-wildcards in the fittest classifiers was about four. In this experiment it
seems to be around eight. The dependency of the resulting classifier system on
its starting-parameters is not desirable. A solution to this problem is difficult
and relates to the basic problems of classifier systems: the emergence of stable
default-hierarchies and the search for cooperating classifiers. The main conclu-
sion that can be drawn from this system (and the much larger system resulting
from the experiment in the next section) is that the computation that takes
place in a classifier system seems to be of an extremely distributed nature.

9.1.2 A larger Population

The fraction of 75% correctly classified mushrooms seems a bit meager com-
pared to the fraction of 95% obtained in other experiments. The experiments
were therefore reran with a larger population. The population was 200 instead
of 50 in the original experiment. The results 9.2 of this test-run are much more
impressive: a fraction of 90% correctly classified mushrooms was reached. A
small modification to the bucket-brigade algorithm improved the performance
even more. The classifiers still adjusted their bids according to their specificity,
but the amounts they paid were now made independent of the specificity (the
formula for calculating the amount to be paid now became: 8S). The results of
this experiment are also shown in figure 9.2. The fraction of correctly classified
mushrooms now became about 95%, which happens to be the maximum obtain-
able score. No interpretation of the learned classifier system was undertaken,
as the number of relevant classifiers (the classifiers with a reasonably high bid)
was much too large.

60

s 2 AINAY. BUCKEL Brigade carie

08

06 +H

fraction correct

04 4

L L L L L L L L L
0 25 50 75 100 125 150 175 200 225 250
Generation

Figure 9.2: Result of mushrooms with larger population

9.1.3 Generalization

Another small experiment was conducted to examine the ability of the system
to generalize what it has learned. This was done with the large classifier system
with the ordinary bucket-brigade.

Generalization is the ability to classify correctly samples from the problem-
space that the system has not seen during training. In the test that was done,
the system was trained first with a random subset of 2000 mushrooms from
8124. After this generalization was tested with 100 other mushrooms that were
randomly selected from the 8124. The system classified correctly about 90% of
the mushrooms that were not in the training-set and it also classified correctly
about 90% of the mushrooms in the training-set. This is evidence for good
generalization.

9.1.4 Parameters

We will present the parameters of the system used in the experiment in table
9.2. Most of them are equal to the ones used in the experiment with the simple
multiplexer-problem. Some important ones have essentially different values.
These include the life-tax, the value of alpha and the size of the classifiers and
chromosomes.

9.2 The Parity Problem

The single-layer classifier systems investigated thus far were only able to learn
problems that were solvable by logical expressions in disjunctive normal form
that have a number of clauses that is less than or equal to the number of classi-
fiers as each classifier can take care of a clause in the disjunctive normal form.

61

name value | description
populationsize 50/200 | Number of chromosomes in the population
chromosomelength 180 | Length of the chromosomoes in genes
classifiersystemsize 50 | Number of classifiers in the classifier system
messagelength 57 | Length of a message
crossoverprobability 0.8 | Probability of crossover between two chromosomes
mutationprobability 0.001 | Probability of mutation of a gene
alpha 0.01 | Ratio between the bids of two classifiers of equal strength,
one without wildcards and one consisting of only wildcards
initialstrength 10 | Initial strength of a classifier after initialization
bidconstant 0.1 | Percentage of the strength of a classifier that is used as a bid
wildcardprobability 0.9 | Probability of a wildcard when initializing a classifier
badreward 0 | Reward for a bad answer
goodreward 1 | Reward for a good answer
bidtaxconstant 0.01 | Taz tmposed on a bidding classifier
lifetaxconstant 0.00005 | Tax imposed on every classifier at every cycle of the
classifier system
bidsigma 0.05/ | Variance of the noise added to the bid of a classifier.
0.01 | Varied in the experiments without GA
gen2gen 2000 | Number of training cycles of the classifier system between
two steps of the genetic algorithm
worstbestratio 10 | Ratio between the worst and the best fitness in the population.
Varied in the experiments
maxgen 100 | Number of generations tested
crowdingfactor 3 | Number of subpopulations tested to find most
similar chromosome to new child
crowdingsubpop 10 | Number of chromosomes in the subpopulation
replaced 10 | Number of individuals replaced in a genetic step

Table 9.2: Values of the parameters used in the mushroom-experiment

Some problems require an extremely large number of clauses in the disjunctive
normal form. One of these problems is the parity-problem.

The parity of a string of bits is one if the number of bits is odd and zero if
the number of bits is even. The problem of determining the parity of a bitstring
of n bits is known as the n-bit parity problem. The parity problem is a problem

that is not solvable with a logical expression in a disjunctive normal form with
a number of clauses that is polynomial in the number of bits in the bitstring. In
order for a classifier system that has a number of classifiers that is polynomial
in the number of bits in the messages to be able to learn this problem we have
to add extra features, like a message-list and multiple conditions to our simple

classifier system.

62

9.2.1 The Problem

The first problem studied was the four-bit parity problem. This problem is in
fact extremely trivial. It can be solved by a classifier system consisting of 16
classifiers, each of which gives the parity for one of the 16 possible strings of
four bits.

However we can use it as an example to illustrate a method to solve the
parity-problem that only needs classifier systems that have an amount of classi-
fiers that is linear in the number of bits. The method is of the divide-and-conquer
type. We know that the one-bit parity problem is easily solved. And if we know
the parities of two strings of n bits, we can easily calculate the parity of the
concatenation of these strings of 2n bits by taking the XOR of the two parities.

In this way we can calculate the parity of a bitstring with only an amount
of classifiers that is linear in the number of bits of the strings. The classifier
system must have three features: it must have a message list, it must have two
conditions per classifier and it must have messages that are one bit longer than
the bitstrings of which the parity is to be calculated in order to allow for a
distinction between internal and external messages.

The total number of classifier is then 6n —4 where n is the number of bits of
the parity-problem. We now need 2n classifiers to calculate the parities of the
1-bit strings in the problem and 4 - 7 classifiers in the kth layer, in which the
first layer that has internal messages as inputs has number 1. The total number
of classifiers N is then (for n a power of two):

logan

N:2n+4nz o

i=1

which solves to 6n — 4. This is, by the way, also the basis of the proof that
a multi-layer classifier system with multiple conditions has a higher practical
computational strength (see chapter 7) than a (multi-layer) classifier system
with single conditions. An example of this kind of classifier system is given in

table 9.3.

9.2.2 The Test Runs

The first experiment that was done was one with a 4-bit parity problem. This
task can easily be learned by a single-layer classifier system by just finding the
rules for the 16 different possible 4-bit strings. Actually this would just be rote-
learning. The average number of correctly classified strings over 10 testruns of
50 generations each is shown in figure 9.3. It is clear that this simple task can
be learnt almost perfectly.

