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Abstract

We approach the difficult task of analyzing the complex behavior of even the simplest learning classi-
fier system (LCS) by isolating one crucial subfunction in the LCS learning algorithm: covering through
niching. The LCS must maintain a population of diverse rules that together solve a problem (e.g., clas-
sify examples). To maintain a diverse population while applying the GA’s selection operator, the LCS
must incorporate some kind of niching mechanism. The natural way to accomplish niching in an LCS is
to force competing rules to share resources (i.e., rewards). This implicit LCS fitness sharing is similar
to the explicit fitness sharing used in many niched GAs. Indeed, the LCS implicit sharing algorithm
can be mapped onto explicit fitness sharing with a one-to-one correspondence between algorithm com-
ponents. This mapping is important because several studies of explicit fitness sharing, and of niching in
GAs generally, have produced key insights and analytical tools for understanding the interaction of the
niching and selection forces. We can now bring those results to bear in understanding the fundamental
type of cooperation (a.k.a. weak cooperation) that an LCS must promote.

Keywords: genetic algorithms, classifier systems, cooperation, weak cooperation, diversity, coadaptive
systems, co-evolution, niching, speciation, fitness sharing, resource sharing, set covering, Markov chain,
functional decomposition, restorative pressure, equilibrium.



1 Introduction

The learning classifier system® (LCS) is particularly difficult to analyze because of its complexity. Even if
we can all agree on a canonical “simple LCS”, that model is bound to be much more complex than the
“simple GA”. The primary reason for the additional complexity is the multiobjective nature of the task at
hand. The most basic LCS is trying to find the (1) smallest set of rules that (2) best solves the example
problem while (3) generalizing well to all similar problem instances. In terms of classification, this means
searching for a concise, accurate, and robust concept description, where a concept description is a group
of rules.

In an effort to accomplish such multiple objectives simultaneously, the research community has intro-
duced a number of simple, elegant, and/or intricate mechanisms for competition and cooperation among
individuals. Such mechanisms include internal message lists for inter-rule communication, Holland’s bucket
brigade (Holland, 1985) for temporal credit allocation, and specificity-based bidding to allow default hier-
archies to form. It is these additional mechanisms for rule interaction that induce the complex cooperative
and competitive relationships among rules that in turn make the analysis of the LCS so much more difficult
than that of GAs.

In a simple GA each individual is evaluated according to a single scalar fitness function independent of
other members in the population. We can thus view the task of the simple GA as optimization of the sum,
or average, of the population’s fitnesses. The optimum population consists entirely of copies of the best
individual. But when individuals influence each other’s fitness evaluation, the task of the GA can no longer
be modeled as an optimization of total population fitness. Indeed, the multiple objectives mentioned above
cannot be combined, in general, into a single, scalar measure of population fitness. Such evolution has gone
by the name of co-evolution, coadaptation, and context-dependent function oplimization. Co-evolution is
more natural, more realistic, potentially more powerful, and certainly more complex than the convergence
of a simple GA.

To understand the complex relationships that can and do emerge among rules in the LCS, and among
individuals in coadaptive systems in general, we believe it is necessary first to analyze each type of rule
interaction in isolation. Here we concentrate on the weak cooperation induced by rule competition for
limited resources (i.e., finite rewards). The sub-goal of weak cooperation is to cover (exploit) as much
of the resources as possible. The only type of rule interaction is competition for the same resource, and
the natural mechanism for handling such competition (and encouraging search for uncovered resources) is
sharing of contested resources. Thus similar rules share common resources by dividing them up among
themselves. This simple method induces niching or speciation, an emergent phenomenon that we suggest
is prerequisite to all other types of cooperation (i.e., strong cooperation).

Though a simple mechanism, resource (or fitness) sharing induces complex behavior in the evolution of
the population. Indeed, a simple LCS with sharing alone is worthy of study because it retains the first two
of the multiple objectives listed above by finding the individually best rules that together cover as much
of the resources as possible (with a finite population). Yet the behavior of the LCS with sharing alone is
poorly understood. This is especially true when rules overlap (compete for the same resources) to varying
degrees, thus making it difficult for the GA in the LCS, and indeed for the human designer, to distinguish
cooperation from competition.

But sharing has already been introduced to the simple GA (Goldberg & Richardson, 1987) in the form
of explicit fitness sharing. Since 1987 several other studies have increased our knowledge of the effects of
sharing on the GA. By isolating fitness sharing in the LCS we can relate the niched GA to the LCS and
come to a better understanding of this one critical subfunction of the overall LCS.

The major goal of this paper is to establish a direct correspondence between the natural, intuitive
niching in the LCS and the more explicit, but better understood, niching in a GA with fitness sharing.
This link facilitates a two-way flow of analytical tools and results. Niched GAs can benefit from knowledge
of the shape of the LCS sharing function, and from insights into how the LCS “naturally” handles niche

1See (Holland, 1971, 1975, 1985, 1992; Booker, 1982; Goldberg, 1983, 1989; Wilson, 1987; Wilson & Goldberg, 1989).



boundaries. For the LCS our understanding of a niched GA’s steady-state behavior, including measures
of niche maintenance times, niche subpopulation sizes, and equilibrium points and their stability, all carry
over immediately. Together, the niche maintenance results mean that the LCS, with appropriate population
sizing for niching, can maintain a stable, diverse population of interacting rules essentially forever. This
stability under constant GA selection pressure allows the LCS, via the GA, to continue searching for new
and better rules while preserving the cooperative ecology of rules already discovered. Thus we can with
confidence apply the GA to LCS exploration as vigorously as we apply it to simple GA search. Greater
use of the GA in the LCS might help solve the well-known problem of rule discovery.