Also shown in this figure is the average over 10 testruns of 50 generations
for an 8 bit parity-problem. It is clear that the system has great difficulties to
learn. The behaviour of the system shows some initial improvements, but it

63

layer 0 layer 1 layer 2
conditions action | parity || conditions action | parity || conditions ouiput | parity
QO*** 10000 11000
QO*** 10000 0 10010 11000 0 11100 0 0
Q1*** 10000 11001
Q1*** 10001 1 10011 11001 1 11100 1 1
0*0** 10001 11000
0*0** 10010 0 10010 11001 1 11101 1 1
O*1** 10001 11001
O*1*+* 10011 1 10011 11000 0 11101 0 0
0**0* 10100
0**0* 10100 0 10110 11100 0
O**1%* 10101
0**1* 10101 1 10110 11101 1
0***0 10100
0***0 10110 0 10111 11101 1
0***1 10101
0***1 10111 1 10111 11100 0

Table 9.3: Four-bit parity problem with internal messages

seems to degrade after a while. This has to do with the fact that a single-layer
classifier system needs an exponential number of classifiers in order to solve
the parity-problem. It appears to be necessary to have a multi-layer classifier
system to solve larger parity-problems.

That a classifier system with bucket brigade alone—that is, without the
genetic algorithm—is able to make a distinction between good and bad rules has
been shown in chapter 8. We have repeated the experiment from that chapter
with the classifier system without the genetic algorithm that has the proper
rules (together with 20 random rules) present, which we called the monkey-
wrenches-experiment. In figure 9.4 the results are shown. It is clear that the
classifier system is perfectly capable of finding the right rules to perform the
task.

The classifier system with genetic algorithm seems to have great difficulties to
learn the task. Even if we start with a classifier system that does have the correct
rules, it appears that it is not able to preserve these in the long run. In figure
9.5 we show the results over ten generations of the classifier system initially has
the correct rules (together with twenty random rules) present. It appears that
the performance degrades rapidly when we apply the genetic algorithm.

This is not unheard of in classifier systems. As Compiani et al. write: “The
combined action of bucket brigade and genetics leads to performance instabilities
in the long term...”[CMS90]. In our particular example this seems to be caused
by two factors: the lower strength of rules at the beginning of a rule-chain and

64

T T
4-bit parity —
1k 8-bit parity - _|

08 —

06 +H

fraction correct

04

02 —

.
0 5 10 15 20 25 30 35 40 45 50
generation

Figure 9.3: Single-layer classifier system learning parity-problem

Monkey Wrenches —
08

fraction correct

0 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
cycle

Figure 9.4: Parity-problem with monkey wrenches

the completion between similar highly fit rules.

The lower strength of classifiers early in a rule-chain is caused by the presence
of taxes. The amount a certain classifier in its steady state pays to the classifiers
activating it is always lower than the amount of reward it receives. This is
especially the case when a classifier is activated by two different classifiers.
Then each of the activating classifiers receives less than half the amount of pay
the activated classifier receives. The net effect is that classifiers at the end of
a rule-chain get a much higher steady-state-strength and bid than classifiers
at the beginning and therefore the action of the genetic algorithm is biased in
favour of rules at the end of the chain, while actually all the rules are equally
valuable.

An experiment done with the monkey wrenches without the genetic algo-
rithm confirmed this nicely. The output-producing rules had a strength of 7.47
after 5000 generations (which agrees quite well with the value of 7.41 predicted

65

Good answers —

fraction

Figure 9.5: Failure of the parity problem with monkey-wrenches when applying
a genetic algorithm

by formula 6.3). The rules in the layer below this one, however, had a strength
of only 3.46, (which agrees exactly with the predicted value). But as neither had
any wildcards in their conditions, the bid and the fitness of the lower layer was
much lower. They were both equally necessary, so the fitness does not describe
the usefulness very well.

The second factor that was found to cause instabilities in the action of the
genetic algorithm was the fact that the genetic algorithm tended to create copies
of extremely fit rules. These copies then competed with the original rules for
the same resources, effectively halving the rewards both rules received. The
rewards that all the rules down the rule-chains received were then halved as
well, causing their strength, bids and fitness to drop even more, making them
likely candidates for replacement by the genetic algorithm.

Once the genetic algorithm removed one of the rules in the correct solution
of the parity-problem, the performance of the system decreased dramatically,
because all the rules were of equally vital importance for its functioning. As the
rules did not do anything useful anymore, their strengths decreased even more,
causing the genetic algorithm to eliminate them.

Many solutions to the problems mentioned above can be proposed. The first
could be to change the paying-mechanism of the bucket brigade. This could
solve the first problem, but not the second. A solution to the second problem
could be to change the parameters of the genetic algorithm.

One possibility is to increase the number of individuals. The chance that a
good individual is replaced will then be smaller. However the problem of the
duplication of highly fit individuals will remain. Another problem is then that
the classifier system has difficulties picking the right solution from among the
random rules. An experiment with the monkey-wrenches system showed that

1t is possible to use the function for the steady state strength without life-tax, even if
we do have a very small life-tax. It so happens that the classifier we are estimating the
steady-state-strength for is activated almost every cycle.

66

this didn’t really work.

Another possible modification to the genetic algorithm is to choose only
individuals that are very similar for crossover. This to preserve diversity in
the population and to prevent fit schemes from becoming disrupted too quickly.
In the original scheme the technique used for this purpose was to select for
replacement only the individuals that were rather similar to the new child. This
idea was shown to have very little effect in the monkey-wrenches experiment as
well.

We can also try to modify the bucket-brigade algorithm. The idea that was
used in the mushroom-experiment (to have all classifiers, regardless of their
specificity, make the same pay if they have the same strength, but to have
the specificity still influence the bidding) didn’t seem to have any effect on the
monkey-wrenches-experiment.

The emergence of rule chains that remain stable under the influence of the
genetic algorithm seems to remain a major problem for classifier systems. Recent
literature should be studied to search for solutions, be it in modifications of
the genetic algorithm, the bucket brigade or in more radical changes in the
classifier system paradigm (e.g. [DOR91, SMI92, SMIBO93, VAL93]) and for
mathematical research into the long-term behaviour of classifier systems, for

example with techniques from the dynamic systems research (e.g. [CMS90,
FAR90, FOR90, MON93]).

9.2.3 Parameters

The parameters of the experiments of the parity-problem are given in table 9.4.

67

name | value | description
populationsize 40 | Number of chromosomes in the population
chromosomelength 40 | Length of the chromosomoes in genes
classifiersystemsize 40 | Number of classifiers in the classifier system
messagelength 5 | Length of a message
crossoverprobability 0.8 | Probability of crossover between two chromosomes
mutationprobability 0.001 | Probability of mutation of a gene
alpha 0.25 | Ratio between the bids of two classifiers of equal strength,
one without wildcards and one consisting of only wildcards
initialstrength 1 | Initial strength of a classifier after initialization
bidconstant 0.1 | Percentage of the strength of a classifier that is used as a bid
wildcardprobability 0.39 | Probability of a wildcard when initializing a classifier
badreward 0 | Reward for a bad answer
goodreward 1 | Reward for a good answer
bidtaxconstant 0.01 | Tax imposed on a bidding classifier
lifetaxconstant 0.00001 | Taxz imposed on every classifier at every cycle of the
classifier system
bidsigma 0.05 | Variance of the noise added to the bid of a classifier.
gen2gen 5000 | Number of training cycles of the classifier system between
two steps of the genetic algorithm
worstbestratio 10 | Ratio between the worst and the best fitness in the population.
Varied in the experiments
maxgen 10/50 | Number of generations tested
crowdingfactor 3/10 | Number of subpopulations tested to find most
sitmilar chromosome to new child
crowdingsubpop 10 | Number of chromosomes in the subpopulation
replaced 10 | Number of individuals replaced in a genetic step
matingfactor 3 | Number of subpopulations tested to find most
similar partner for mating.
matingsubpop 10 | Size of the subpopulation tested to find most
similar partner.

Table 9.4: Values of the parameters used in the parity-experiment

68

Chapter 10

Classifier Systems seen as
Networks

The way in which classifier systems are usually implemented is not always very
efficient. All conditions of all classifiers are compared completely against all
messages in every cycle of the system. But it is possible to avoid a lot of these
comparisons by using information of how the classifiers in the system interact.

If we have a multi-layer classifier system, then in all the layers except for
the input-layer, we know which messages can be present (only the ones that
can be an action of the classifiers in the system) and with which conditions
these can match. It is therefore perfectly possible to determine beforehand
which classifiers can be activated —or inhibited in the case of unmatched-true
conditions— by which other classifiers. This information can be expressed in
the form of activation- or inhibition links in a network of classifiers. We now
only need to match the initial input-message against all the conditions of the
classifiers.

This process of determining the links between classifiers is like “compil-
ing” a classifier system as opposed to the usual way of implementing it which
can be compared to interpretation of programming-languages. Instead of de-
termining at every cycle of the system which message matches against which
condition, we only check which message matches against which condition once
in the compilation-process and then follow the links between classifiers. No need
to say that this compilation is only efficient in a multi-layer classifier system.
Passthroughs give special problems as well.

10.1 Implementing it

The implementation of a “compiled” classifier system to compare it with an
“interpreted” one was not part of the research of this paper, but we will give

69

ouT

activation link
—_

inhibition link

Figure 10.1: The classifier system as a network

some suggestions of how this can be done as a future project.

10.1.1 The activation

First of all the activation- and inhibition links that exist between the classifiers
in the system should be determined. If there are no passthroughs in the system
this is a straightforward procedure so we will assume that there are none in this
section. The next section deals with the case were there are passthroughs.

The links are found by matching all the available messages (of the classifiers
that do not produce output) in the system against all the conditions of classifiers
in the system. If a message of a classifier matches with a matched-true condition
of a classifier, an activation-link is placed between these two classifiers. If the
message matches with an unmatched-true condition, an inhibition-link is placed
between them.

When the compiled system is run, the first step that is taken is to check
which classifiers are activated by the input-message. These classifiers are then
considered active and the ones with the highest bids that would have been al-
lowed to place their messages in the message-list in the interpreted system now
activate their outgoing links to the other classifiers in the system. The new set
of active classifiers will now be the set of classifiers that has an incoming ac-
tive activation-link for every matched-true condition and no incoming activated
inhibition-links for every unmatched-true condition. The process can now start
again.

Of course, when the highest bidding activated classifier does have output the
cycling is stopped and its output is taken as output of the system.

10.1.2 The paying of bids

For the system to be able to learn there must be a way to update the strengths
of the classifiers. This is done by selecting one incoming link per matched-true
condition of an activated classifier. For example only the links connected with
the highest-bidding classifiers are selected. A random scheme, in which a link
is randomly selected is also possible. This would be more like the definition in

70

section 5.2.5. The classifiers responsible for the activation of these links now
receive a payment from the freshly activated classifier. This payment is, as in
the ordinary classifier system equal to the bid of this classifier divided by the
number of conditions. The process is illustrated in figure 10.2.

8

G %
™ conditon 1 | S Sonditon 1 |
nation 2 } [P condiion 2 | }

Xoondiont |
"\

—
’

All conditions have satis- The classifier is activated; A payment is returned to

fying incoming links. for every condition only the classifiers responsible for
strongest incoming link is the incoming links.
selected.

Figure 10.2: The activation of a classifier in a network

The activations are propagated through forward links between classifiers,
the updates of the strengths are propagated through backward links. This is
not unlike the neural network learning paradigm known as backpropagation
[HKPI1]. The similarities are discussed in section 10.4.

10.2 Problems with Passthroughs

Passthroughs were defined in chapter 5 as positions in the action of a classifier
that will be filled in by the corresponding positions of one condition (which we
called the “preferred condition” in section 5.2.2). If there are wildcards at these
positions in the condition then the corresponding character of the message that
was responsible for activating this condition is substituted. If there are more
messages that could have activated the condition, the one from the highest-
bidding classifier is taken.

It might seem that this poses no problems at all, as we can pass passthroughs
along via the activation-links (or by using parallel passthrough links) so there
will be an extra network that passes variables between classifiers. A problem
arises when we are building the network and we try to determine where the
activation- (and inhibition-) links will come. We usually do not know whether
the passthroughs will be substituted by a one or a zero so there will be a pos-
sibility that the action containing the passthrough will match with a certain
condition in one case and not in the other. One solution to this problem is the
use of conditional links. A conditional link is activated when the classifier from
which it departs is activated and the passthrough that it is associated with has
the right value.