2 Background

In this section we briefly review the nature of niching, the need for niching in an LCS, existing work on
niched GAs, and some previous work using niching in classifier systems.

2.1 Niched GAs

A number of niching mechanisms have been proposed and used over the last couple of decades. One of the
earliest was Cavicchio’s preselection (Cavicchio, 1970; Mahfoud, 1992), in which offspring could only replace
one of their parents. DeJong’s crowding (DeJong, 1975; Mahfoud, 1992) had the same flavor, in that new
individuals replaced less-fit, but similar, solutions in the old population. Boltzmann tournament selection
has also been shown to have niching effects (Goldberg, 1990; Mahfoud, 1991), and recently immune system
models (Smith, Forrest, & Perelson, 1993), which are very similar to the stimulus-response (S-R) LCS, have
been gaining attention for maintaining multiple solutions. In this paper, we limit our comparison to filness
sharing, introduced by Goldberg and Richardson (1987), studied in detail in (Deb, 1989; Deb & Goldberg,
1989; Horn, 1993;Mahfoud, 1993), and challenged by a massively multimodal problem in (Goldberg, Deb,
& Horn, 1992).

Fitness sharing accomplishes niching by degrading the objective fitness (i.e., the unshared fitness) of an
individual according to the presence of nearby (similar) individuals. Thus this type of niching requires a
distance metric on the phenotype or genotype of the individuals. In this study we use the Hamming distance
between the binary encodings (genotypes) of individuals. We degrade the objective fitness f; = f(¢) of an
individual ¢ by first summing all of the share values Sh(d) of individuals within a fixed radius oy, of that
individual, and then dividing f; by this sum, which is known as the niche count m; = 3 Sh() for that
individual. More specifically, if two individuals, ¢ and j, are separated by Hamming distance d; ; = d(1, j),

then we add a share value J
%)

s ={ A i <o 0

0 otherwise

to both of their niche counts, m; and m;. Here, o, is the radius of our estimated niches. Individuals
separated by o, or more, do not degrade each other’s fitness. The parameters agsy and oy, are chosen
by the user of the niched GA based on some a priori knowledge of the fitness landscape or a specific user
objective (e.g., minimum separation oy of alternative solutions). The effect of varying o, has not been
studied to the same extent as has been the effect of changing o,,. For this reason, agy is often set to one,
yielding the triangular sharing function. Figure 1 shows a family of power curves for the sharing function
as agp, varies. The share value, or contribution to the niche count, always decreases monotonically from
one to zero as the distance between the pair of individuals goes from zero to os,. Varying agp does affect
the “shape” of this decreasing function and hence the “shape” of the niche. Choosing oy, is trickier, since
we need to have some idea of the size and separation of the niches.
For an individual ¢, the niche count m; is calculated as

N
m; = Z_: Sh(d; ;), (2)



Figure 1: The sharing function, a function of distance d, as ajp varies.

where N is the size of the population. The shared fitness fs,; = fsn(¢) of individual 7 is then given by

Ji
=L 3
fsh,z mi ( )
Sharing tends to spread the population out over multiple peaks (niches) in proportion to the height of the
peaks. GAs with proportionate selection and fitness sharing have been successfully used on a variety of

multimodal functions (Deb, 1989; Deb & Goldberg, 1989).

2.2 The Need for Niching in the LCS

In a GA, selection drives the evolving population toward a uniform distribution of N copies of the most
highly fit individual. Mutation and non-stationary fitness functions might stave off 100% convergence, but
it is unarguable that the first-order effect of the first-order operator, selection, is the loss of low-quality
diversity. In many applications of the GA, including the LCS, uniform convergence is undesirable. In
multiobjective GA problems, we might want to find a number of solutions with different tradeoffs among
the multiple objectives (Horn & Nafpliotis, 1993). Even with single objective (scalar fitness function)
GAs, we might want to avoid premature convergence, or discover alternative “runner-up” solutions, by
maintaining high quality diversity (Goldberg & Richardson, 1987). In the LCS, we ask the GA to search
through the space of all possible rules to find and maintain a diverse, cooperative subpopulation.

To prevent the best individual in the population from replacing all copies of competing rivals, some kind
of niching (a.k.a. speciation) is necessary. Niching induces restorative pressure (Horn, 1993), to balance the
convergence pressure of selection. Alternatively, some have argued, we could decrease selection pressure
so that the population doesn’t converge in the time frame (number of generations) of interest or simply
can never overcome the noise of disruptive operators like mutation. In a regular GA (i.e., not the GA in
the LCS), many researchers (e.g., Collins & Jefferson, 1991; Davidor, 1991) have recommended distributed
populations for the discovery and maintenance of diverse demes (i.e., schemata). Although such schemes
introduce intriguing new dynamics to GA search, it is clear that their effect on selection is second-order
at best. Distributed populations only prolong the inevitable collapse of the population distribution by a
number of generations that grows linearly with population size and number of subpopulations.

Similarly, in the LCS community it is commonly believed that the GA is used so sparingly, and with so
many other specialized operators at work, that it is virtually impossible for a single rule to take over the
population. And this is often the case. Specialized selection operators such as elitist selection, or protective



group measures such as the formation of classifier corporations, or any kind of cooperative-reinforcement
fitness function such as the bucket brigade or epochal credit assignment, all help counteract convergence.
But this observation does not help us understand or predict the behavior of the LCS.

The LCS in its simplest form, arguably a stimulus-response LCS for binary classification as we outline
below, should be able to maintain a diverse group of high-quality rules that together classify the examples
at hand. Furthermore, if we try to maintain diversity by lowering selection pressure, we deprive the LCS of
the power of GA search. Therefore, maintenance of rule sets must take place over a time frame that is at
least an order of magnitude greater than the convergence time of the GA. The only way to maintain such
high-quality diversity in the face of high selection pressure is to balance convergence with a restorative
force, such as “niching pressure” (Horn, 1993).