71

A classifier system with passthroughs can thus be implemented by augment-
ing the activation- and inhibition-links with variables (having the value of the
associated passthroughs in the original system) and conditions, which only acti-
vate a certain link when the passthroughs have a certain value. This is illustrated
in figure 10.3.

activation link

S —

inhibition link

x= <value> means that a passthrough gets a fixed value

x means that a wildcard/passthroug combination occurs
in the classifier.

x== <value> means a conditional link (a match occurs
only if x has a certain value)

Figure 10.3: Classifier system with passthroughs as an augmented network

10.3 Speedup

The question now is: what is the speedup that is achievable when we compile
a classifier system into a network? First we must estimate how much time the
compilation process itself takes. For the compilation it is necessary to match
all the actions of the classifiers against all the conditions. The conditions and
actions will have to be compared position by position. Using the notation of
section 6.3 where N is the number of classifiers, k& the number of conditions per
classifier and ! the length of a condition the comparison of all the conditions of
all the classifiers with all the actions of the classifiers costs O(N? - k - [) time.
The determining of the passthrough-links and the conditional links takes time
in the order O(N? - 1) as we must check for every passthrough (at most 1) in
every message with every preferred condition (only one per classifier), if it is
initialized, passed on or if it causes a conditional link.

The time the compilation takes is extra compared to what is needed for
an ordinary classifier system. Any speedup must be caused by speedup in the
cycling-process.

The cycling of an ordinary multi-layer classifier system takes O(N?2-k-I) time
(see section 6.3). A network takes time O(N -k - 1) to match the input-message
with all the conditions of all the classifiers (which is also the time taken for a
single-layer ordinary classifier system). Subsequent activations of classifiers take
O(N? . k) time for the propagation of activation because at most N classifiers
are active and will match with at most N other classifiers that have k conditions
each. Paying of bids will cost at most O(N -k) time (at most N classifiers have to

72

pay k conditions). The propagation of passthroughs causes at most N classifiers
to pass I passthroughs to N other classifiers. This would add O(N? - 1) time.
As s usually a lot greater than k the total time needed would be O(N? -1) so
the speedup would be at least a factor k.

The theoretical calculation of the speedup is not very useful, however, as we
know very little about the real number of passthroughs or outgoing links per
classifier. In a more intuitive estimation of speedup we can say that in order to
determine the active classifiers in a network as opposed to an ordinary classifier
system we do not have to compare the complete messages to the conditions,
position by position, as we have done that while compiling the system. This
can reduce the necessary work by a factor I. Also we do not have to compare the
message of an active classifier to the conditions of all the classifiers as we have
determined beforehand which classifiers can be activated by any other classifier.
If we assume that actions of classifiers activate only a small subset of the total
number of classifiers, this removal of possible candidates to be activated can
also give a lot of speedup.

All in all the compilation of an average classifier system into a network
can save a lot of time when cycling the system. Two conditions must be met
however. First the number of cycles of the system must be large compared to
the amount of work necessary to compile it. This is almost always the case
(2000 cycles in the experiments performed in this paper). The second and most
important condition is that the classifier system should be a multi-layer system.
The matching of the input-message costs as much time in a network as in an
ordinary system. The speedup must be achieved in subsequent cycles of the
system.

10.4 Neural Network Analogy?

As classifier systems can be made to resemble a network, we can now ask our-
selves the question: in what ways are classifier systems comparable with neural
networks. Neural networks (see for example [HKP91, SIMP89]) are learning
systems that are modelled after the way the animal neural system works (see
e.g. [ALB83]). They consist of nodes that are connected with links. The nodes
can be activated. This activation is usually expressed by a real number that
can have values within a certain range, or have a number of discrete values.
The links into a node have a certain weight that can also be expressed as a real
number.

The activation of a node is determined by a function of the sum of the
weights of the incoming links multiplied by the activations of the nodes from
which these links originate. In this way nodes influence each other.

A network learns by updating the weights of the links in a manner that
agrees with the task to be learned. Many different paradigms of neural net-
works exist, the main ones being Hopfield networks (which have symmetrical

73

connections) with Hebbian learning and multi-layer feedforward networks with
error backpropagation (these do not have cycles).

As classifier systems can have asymmetric connections as well as cycles, we
cannot directly compare them with these paradigms. However the description of
neural networks and classifier systems seen as networks are so much alike that it
appears interesting to find some analogies. Some efforts have been undertaken
to find mappings from classifier systems to neural networks, see for example
[SMIBO93, FAR90]. As farmer [FAR90] writes: “The classifier system is rich
with structure, nomenclature, and lore, and has a literature of its own that has
evolved more or less independently of the neural network literature. Nonetheless,
the two are quite similar[...]’

10.4.1 The activation-function

Instead of concentrating on finding an exact mapping from classifier systems
to neural networks, which is always possible by stretching the definitions of
both concepts far enough, we will try to say something about the conceptual
differences between the classifier system as used in this paper and between neural
networks as they are usually implemented.

The neurons in neural networks have an activation function. The classifiers
in fact have activation functions as well. These were described in the previous
section. The main difference between the activation function of a classifier
and that of a neuron is that the one of the classifier system requires non-local
information. This because of the fact that only a limited number of the highest
bidding classifiers is allowed to become active. The activation of only a limited
number of nodes is not unheard of in neural networks and can be implemented
by connections between nodes. It still tends to complicate the networks very
much however and is not a desirable situation, especially in configurations with
many nodes.

Another difference between neural networks and classifier systems is that
the activation of a neuron is determined by the weights of incoming links, the
activation of a classifier is determined by the weight of the node itself. This also
has some implications for the learning-process, as we will see below.

The way input is handled in a network of classifiers is also a bit of a problem.
As classifiers can be activated by internal as well as external messages, we
effectively have two different kinds of activation. The activation of classifiers by
external messages can be handled by just making these classifiers active in the
first step of the cycling of the classifier system. The strongest of the activated
classifiers will then be allowed to stay active and activate other classifiers. The
other possibility is to add an extra part to the network that converts an input
message into the activation of the right classifiers. This can be done by creating
an extra node for every bit in the input-message. These nodes output -1 if the
message has zero and 1 if the message has a 1 at that position. The links have
weight 1 to every classifier that needs a 1 at that position, a -1 for every needed

74

0. There is no link for every wildcard. The classifier is then activated if the sum
over all the incoming activations times the weights of the links is equal to the
number of non-wildcards in the conditions. Of course the classifier is also still
activated if all the incoming links from other classifiers are activated.

10.4.2 The learning-rule

The way in which a network of classifiers learns has been described in section
10.1.2. There are some more differences between classifier systems and neural
networks here. First of all we are dealing with an update of the strengths of
nodes instead of the strengths of links. As there are usually many more links
than nodes, this could be an indication of less flexibility of classifier systems, for
example in the case where a classifier produces an action that simultaneously
generates good behaviour in one classifier and bad behaviour in another.

Also in classifier systems we only have updates of connections between nodes
of which at least one has been activated. In some neural network learning
schemes weights are updated between all nodes, regardless of their being acti-
vated or not.

There is much more that can be done with classifier systems as networks.
It is very well possible to generate a network with a classifier system and then
train it with a specialized neural network training algorithm. Obviously we
must make some changes to the definitions of fitness of a classifier in this case.
This is the idea behind the paper of Smith [SMIBO93]. The combination of
classifier systems and neural networks is a promising area of research, especially
where finding ideal structures for neural network is concerned.

75

76

Chapter 11

Conclusions

The area of classifier systems is still a very novel area of research. This means
that there is still a lot of confusion about terminology, what exactly classifier
systems are and that there still is no accepted set of benchmarks to compare
the performance of different kinds of classifier systems with. In this thesis
some means to compare classes of classifier systems with each other have been
suggested. A formal definition has been attempted; a means to compare the
practical computational strengths of classifier systems has been presented and
two examples from the literature have been trained to a classifier system. A
third problem, the parity-problem, which is infeasible for single-layer classifier
systems, has been proposed as a test for more complex classifier systems, but
was found to be extremely hard and the systems tested in this thesis were not
able to learn it.

11.1 Possibilities

Still the two problems that my classifier system was able to learn show that this
particular learning system has great possibilities. Generalization was very good,
learning was smooth and it is suspected that classifier systems are reasonably
immune to noise, but this was not tested in the experiments in this thesis. It
was found however, that the interpretation of classifier systems is quite difficult.
The number of rules necessary to solve any realistic problem is too large to allow
for a straightforward and comprehensive interpretation.

The implemented system was also found to confirm some of the theoretically
derived formulas. These were the ones about the steady state strength and the
one about the starting number of wildcards. The other formulas that were
presented in this thesis still have to be tested.

Classifier systems are also suspected to be very much akin to neural networks.
A method to convert a classifier system into a network was suggested, but not

7

implemented. This technique was quite different from other methods to convert
classifier systems into neural networks presented in the literature. It does also
not result in a network that is like any known neural network, but it was mostly
intended as a method to speed up the execution of classifier systems. It should
be quite possible, however, to change the learning method of the classifier system
so that it is much more like a neural network.

11.2 Problems

Some problems were encountered in the research performed for this thesis. One
of these, the difficult interpretation of the learnt classifier systems has already
been mentioned. No understandable default-hierarchies were found and chaining
of rules was also not found. The lack of understandability of default-hierarchies
can probably be explained by the differences that exist between a hand-coded
optimal solution to a problem (which usually is very sensitive to small changes)
and the optimal solution found by a genetic algorithm (which is expected to
have more distributed and thus less understandable computation).

Another problem is the strong dependency of the performance on the starting
parameters. The difference in performance between the small system and the
large system learning the mushroom-task in section 9.1 is illustrative in this
respect. The only difference was the size of the population of classifiers learning
the task.

There are also more subtle dependencies on the starting-parameters. As also
mentioned in section 9.1 the number of wildcards in the resulting systems de-
pended on the value for 7., the lifetax. It is suspected that these subtle depen-
dencies on the starting-parameters can greatly influence the learning-capabilities
of the classifier system. Also the size of the messages, the message-list and the
number and kind of conditions are thought to be of great influence on the clas-
sifier system.

Another, quite different problem is the stability of classifier system under the
influence of the genetic algorithm. In section 9.2 it was found that the genetic
algorithm can destroy a good solution. This is obviously a great problem. It is
hoped that in practice classifier systems will be able to learn more distributed
and thus more stable solutions to tasks, instead of the rather brittle hand-coded
solution tested in that section. No experiments were done to investigate this.

Many variations to the combination of bucket-brigade and genetic algorithms
can be tested to find one that produces a stable solution. Some of these have
been tested in section 9.2 but have been found inadequate. Maybe a more radical
restructuring of the genetic algorithm or the bucket-brigade is necessary here.
Maybe it will even be found necessary to use non-local information, although
this really would violate the philosophy behind the classifier system with bucket-
brigade, which stresses the use of local information only. Maybe a coding of
classifier systems as a graph-grammar (see [BK92] for an example of using graph

78

grammars in the search for neural network structures) could be tried.

It is probably also possible to find out more about classifier system behaviour
in the long run by applying analysis-techniques from dynamic systems research
to them in a bit less ad hoc way than in this thesis.

11.3 Suggestions for Future Research

Many questions remain unanswered and many topics remain unresearched by
this thesis. The only kind of learning system that was investigated by this thesis
was of the simple stimulus-response kind. Classifier systems that are recurrent
have not been researched at all. Recurrent classifier systems are systems that can
take a new input while they are still processing the previous ones. This can be
used to give classifier systems a memory of past events. The stimulus-response
kind is not able to do that and is therefore not able to learn time-dependent
tasks.

Also the issue of noise was not studied. It was actually assumed that classifier
systems are relatively immune to noise. This because so many examples are
needed to learn a certain task. Noise will then be “averaged out”. But this was
not tested in experiments. It must still be determined how noise-independent
classifier systems really are.

Another important thing is the stability and tolerance to damage of classifier
systems. It is possible to regard a classifier system as a program in a parallel
programming language. This program can be made robust by means of redun-
dancy: a certain task is then performed by many rules that can back each other
up. If one of the rules is removed, the performance of the system will be hardly
affected.

Handcoded classifier systems, just like hand-coded computer programs in
ordinary programming languages are hardly robust, as has been shown in section
9.2. Removal of one rule degrades the performance enormously. It is hoped,
however that classifier systems that are found by the genetic algorithm are less
brittle, after all, this is what classifier systems were supposed to be good at in
the first place [HOL86]. This could be tested by removing rules from a classifier
system that was found by a genetic algorithm and then checking how this affects
its performance.

Then there is the problem of starting-parameters. It was found that the
learning-behaviour of classifier systems can sometimes be highly dependent on
the parameters of the system. It must be determined how these parameters
influence the behaviour of the system and what their optimal value is. This 1s
a task that is very computationally intensive. Maybe the best thing is to use
parameters that change value during the learning-process. It might be a good
idea, for example, to change the value of the variance of the noise added to the
bids. Much noise in the beginning, little noise in the end. Other parameters,
especially the ones that determine the behaviour of the genetic algorithm are

79

good candidates for modification during the learning-process.

Then the last open research topic that we will discuss in these conclusions
are the possible extensions to classifier systems. We have defined unmatched-
true conditions and passthroughs in the formal definitions in chapter 5, but we
have not implemented these. These specific extensions are thought to be able
to extend the possible tasks a classifier system can learn even further (although
this has not been proven yet). It is therefore very necessary to implement these
extensions. Unmatched-true conditions have been implemented in the program
used for this thesis, but have not been used in the experiments.

We can conclude that classifier systems are a very interesting computational
concept and a rather powerful machine-learning paradigm. There are still a
lot of things that are unclear and need to be researched. Therefore classifier
systems are a very rich subject of research, but very much a Terra Incognita
that has a lot of pitfalls, but that also has great promise.