2.3 Previous work

Smith and Valenzuela-Rendén (1989) identified the general need for niching in the LCS. They applied
explicit fitness sharing to a small LCS using Hamming distance as a metric on the space of rules. They
were successful in maintaining a set of diverse rules that together covered the examples and solved the
problem. However, they did run into the separation problem inherent in fitness sharing and identified in
(Goldberg, Deb, & Horn, 1993). Briefly, the separation of desirable and undesirable individuals can be a
problem for fitness sharing because of the fixed niche radius ogy.

Most recently, Smith, Forrest, and Perelson (1993) analyzed implicit niching in the immune system
model. They noted that a similar niching process takes place in the LCS. They went on to show that the
immune system model does indeed exhibit “emergent fitness sharing” with many of the properties of GA
explicit fitness sharing. The immune system model is very similar to the S-R LCS, with the exception
that rules cannot use “don’t care” wildcard symbols (i.e., “#7). Generalization is induced by taking a
limited size random sample of rules (a.k.a. antibodies) to compete to cover an example (antigen). Much of
their analysis was thus focused on the sampling process and its effects. In this paper we avoid the issue of
rule generality and concentrate on the implicit niching induced by arbitrarily breaking ties between rules
competing for a resource. This arbitrary tie-breaking is used in the immune system model as well as the
LCS (Wilson, 1987). It leads to an expected even division of a resource among all individuals competing
for it, and is the key to sharing, implicit or explicit.

3 The Problem at Hand

In this section we describe the critical process of isolating one LCS mechanism, implicit niching, and its
effect on LCS behavior. To do so, we idealize the LCS by eliminating or simplifying operators. At the same
time, we must simplify the corresponding classification task which the resulting LCS, with its remaining
idealized mechanisms, should accomplish. OQur simplifications, idealizations, and assumptions are guided
by intuition and the methodology of functional decomposition.

The basic method of functional decomposition has been successful to date in the analysis of the simple
GA (Goldberg, 1993, 1994). Goldberg (1993, 1994) separates the fundamental functions of a simple GA as
building block generation, isolation, growth, and mixing. In the case of the LCS, we separate the function
of weak cooperation from strong cooperation, the function of rule maintenance from the function of rule
search, and the functions of accuracy and covering from that of generalization. We do not however, separate
the issues of accuracy and covering, since these appear to be so closely related that their separation would
make subsequent analysis meaningless?.

In the following subsections, we first summarize the key assumptions. We then cast the resulting,
simplified LCS learning task as a set covering problem. Finally, to further illustrate the nature of our
simplifications, we view the learning task as a search through the schema space of the class membership
function, and as a well-known machine learning problem.

2E.g., the most general classifier, ###...#, covers all examples but on most problems it would be very inaccurate.



3.1 The Assumptions, in Brief

We begin our process of functional decomposition by making the following assumptions about the LCS:

e Ternary alphabet
e Stimulus-response rules
e Binary classification

e Equal specificity of all rules

Our first simplification is a common one in LCS analysis as well as LCS applications: we use a ternary
alphabet. The classifier conditions are coded from the set {0,1#}, where # is the “don’t care”, or
wildcard, character. Responses are limited to the alphabet {0,1}. We assume k attributes to describe the
environmental input. Each attribute is encoded by ¢; bits, ¢« € 1..k. So our environmental input vectors
will have £ = Ele l; bits total. We can concatenate all our attributes into a single bit string representing
an individual example (or more generally, an environmental input vector). Equivalently, we can imagine
that we have £ binary attributes in our problem. Thus each rule’s condition is a string of length £ taken
from {0,1,#} (e.g., ###00H#1011##0#11).

Our second simplification is also a common one in LCS analysis: we limit ourselves to a stimulus-
response (S-R) classifier system. In a S-R LCS there is no internal message list and hence no passing of
messages between rules. The output of each rule is a single response to a single input from the environment.
With no message list, the LCS cannot evolve “strong” cooperation. That is, rules cannot communicate
directly with each other, nor can they pay or charge each other credit. We thus avoid the question
of delayed reward, eliminating the need for complex credit assignment mechanisms, such as the bucket-
brigade algorithm. What we are left with is weak cooperation, in which rules cooperate indirectly to cover
the different reward situations (e.g., correct classifications of examples).

We further restrict our classification task to binary classification (i.e., single class membership). The
goal of the LCS is to learn to classify instances as either members of a class (or concept) or not members.
The output of each rule is either a “1” (member of class) or a “0” (not a member). If we also assume a
default rule (##+#...# = 0), then the task of the LCS is to find accurate rules that classify the exceptions
(i.e., the positive examples). Therefore, we can assume that all rules besides the default have an output
of “17. We can then leave the response (output) out of the encoding, and search only among the possible
condition vectors (e.g., 110###0H0H##H#101#).

Finally, we make a very important simplification to eliminate the issue of specificity versus generality.
We assume that all rules in the population have the same number of “don’t care” characters #. With each
rule applying to an equal volume of the total classification space®, there can be no preference for specific
or general rules. All reasonable fitness functions for individual rules reduce to a function of accuracy only.
And since all rules have equal volumes of coverage (applicability), any reasonable fitness function based
on accuracy must be a monotonically increasing function of the number of examples covered by the rule.
So we can simply use the number of examples covered (again, assuming all examples are positive ones)
to order the rules according to fitness, even though we don’t know the exact, possibly nonlinear, fitness
function.