80

Appendix A

Symbols used in this Thesis

A lot of symbols have been used in different contexts in this thesis, especially in

the theoretic parts. In this appendix we will give a list of these symbols, with
their meanings and the pages on which they are defined.

A

«

The action of a classifier. (p. 22)

Symbol used for the “offset” in the specificity function. Causes a non-zero
bid for classifiers consisting of all wildcards. (p. 25)

Symbol used for the bidconstant. This is the fraction of the strength (after
correction for specificity) of a classifier that is used as a bid. (p. 24)

The bid of a classifier in its steady state. (p. 30)

Symbol used for a single classifier in the classifier system. Used throughout
chapter 5.

The string-part of a condition. (p. 22)

C Symbol used for the set of classifiers in a classifier system. (p. 21)

bs
[
fspec

Fg

The set of conditions of a classifier. (p. 21)
The defining length of a schema. (p. 10)
The string part of a message. (p. 22)

The specificity-function. Causes the bid of a specialized classifier to be
higher than that of a general one. (p. 24)

The function that determines the message list a classifier system produces.
(p. 22)

81

Fy
I

Thid

Tiife

o N

[11

The function that selects the active classifiers that are allowed to place
their messages. (p. 25)

The single character matching-function for messages and actions. (p. 22)

The function that matches complete messages with complete conditions.
(p- 23)

The single-character transformation function from message, condition and
action to message. (p. 23)

The function that transfers complete messages, conditions and actions into
a message. (p. 23)

The function that determines the output of a classifier system. (p. 22)

The function that selects the active classifier that is allowed to produce
output. (p. 25)

The number of conditions in a classifier. (p. 22)

The length of a message (p. 22) or the length of a chromosome. (p. 10)
The total number of symbols in the classifier’s conditions. (p. 25)

The number of messages in the message list. (p. 21)

The number of classifiers in the system (p. 22) or the number of chromo-
somes in a population. (p. 11)

The strength of a classifier. (p. 22)

A schema. (p. 10)

The strength of a classifier in its steady state. (p. 30)

Standard deviation of the noise added to the bids of the classifiers. (p.
25)

The bidtaxconstant. This is the fraction with which the strength of a

clagsifier is decreased when it places a message on the message-list or
when it produces output. (p. 26)

The lifetaxconstant. This is the fraction with which the strength of a
classifier is decreased in every cycle of the classifier system. (p. 26)

The output of a classifier. (p. 22)
The classifier-part of a message. (p. 22)

A class of classifier systems. (p. 40)

82

X A classifier system. (p. 21)
W Total number of wildcards in the conditions of a classifier (p. 25)

¢ The constant factor with which the number of classifiers in two classifier
systems from two different, but equivalent classes of classifier systems can
maximally increase.

83

84

Appendix B

The Program Used for the
Experiments

In this thesis a number of experiments have been done. These were performed
by a program written as part of the research. This program was written in the
programming language C++ in a modular way and was adapted several times
during the research. The compiler used was the gnu C++ compiler. We will
now attempt a description of the code so that it can be used for further research.
The code is to be made available through ftp.

B.1 The modules

The code has been written in a modular way as to facilitate the debugging
and modification of the code. The program has been split in three modules.
The first module is a support module, consisting of the files initialize.C,
initialize.h, random.C, random.h, standards.h and main.C. In these files
the initialization of the parameters in the system is performed (initialize.h
and initialize.C),some useful functions for generating random numbers (random.h
and random.C)are implemented and the standard values for the parameters of
the system (standards.h) are defined. In main.C the initialization-file is read,
classifier system routines are called, the results are written to disk and the num-
ber of classifier system cycles, genetic steps and number of trials over which the
average is taken are determined. The file main.C has to be changed sometimes
to accommodate different kinds of experiments.

The next module is the module implementing the learning system. This con-
sists of the files conversion.h, conversion.C, genetic.h, genetic.C,classsyst.h,
classsyst.C, list.h and 1list.C.

In genetic.h and genetic.C the functions that perform the genetic algo-
rithm are implemented. In classsyst.hand classsyst.C the classifier system

85

is implemented. A classifier system cannot be used directly in the genetic al-
gorithm, so we need a conversion-function between classifiers and chromosomes
and vice versa. The functions for this are implemented in conversion.h and
conversion.C. Furthermore we need some functions implementing a message
list. These are implemented in 1ist.h and list.C.

The last module consists only of the files world.h and world.C. In these
files the task to be learnt must be implemented. As there have been exper-
iments with different tasks, there are different versions of world.C. The one
for the multiplexer is called multworld.C, the one for the mushrooms is called
mushworld.C and the one for the parity-problem is called parworld.C. One of
these should be renamed into world.C when compiling the system.

The compilation itself can be performed with the accompanying makefile.
It is recommended to use this to make the project, as there are a lot of rather
intricate interdependencies between the files in the system.

B.1.1 The Support-Module

In this section and the following two sections, the inner workings of the different
modules is explained a bit further.

We will first discuss the details of main.C and initialize.C, the main
support functions. The file main.C contains two functions: main and cycle. Of
these cycle is the one in which the most interesting changes can (and in fact
were) made. One of these is whether a classifier system is initialized randomly
at every trial, or if it is initialized by a standard classifier system read from disk.
This can be done by changing the initial assignment (the statements between
the for-loop for the number of trials and the one for the number of generations).
It should not be too difficult to find out how to do this.

In initialize.C the values of all the different parameters of the system are
read in. The input file should contain lines of the following form:

<variable> value

The possible variables, their meaning and their possible values are listed below:

alpha The offset for the specificity function. Should be a small,| positive real
number. Default initialization by StandardAlpha.

badreward The reward that an ill-responding classifier gets. Should be a positive real
number. Default initialization by StandardBadReward.

bidconstant The fraction of the strength that is used in the bidding. Should be a real
number between 0 and 1. Default initialization by StandardBidConstant.

bidsigma Standard deviation of the noise added to the bid of a classifier in order
to get a non-deterministic effect. Should be a small real number. Default
initialization by StandardBidSigma.

86

bidtaxconstant The fraction of the strength of a classifier that the classifier has to pay
when placing a message or an output. Should be a real number between
0 and 1. Default initialization by StandardBidTaxConstant.

chromosomelength The length of the chromosomes in the genetic population. Should be a
positive integer. Default initialization by StandardChromosomeLength.

classifiersystemsize The number of classifier in the classifier system. Should be a positive inte-
ger and equal to populationsize. Initialization by StandardSystemSize.

crossoverprobability The probability of crossover between two mating chromosomes. Should be
areal number between 0 and 1. Default initialization by StandardCrossoverProb.

crowdingfactor The number of subpopulations from which the worst chromosomes are
compared with a new one, used in the crowding-replacement algorithm.
Should be a positive integer. Default initialization by StandardCrowdingFactor.

crowdingsubpop The number of subpopulations in crowding. Should be a positive integer.
Default initialization by StandardCrowdingSubpop.

datapoints The number of datapoints in the output-datafile. Should be a positive
integer. Default initialization by StandardDataPoints.

gen2gen The number of classifier system cycles between genetic search steps. Should
be a positive integer. Default initialization by StandardGen2Gen.

goodreward The reward a classifier gets when providing a good response to the en-
vironment. Should be a positive real number. Default initialization by
StandardGoodReward.

initialstrength The initial strength of a freshly initialized classifier. Should be a real
number. Default initialization by StandardInitialStrength.

lifetaxconstant The part of its strength a classifier has to pay at every cycle of the clas-
sifier system. Should be a real number between zero and one. Default
initialization by StandardLifeTaxConstant.

listlength The maximum length of the message-list. Should be a positive integer.
Default initialization by StandardListLength.

maxcycles The maximum number a classifier system is allowed to cycle between in-
put and output. Should be a positive integer. Default initialization by
StandardMaxCycles.

maxgen The maximum number of genetic search steps. Should be a positive inte-
ger. default initialization by StandardMaxGen)].

messagelength The length of messages, conditions and actions in the classifiers. Should
be a positive integer. Default initialization by MessageLength.

87

mutationprobability

nomessagelist

numberofconditions

outputprobability

populationsize

replaced

steps

unmatchedtrueprob

wildcardprobability

worstbestratio

The probability of the mutation of a gene in a chromosome. Should be a
real number between zero an one. Initialization by StandardMutationProb.

Indicates whether the system will use a message-list. Should be zero if it
does and one if it doesn’t use a message-list. Default initialization 0.

The number of conditions in a classifier. Should be a positive integer.
Default initialization by StandardNumber.

The probability of initializing a classifier as producing output. Should be a
real number between zero and one. Initialization by StandardOutputProb.

The size of the genetic population. Should be a positive integer and equal
to classifiersystemsize. Default initialization by StandardSize.

Number of chromosomes that is replaced in every genetic step. Should be
a positive integer. Default initialization by StandardReplaced.

The number of times the system is going to repeat a certain experiment
(or: the number of trials). Should be a positive integer. Default initial-
ization by StandardSteps.

The probability of a condition being unmatched true after initialization.
Should be a real number between zero and one. Default initialization by
StandardUnmatchedTrueProb.

The probability of wildcards occurring in the initialization of a condition.
Should be a real number between zero and one. Default initialization by
StandardWildCardProb.

The ratio between the worst and the best fitness of the chromosomes
that are the result of converting a classifier system into a population of
chromosomes. Should be a positive real number. Default initialization by
StandardWorstBestRatio.

B.1.2 The Learning-Module

In the learning-module, the main function is int classsyst::Cycle(message,
output&) . This function takes an object of type message generated by the en-
vironment as input, and generates an object of type output as output. It also
returns an integer. If this integer is true (or one), then the classifier system was
able to find an answer (be it right or wrong) to the problem. If the integer has
the value of false (or zero), then the classifier system was not able to find an
answer.

The classifier system can be rewarded by the function void classsyst::
Reward(double). This function rewards the classifier that produced the out-
put. The reward is usually taken from the environment.

88

For the genetic cycles there is the function population population:: NewGeneration()
that produces the offspring of a population. But first the classifier system should
be converted into a population of chromosomes. That is done by the functions
void Pop2Syst (classsyst&, const population&) and void Syst2Pop (
const classsyst&, population&, int). The first function takes as input a
population and converts this into a classifier system. The second takes as input
a classifier system and converts this into a population. If the integer that is
also an input to this function, is one, then the whole system is converted. If the
integer is zero, then only the strengths of the chromosomes in the population are
updated. Obviously these chromosomes must then correspond to the classifiers
in the classifier system.

With these functions one should be able to implement the learning-process of
the classifier system. There must be one other component: the environment in
which the classifier system is trained. This is implemented in the task-module.

B.1.3 The Task-module

The task-module implements the tasks the classifier system has to learn. It
should be called world.C and should contain the following functions (whose pro-
totypes can be found in world.h): message world::problem(),void answer(
int) and double payoff (). The function problem() should return a message
that can be used as input to the classifier system. The function answer(int
) should be used to give the answer of the classifier system to the environment.
The function in output2int(const output&) can be used to convert objects
of type output to integers.

The function payoff() should be used to return the payoff assigned to the
previous answer to the classifier system. For this purpose the object world
contains some extra variables: int right to store the correct answers and
double reward to store the amount of payoff.

These objects and functions make up a complete classifier system that can
rather easily be adapted for other tasks and variations on the basic classifier
system.

89

90

Bibliography

[ALBS3]

[BAT93]

[BGHSY]

[BK92]

[BOOS5]

[CMS90]

[DAR1859]
[DEI75]

[DORYI]

[FAR90]

Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith
Roberts, James D. Watson, Molecular Biology of the Cell, Garland
Publishing, Inc., New York 1983.

F. Baiardi, A.M. Lomartire, D. Montanari, A parallel MIMD ar-
chitecture for asynchronous classifier systems, available through ftp
from: ftp.aic.nrl.navy.mil in /pub/EC/smith, 1993.

L.B. Booker, D.E. Goldberg and J.H. Holland, Classifier Systems
and Genetic Algorithms. Artificial Intelligence 40, 1989, pp 235—
282.

E.J.W. Boers and H. Kuiper, Biological metaphors and the de-
sign of modular artificial neural networks. Unpublished Mas-
ter’s thesis, Leiden University, Leiden 1992, available through
FTP from ftp.wi.leidenuniv.nl (132.229.128.44) as /pub/cs-
techreports/thesis/boers-kuiper.92.ps.gz.

Lashon B. Booker, Improving the performance of genetic algorithms
in classifier systems, in [GREF85], pp 80-92.

M. Compiani, D. Montanari, R. Serra, Learning and Bucket
Brigade Dynamics in Classifier Systems, in [FOR90] pp.202-212.

Charles Darwin, The origin of species, 1859.

K.A. De Jong, An analysis of the behavior of a class of genetic
adaptive systems, (Doctoral dissertation, University of Michigan),
Dissertation abstracts international 36(10), 5140B. (University Mi-
crofilm No. 76-9381)

M. Dorigo, Message Based Bucket Brigade: An Algorithm for the
Apportionment of Credit Problem, in [KOD91], pp235-244.

J. Doyne Farmer A Rosetta Stone for Connectionism, in [FOR90],
pp. 153-187.

91

[FOMT90]

[FORS5]

[FOR90)]

[GB8Y)

[GHD92]

[GREFS5]

[HIBO75]

[HKPY1]

[HOL75]

[HOL80]

[HOLS6]

[TWL88]

Stephanie Forrest, John H. Miller, Fmergent behavior in classifier
systems, in [FOR90], pp. 213-227.