3.2 What’s Left? A Hard Problem: Set Covering

After all the above simplifications and assumptions, it is essential that we verify that we still have a difficult,
interesting, albeit abstract, problem.

When we limit ourselves to binary classification and assume a default class (i.e., we are really only
trying to identify one class), we are left with an instance of the set covering problem. We are trying

®The entire classification space is of size 2, and is represented by ##...#.
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Figure 2: Binary classification as a set covering problem. The task of the LCS is to find classifiers (rules, represented
as circles) to cover the examples (positive only) of the unknown concept (single class, represented as shaded regions).

to cover the positive examples with a small set of accurate rules. Figure 2 illustrates our version of set
covering. The large rectangle represents all possible 2° instances, where £ is the number of bits used to
encode each instance. In Figure 2, we use { = 10 bits. The entire instance space is thus described by the
rule (H#H#H#H#H#HH#HHAH = 1) or simply ##HH#HH##HH##H. The actual concept to be learned is shown
by the shaded regions. The LCS is given only a subset of these instances as (positive) examples. The LCS
is constrained to a rules syntax of {0, 1, #}'°. We represent this constraint by a circle for the “coverage”
of a rule. Rules with more # characters cover more of the instance space, and are represented by larger
diameter circles. As Figure 2 shows, rules can vary in specificity (coverage of instance space) as well as in
number of examples* covered. Furthermore, rules can overlap to almost any degree in coverage of instances
and/or examples.

In general, the binary classification task of the LCS is to find a small subset of accurate rules that
cover the examples. These are three separate objectives. However, the second objective, individual rule
accuracy, is problematic. How, exactly, do we measure accuracy? Clearly accuracy increases with the
number of examples correctly classified and decreases with the number classified incorrectly. But these
two numbers represent two conflicting objectives themselves. One rule might have both a higher number
of correct classifications and a higher number of incorrect classifications than another rule. Which is
preferred? In addition, we often want rules with greater predictive power; that is, more generality because
of their greater coverage of instance space. We might prefer less accurate but more general rules to more
accurate, more specific rules. So the objective of rule accuracy is itself multiobjective. It is tied up in the
issues of generality-specificity versus accuracy. These are critical issues, but we believe they are separable
from the issues of rule set size (conciseness of concept description) and coverage.

To avoid considerations of generality versus specificity, and hence reduce accuracy to a single objective
that can be measured by a scalar, we consider only rules of the same order (number of don’t cares). All such
rules have the same specificity. Since each rule has the same coverage of instance space, their accuracies
can be computed as simply the number of examples covered. Maximizing the number of examples covered
maximizes accuracy. In terms of Figure 2, the LCS is further constrained to using circles of a specific,
constant size. This observation prompts us to redefine our Venn diagram terms and use the diameter of the
circles to represent accuracy. In Figure 3, the large rectangle represents the space of all examples given to

*For the rest of this paper we omit the word “positive”, and assume all examples are positive ones.
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Figure 3: By assuming rules of equal specificity (number of #’s), we can use diameter in the space of examples to
indicate a rule’s accuracy as “coverage of examples”.

the LCS for learning. The size of a circle represents the number of ezamples covered by the corresponding
rule, and hence its accuracy. The overlaps of circles represent overlaps of coverage among rules, and thus
contain the examples “shared” by two or more rules.

3.3 A Search Through Schema Space

It is illustrative to take another view of the classification problem at hand. What makes the LCS version
of the set covering problem unique is the restriction on the syntax of the concept descriptors (rules) to
the ternary alphabet {0,1,#}. This same restriction allows us to recast the covering problem as a search
through a schema space. We note that our rules are schemata in the space of instances. By schemata, we
mean the similarity templates denoting hyperplanes in the (usually) binary search spaces of GAs (Holland,
1975, 1992). Thus rule ##00#1 in a five bit problem would cover all examples with zeroes for the third
and fourth attributes and a one for the last attribute, just as the schema ##00#1 “contains” all strings
with zeroes in bit positions three and four, and a one in position five. We are choosing, from the set of
3 possible schemata, a minimal set of highly fit schemata. Figure 4 illustrates a portion of an example
search space.

In Figure 4, the search space is represented as a hierarchy, with each level labeled according to the
order (number of fixed bits) of the schemata at that level. A line from one schema to another indicates
containment of the lower schema (higher order) by the upper schema (lower order). Note how the inter-
section (overlap) of one schema with another is itself another schema. At the bottom of the hierarchy are
the highest-order schemata, order-£, which are the instances themselves. We can view the binary class
membership function as the fitness function over the instance space. Every order-£ schema (i.e., instance)
has a fitness indicating to what degree it is a member of the class to be learned. In our case, we assume
a binary class membership function. Thus our fitness function is binary as well: f(7) = 0 if instance 7 is
not a member of the class, and f(¢) = 1 if it is. More generally, we could use a “fuzzy” class membership
function f(z) € {0..1}.

The fitness of a rule, or schema, is a function of the number of examples covered (or contained) by
the rule, and the number of non-examples (misclassifications) covered or contained. The number of non-
examples covered is simply the total coverage of the rule minus the number of examples covered. The total
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Figure 4: The LCS binary classification problem as a search through schema space. Each rule is a schema, or
hyperplane in the instance space. Instances, such as examples, are schemata of order £. Here, £ = 4.

coverage (of instances) of the rule can be calculated from the order o of the rule: 2°=°. In GA schema
analysis, schema average fitness f,...., is defined as the average fitness of all strings (i.e., instances)
contained by a schema. In the case of our binary classification LCS, f, j.ma = |ezamples|/2°=°. That is,
the schema average fitness for a schema corresponding to a rule is the number of examples covered divided
by the coverage of the rule. We can extract the number of covered examples from the schema average
fitness since we know the order of the schema. We simply multiply f, uema by 2°7°. This illustrates the
close correspondence between the LCS search space and the schemata of the class membership function®.
A GA is thought to search a schema space implicitly, while an LCS clearly searches its schema space
explicitly. However, the goal of the GA is to find the best string (order-£ schema) by implicitly processing
schemata, while the goal of the LCS is to find the “best” set of schemata, by implicitly processing strings
(examples).

Our simplifying restriction to rules of a single order can be viewed in terms of the schema hierarchy as
limiting search to one level of the hierarchy. All schemata within a level have the same order, hence any
comparison of their fitness is essentially a comparison of the number of examples covered. Thus we can
leave aside the issue of generality (schema order) versus accuracy, and unambiguously name the winners
at a particular order k as those rules/schemata with the most examples. Figure 4 indicates some of the
winners at each order with circles. At order two, for example, the two rules 1##1 and #01# together
cover all the examples shown here in our 4-bit problem®. Note that these two winners at order two overlap
in coverage, competing for the example 1011.

®This quotient, schema average fitness f.,j..a, is @ candidate measure of fitness, although not of much use since some of
the least general rules, those that describe only one example each, would be the most fit with a fitness of 1.

5Not only are these two rules individually better than any other order two rule, but they would probably beat most other
rules at other orders according to almost any measure of accuracy, since neither rule makes any classification errors.
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Figure 5: Our definitions for the objective fitness of rules, and the “fitness” of the overlap in rule coverage. Fitness
might be measured in number of examples covered. Here area is proportionate to fitness.

3.4 Learning DNF

Finally, we cast the S-R LCS binary classification task as a well-known problem in machine learning:
similarity-based learning (SBL) or learning from examples (Michalski, Carbonell, & Mitchell, 1983). Calling
the £ condition bits binary attributes a;, 1 < ¢ < £, the task of our S-R LCS is to learn a (concise) disjunctive
normal form (DNF) description of the target concept (Wilson, 1987). Each rule represents a monomial,
or conjunction of attribute settings (e.g., 1##0 maps to ajas). The population of rules represents a
disjunction of such conjunctions (e.g., a1@4 + @zasas + a3 + ...). The target concept is an arbitrary DNF
formula, and the LCS is given a stream (finite or continuous) of examples according to some unknown
distribution. If the distribution of the evaluation (or test) set of the LCS is the same as that of the
example stream, then we can judge our LCS according to the distribution-free or probably approximately
correct (PAC) learning models of Valiant (1984) and others. The schema hierarchy in Figure 4 can be seen
as a version space (or lattice, if the empty set is added at level £ + 1 as the common “child” of all level
¢ nodes). Our restriction to rules of a single order k is equivalent to a restriction of concept descriptions
to k-DNF formulae (i.e., each disjunct has exactly &k attributes). Learning k-DNF formulae from positive
examples is a known hard problem (Pitt & Valiant, 1988).

4 Relationship to Fitness Sharing

We now consider the relationship between LCS implicit niching and explicit fitness sharing. We focus on
the effect two rules have on each other. In explicit fitness sharing, two nearby individuals degrade each
other’s fitness according to the distance between them, as we described in the background section. How
do two similar rules (i.e., rules with overlapping coverage) affect each other’s fitness in the LCS?

Let f4 and fg be the objective fitnesses for rules A and B respectively. The objective fitness could
be taken as the number of examples covered by that rule, in the case of binary classification. Let fap
be the amount of resources in the overlapping coverage of rules A and B. That is, f4p is the amount of
resources shared by A and B (e.g., the number of examples covered by both). We also define the fitness
ratio ry = 14 and the ratio of overlap r, = ff‘—f. Figure 5 illustrates some of these definitions.

For the moment, let us assume that both rules cover the same number of examples, f4 = fp and

10



therefore ry = 1. Then the ratio r, can vary between 0 and 1, as we increase the overlap in coverage. We
can now look at how the presence of additional copies of B affects the fitness of rule A. Let ng,ng be
the number of copies of rules A and B, respectively, in our population. Then we can calculate the shared
(expected) fitness of rule A:
Ja— JaB faB
+ .
nA na+np

(4)

In fitness sharing, the shared fitness of an individual A is equal to its objective fitness divided by its total

i

my

Jshoa =

niche count m4:
(5)

We can force our expression for shared fitness with LCS sharing, in Equation 4, into a form similar to the
right hand side of Equation 5:
fa

fana(na+ng)
fana+fanp—fapne

Jshoa =

(6)

Jshoa =

Now we have expressed LCS niching as a degradation by division of the objective fitness, as in explicit
fitness sharing. But in its current form, the denominator in Equation 6, call it D, is difficult to relate to the
niche count m 4 in explicit fitness sharing. At this point in our analysis, however, we are more interested
in B’s contribution to the degradation of f4, than we are in the analog of total niche count for A.

In explicit fitness sharing, B’s contribution to the denominator (i.e., to niche count my4) is the term
Sh(da,p) in the summation m4 = 3 ycp,, Sh(dax). The total contribution for np copies of B is thus
ng * Sh(dap). If we take the partial derivative of the denominator with respect to np, we get the
contribution to the denominator per copy of B:

Omy

o = Sh(da,B) (7)

Turning to LCS implicit niching, we can also take the partial derivative of the denominator D from
Equation 6 with respect to np:

oD _ Safan®
Ong  (fapnp — fana — fanp)?