Stephanie Forrest Implementing semantic network structures using
the classifier system, in [GREF85], pp 24-44.

Stephanie Forrest (ed.), Emergent Computation, proceedings of the
Ninth Annual International Conference of the Center for Nonlinear
Studies on Self-organizing, Collective, and Cooperative Phenomena
i Natural and Artificial Computing Networks, in Physica D, vol
42. North Holland, 1990.

D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison Wesley, Reading MS, 1989.

David E. Goldberg, Jeffrey Horn, Kalyanmoy Deb, What Makes
a Problem Hard for a Classifier System?, available through FTP
as afi.santafe.edu in /pub/EC/CFS/papers/lcs92-2.ps.gz,
1992.

John J. Grefenstette (ed.) Proceedings of the first international con-
ference on genetic algorithms and their applications, Lawrence Erl-
baum assoc., Hillsdale NJ, 1988.

Ernest R. Hilgard, Gordon H. Bower, Theories of Learning, fourth
edition, Century Psychology series, Prentice-Hall, Englewood Cliffs
NJ, 1975.

J. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory
of neural Computation, Addison Wesley, Reading MS, 1991.

J.H. Holland, Adaptation in Natural and Artificial systems, The
University of Michigan Press, Ann Arbor, 1975.

J.H. Holland, Adaptive Algorithms for Discovering and Using Gen-
eral Patterns in Growing Knowledge Bases . International Journal
for Policy Analysis and Information Systems, Vol 4, No 3, 1980. pp
245-268.

J. H. Holland, Escaping Brittleness, The possibilities of General-
Purpose Learning Algorithms Applied to Parallel Rule-Based Sys-
tems, in [MCM86] pp. 593-623.

W. Iba, J. Wogulis, P. Langley, Trading off implicity and Coverage
in Incremental Concept Learning. In Proceedings of the 5th Inter-
national Conference on Machine Learning, Ann Arbor, Michigan:
Morgan Kaufmann, 1988, pp. 73-79.

92

[KOD91]

[LEES6]

[MCM83a]

[MCM83b]

[MCMS6]

[MIC92]

[MIN67]

[MON93]

[MURS7]

[NTS9]

[POMSY]

[POTOS9]

[POST43)]

Yves Kodratoff (ed.) LNAT 482 Machine Learning EWSL 91,
Springer Verlag, Berlin, 1991.

W.J. Leech, A Rule Based Process Conirol Method with Feedback,
Proceedings of the International Conference and Exhibit, Instru-
ment Society of America, 1986.

Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell: Ma-
chine Learning: an artificial intelligence approach, Tioga publish-
ing company, Palo Alto CA, 1983.

Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell, An
overview of machine learning, in [MCM83a] pp 3-23.

R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.), Machine
Learning: an Artificial intelligence Approach, Volume 2 Morgan
Kaufmann, Los Altos CA, 1986.

Zbigniew Michalewicz, Genetic Algorithms + Datastructures =
FEvolution Programs, Springer Verlag, Berlin, 1992.

M. Minsky, Computation with Finite and Infinite Automata,
Prentice-Hall, Englewood Cliffs NJ, 1967.

Daniele Montanari, Classifier systems with a constant-profile bucket
brigade, available through ftp from: ftp.aic.nrl.navy.mil in
/pub/EC /smith, 1993.

Patrick M. Murphy, David. W. Aha, Mushroom Database, UCI
Repository of machine learning databases [Machine readable data
repository]. University of California, Department of Informaton
and Computer Science, Irvine, California. (internet: ics.uci.edu

(128.195.1.1))

Kumpati Narendra, M.A.L. Thathachar Learning automata, an in-
troduction, Prentice Hall International, Englewood Cliffs NJ, 1989.

D.A. Pomerleau, ALVINN: An Autonomous Land Vehicle in a Neu-
ral Network, In Advances in Neural Information Processing Systems
1, D.S. Touretzky, ed. Morgan Kaufmann Publishers, San Mateo
CA, 1989.

Dean A. Pomerleau, David S. Touretzky, What’s hidden in the Hid-
den Layers?, in BYTE, August 1989, Mc Graw-Hill, 1989, pp. 227—
233.

E.L. Post, Formal reductions of the general combinatorial decision
problem, American Journal of Mathematics 65, pp 197-268, The
John Hopkins Press, Baltimore, 1943.

93

[SCH87]

[SEROS7]

[SIM83]

[STMP8Y]

[SM192]

[SMIBO93]

[SUTY91]

[THOR92]

[VAL93]

[WESS85]

[WIN92]

[ZHOUS5]

Jeffrey S. Schlimmer, Concept Acquisition Through Representa-
tional Adjustment, Technical Report 87-19, Doctoral dissertation,
department of Information and Computer Science, University of
california, Irvine, 1987.

T.J. Sejnowski, C.R. Rosenberg, Parallel Networks that Learn to
Pronounce English Text, Complex Systems 1, pp. 145-168.

Herbert A. Simon, Why should machines learn?, in [MCM83a] pp
25-37.

Patrick K. Simpson, Artificial Neural Systems, Foundations,
Paradigms, Applications, and Implementations, Pergamon Press,

New York, 1989.

Robert. E. Smith, A Report on the First International Work-
shop on Learning Classifier Systems, available through FTP as
sfi.santafe.edu:/pub/EC/CFS/papers/lcs92.ps.gz, 1992.

Robert E. Smith, H. Brown Cribbs III, Is a Learning Classifier
System a Type of Neural Network?, available through ftp from:
ftp.aic.nrl.navy.mil in /pub/EC/smith, 1993.

Joseph W. Sullivan, Sherman W. Tyler, Intelligent User Interfaces,
ACM Press frontier series, Addison Wesley, Englewood Cliffs MS,
1991.

C.J. Thornton, Techniques in Computational Learning, an intro-
duction, Chapman & Hall, London 1992.

Manuel Valenzuela Rendén, Reinforcement Learning in the Fuzzy
Classt-
fier System, available through ftp from: ftp.aic.nrl.navy.mil in

/pub/EC /smith, 1993.

Thomas H. Westerdale, The bucket brigade is not genetic, in
[GREF85] pp 45-59.

Patrick Henry Winston Artificial Intelligence, third edition Addison
Wesley, Reading MS, 1992.

Hayong Zhou, Classifier systems with long term memory, in
[GREF85] pp 178-182.

94