(8)

Dividing numerator and denominator by f% and n%, we get

i
oD 7 )
S

Substituting 7, = fap/fa and defining r,, = Z—i, we get

oD T
ong (1ot — 1o — 1) (10)

Equation 10 can be considered the contribution to the “niche count” of A under LCS niching. This
quantity corresponds to the sharing function Sh(d) of explicit fitness sharing. Comparing the expression
in Equation 10 to that in Equation 2, we see that the “LCS niche count contribution” % depends on
the numbers of rules A and B in the population, specifically the ratio between those numbers. In explicit
fitness sharing, the contribution Sh(d4 p) depends only on the distance between the two individuals. We
can view the degree of overlap, r,, as the “distance” between two rules in an LCS. When r, = 0 the rules
are maximally distant, in that they are outside of each other’s niches. At r, = 1, the rules occupy the same
niche. Although r, is clearly not a metric, it serves the same role as the metric in explicit fitness sharing,

namely an indicator of similarity of purpose in solving the problem at hand.
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Figure 6: The LCS analog of the sharing function Sh(d), as a function of “distance” r,, for different population

n

ratios r, = — With more copies of A than of B (smaller r,), the LCS “sharing” function becomes increasingly

triangular.

In Figure 6, we plot % as a function of “distance” r, for various values of r,,. The curves of Figure 6

are strikingly similar to those of the sharing function in Figure 1, with the sharing exponent agz, < 1.
Specifically, both Sh(d) and % are monotonically decreasing functions of niche overlap (or distance) that
start at one for complete overlap and decrease steadily to zero for no overlap (i.e., beyond oy, in the case
of explicit fitness sharing).

In explicit fitness sharing, however, Sh(d) is independent of ng and np, while % varies with both.
Holding ny4 constant (e.g., at ngy = 1), Figure 6 shows how % changes with increasing ng. At np = 0,

% looks exactly like the triangular sharing function, which is Sh(d) for as, = 1. This curve represents
the contribution to the degradation of fs4 4 of the first copy of B. As np increases the contribution of each
new copy of B decreases, and % as a function of r, looks like Sh(d) with increasingly small agp,, where
0 < as < 1.

Figure 7 plots % as a function of both r, and r,. Like explicit fitness sharing, LCS sharing degrades
objective fitness according to how much resource two individuals have in common. In both forms of sharing,
this degradation varies from one (added to the denominator) when two individuals are identical (in their
coverage), to zero when both individuals are so different that they have no resources in common. But
in LCS sharing, the degradation per copy of B decreases as the number of Bs grows, at least when the
overlap is not complete (i.e., less than 100%). The natural explanation of what is going on here is that B
can only degrade that portion of A’s fitness that comes from the shared resources. Thus when B does not
completely overlap A there is a limit to how much it can degrade A’s shared fitness. Each new copy of B
means that A gets an ever decreasing share of the overlapped region. This shrinking share represents an
ever decreasing portion of A’s total shared fitness f,4 4, asymptotically approaching zero. For large np,
that is when r, = Z_Jj >> 1, the niche represented by the overlap A N B is essentially filled up, at least
from A’s point of view, and A then relies on other resources (i.e., A — (AN B) ).

The above explanation is intuitive and natural. It leads us to speculate that if we want to better
preserve individuals with slightly overlapping niches in explicit fitness sharing, we should also limit the
amount of fitness degradation caused by a single type of individual as that individual receives many copies.
And it seems that a natural way to accomplish this is to decrease the exponent agj as the nearby competitor

12



Figure 7: The behavior of the implicit sharing function is summed up in this plot of population ratio r, = 2&

na
versus fitness overlap ratio r,.

multiplies in number.

We can generalize our results so far. For example, what about rules of unequal fitness, f4 # fg?
Without loss of generality, let us assume fg < fa, thus ry > 1. Since 7y does not appear in Equation 10, the
surface in Figure 7 does not change. However, the ratio of overlap r, is now bounded by %, corresponding

to total overlap, where the coverage of A contains the coverage of B. Thus the figures for % would be

cut off at r, = % rather than at r, = 1.

We can further generalize our results for the behavior of the implicit sharing function by allowing for
the presence of other rules that partially overlap rules A or B or both, in coverage. The general effects of
the presence of these other rules on the implicit sharing function can be summarized qualitatively. Since
we are only looking at changes in the sharing function due to changes in the numbers of As and Bs, we
can assume that all other rules, C, D, ..., have a constant number of copies. Their effect on fs, 4 then is
simply to reduce the original fitness f4 and fag to be shared by A and B. These other rules also reduce
the effect of sharing in regions in which they overlap coverage. For example, if the coverage of a rule C
overlapped by fic with f4, then the amount split up solely among copies of A would be reduced from
Sa — fa to fa — fap — fac. In addition, the degradation of f4c by additional copies of A would be
spread out among C’s shares of f4¢, rather than just among A’s shares, thus reducing the degradation of
fsh,a from what it would be in the absence of C.

Although the presence of these other rules in the same niches covered by A or B does affect the implicit
sharing function, these effects do not appear to change the overall shape of the function. Furthermore, the

aD

effects of other rules on Sng are probably less than the effects of A and B themselves, as a comparison

of second-order partial derivatives should bear out (e.g., in the above example of rules A, B, and C,
2 2 2 .
anacaDnB < aniaDnB, 882753 for the values of n4,np,nc of interest).

So we concentrate our remaining analysis on the interaction of two rules A and B in the presence of
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these two rules only. Looking again at Figure 7, we see that the implicit fitness sharing function varies
considerably with the ratio r, of numbers of As to Bs. But there is one “slice” of this surface, yielding a
two-dimensional sharing function plot, that is of particular interest. That slice lies on the curve r, = r.,,
where 7., is the equilibrium point. In previous studies of niching (Goldberg & Richardson, 1987; Deb,
1989; Deb & Goldberg, 1989; Horn, 1993), the authors have proposed and investigated such stable points,
where the “niching force” and selection force are in balance. Explicit fitness sharing in particular has been
shown to induce such an equilibrium (a.k.a. stable or fixed point). Finding an equilibrium distribution of
the population, and showing that such a state is indeed a stable one, is the subject of the next section.

5 Markov Chain Analysis

In this section we bring to bear another analytical approach from the study of simple and niched GAs.
Modeling the GA as a Markov chain has been successful in understanding several basic behaviors (De
Jong, 1975; Goldberg & Segrest, 1987; Vose, 1992; Nix & Vose, 1992; Davis & Principe, 1991, 1993). In
particular, modeling the simple GA as a finite Markov chain (Goldberg and Segrest, 1987) leads to exact
expressions for expected drift times, times to convergence, and probabilities of premature convergence.
These results are exact for single allele chromosomes only, but provide bounds on expectation for more
realistic problem spaces. The work of Goldberg and Segrest was extended separately by Horn (1993) and
Mahfoud (1993) to the analysis of niched GAs. Whereas Horn focused on the problem of niche overlap
in the case of two niches, Mahfoud looked at multiple, non-overlapping niches. In both of these studies,
the primary focus was on niche maintenance (e.g., expected time to loss of a niche). Horn in particular
calculated expected steady-states (i.e., equilibrium population distributions) and illustrated the existence
of a “niching force” or “restorative pressure” in a niched GA.

In this section we review some of the results and techniques from (Goldberg & Segrest, 1987) and
(Horn 1993), while adapting and applying them to LCS niching. We can then demonstrate the presence
of a similar but unique niching force in LCS implicit niching. We also show that a unique steady-state is
induced by LCS niching, allowing us to calculate an equilibrium point as a function of 7y and r,. This
equilibrium point in turn enables us to look at the niching force and the sharing function at or near the
point of equilibrium, which by definition is where we ezpect the LCS population to be most of the time.

5.1 The model: Markov chain analysis of the simple GA

Goldberg and Segrest (1987) established the intuitive and easily visualized Markov chain model used by
them and later by Horn (1993). The original model assumed that there were only two possible kinds
or classes of individuals, say A and B, in a population of size N. Such a limitation allows an intuitive
numbering of states. There are N 4+ 1 possible states ¢, where ¢ is the population with exactly ¢ copies of
A and N — ¢ copies of B. Goldberg and Segrest defined an (N + 1) X (N + 1) transition matrix P(,j)
mapping the current state ¢ to the next state j.

We repeat here Goldberg and Segrest’s calculation of the transition probabilities for their model of
a two-class, simple GA using proportionate (a.k.a. roulette wheel) selection with no mutation. Under
proportionate selection, we choose a member & of the current population to reproduce (i.e., to be in the
next population) with probability proportional to its fitness relative to the total fitness of the population.
Thus, with probability fi/> f, we choose individual & (where f is the fitness of k£ and }_ f is the sum of
the fitnesses of all individuals in the current population).

In the generational GA, we replace the entire population each generation, thus making N selections per
generation. In our two-class model, we can write the denominator y_ f as simply fa?+ fe(N — ¢), where
¢ is the number of copies of A in the current population, f4 is the fitness of A, and fg is the fitness of B.
Then the probability of choosing an A for the next generation’s population is pyg = Wj‘f]\,_i). Letting

7 be the fitness ratio %, we rewrite py as Tﬂ_&%
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Figure 8: The transition matrix for a simple GA with N = 50 and r; = 1 (genetic drift). P(7,j) is the probability
of transiting from current state ¢ to next state j in a single generation. Note the absorbing states ¢ = 0 , 50.

Figure 9: Contour plots of transition matrices for the simple GA with N = 50 and ry = 1,3. On the left is
a contour plot of the surface in Figure 8, showing the case of genetic drift. On the right is a matrix illustrating
selection pressure.
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Figure 10: Transition matrices for a GA with fitness sharing, assuming overlapping niches. Here N = 50, r; = 1,
and o, = 1.01 , 1.30. As the ratio of niche overlap, o,, increases, the “restorative pressure” decreases. The
transition matrix changes from the row constant matrix of “perfect sharing” at o/, = 1, approaching the matrix for
genetic drift (for r; = 1) or selection pressure (for ry # 1) as ¢, — oo.

The probability of choosing a B is pg = 1 — p4. The probability of going from a state with ¢ As to a
state with j Asis P(¢,7) = (ﬁv) (pa)?(pB)N~I. Substituting for p4 and pp:

. J N N—j
Pi) = (¥) | N . (11)
J ret+ (N —1) ret+ (N — 1)

Equation 11 defines a complete transition matrix for any population size N and fitness ratio r¢. In Figure 8
we plot the transition probabilities for a population of size 50, and a fitness ratio of 7y = 1. On the left of
Figure 9 is a contour plot of the surface plot in Figure 8. With ry = 1, Equation 11 reduces to the equation
for pure genetic drift. Note that the two states ¢ = 0 and ¢« = N are absorbing states, with probability
rows consisting of a single spike of probability one (P(0,0) = P(N,N) = 1). Goldberg and Segrest used
Equation 11 to investigate expected times to absorption for the drift case (ry = 1).

When there is a preference (ry # 1), selection pressure can be visualized in the transition matrix.
Figure 9, right, shows the transition matrix for ry = 3. The “ridge” of higher probabilities moves off the
main diagonal when 75 # 1, thus favoring the more fit individual. The presence of the ridge in the lower
or upper triangles of the matrix indicates a pressure toward more or less copies of A, respectively.

5.2 Markov chain analysis of the niched GA

Horn (1993) modified the above model to account for niching by simply substituting the shared fitnesses of
A and B for their objective fitnesses. Specifically, he replaced f4 by fa/m4 and fg by fg/mp, calculating
the niche counts m 4 and mp assuming some niche overlap (here normalized by the distance between niches)
oly = 0si/daB, and an oz, = 1. In general, assuming some degree of overlap (o), > 1), the transition
matrix for a two-class niched GA looks like those in Figure 10.
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The niched GA exhibits a restorative pressure toward an equilibrium state. In Figure 10, this state
is at the population of half As and half Bs. At states with more than half As, there is a likelihood of
losing As. Conversely, when the number of As is less than N/2, we are likely to gain Bs at the expense of
As. As niche overlap increases (larger 0!, ), the restorative pressure decreases and we approach the matrix
for genetic drift. When niche overlap is minimal (at or near zero), we get “perfect sharing”, in which the
row of transition probabilities, and hence the restorative pressure, is constant over all the transient (i.e.,
non-absorbing) states.

5.3 Markov chain analysis of LCS implicit niching

We now make use of the Markov chain models described above to visualize niching in the LCS. We need
only calculate the shared fitnesses for rules A and B and substitute them for the objective fitnesses f4
and fp in the derivation of Equation 11. Let n4 be the number of copies of rule A in our population
of N rules, and let the rest of the population consist of np copies of rule B. Under the principle of LCS
sharing, which is the equal division of a resource among all individuals competing for it, we can calculate
the expected shared fitnesses of A and B:

fa—JfaB | faB /B—faB | faB

S = s - Pl 12
f h,A na + N f h,B "B + N ( )
where f4p is the set of examples (i.e., fitness) covered by both A and B. Substituting the shared fitnesses

for the objective fitnesses in the probability of selection pg4 = m, and rearranging, yields

fa— fAB + [4B
pa = nA+nB . (13)
fa— faB + faB +fB— faB + faB

nA -I-TLB nA +TLB

Again equating state ¢ to the population with nyg = ¢ copies of A, and N —¢ = ng copies of B, and dividing
numerator and denominator by f4, the above reduces to

fAB + fAB i

PA = (14)

£ I 3 f f N—i®
1_£+J{§AB&+ AB_I_ AB NZ

Remembering our defined ratios r¢y = f4/ fp for fitness, and r, = fap/fa for overlap, we find that

1+ro(L—1)
n N—7°
r0+roN‘|’__ro+roT

pA:

(15)

Finally, simplification yields _
1 — Ty ‘I’ Toﬁ

= —— " 16
pa 1—r 1 % (16)
Similarly, for B,
I
’/‘f ON
=4 17
bB 1—7, + % ( )

Inserting these probabilities into our transition function, P(7,7) = (;V) (pa)?(pB)N~7, we can compute the
complete transition matrix:

1 + 707 AR\

. (N —ToTToy Tf ON

rin=0) o2 7] (18)
Tf Tf
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Figure 11: The transition probabilities for implicit niching with a population limited to two rules which do not
overlap in coverage (r, = 0). On the left the rules are equally fit, (r; = 1). On the right, the apparent equilibrium
point is a population with twice as many copies of A than of B. Here r; = 2.

5.3.1 Visualizing restorative pressure

Now we can begin to visualize the LCS niching force. Let us first assume equally fit rules (ry = 1) and no
overlap (7, = 0). In Figure 11, we show a contour plot of the transition probability matrix for a population
size N = 50. This matrix closely resembles that of perfect sharing for the niched GA (Horn, 1993). Indeed,
when there is no overlap, the matrices for LCS niching and the niched GA are exactly the same. Both
algorithms are simply dividing up the objective fitness of each individual among all the copies of that
individual”. These algorithms differ only in how they handle the case of overlapping niches.

In Figure 12 we show several cases of overlapping coverage of rules A and B. Again, the population size
is N = 50 and the fitness ratio of f4 to fp is ry = 2. In the margins we try to depict the corresponding
coverages graphically. Note how the restorative pressure degrades with increasing r,, from perfect sharing
at r, = 0 to pure selection at r, = 1/ry, which is the maximum overlap possible for a given rf. So with
complete overlap the restorative pressure, or niching force, disappears and only selection pressure remains.
The same phenomenon is observed in niched GAs (Horn, 1993). Note that at 7y =1 and r, = 1/ry = 1,
we have the case of pure genetic drift.

5.3.2 Rule maintenance times

To further establish that LCS niching generates a restorative pressure akin to that of niched GAs, we
also look at expected niche maintenance times. In (Horn, 1993) the expected time to loss of one of
the two niches (i.e., classes of individuals) was calculated. This quantity is simply the expected time to
absorption by either of the two “converged” states (i.e., uniform populations of one or the other class of
individual). Calculating the absorption time for an absorbing Markov chain is straightforward, although

“In the LCS, however, this fitness division is stochastic. We can therefore expect more noise (i.e., a greater spread) in the
probability distributions for each row of the matrix if we were to model the stochastic allocation of credit in an LCS. But this
is not a qualitative difference in the Markov model.
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Figure 12: The LCS niching pressure decreases with increasing overlap r,.

computationally expensive for large matrices (i.e., large population size N). We assume a random initial
population, which has little chance of being in either absorbing state. We find that the expected absorption
time grows exponentially with population size N, just as with the niched GA. The exponent in the growth
decreases as ry moves away from one, just as in the case of the niched GA. Finally, holding ¢ constant, we
find that the exponent of growth (in N) also decreases with increasing niche overlap, just as in the niched
GA.

Because the case of no overlap (7, = 0) is exactly the same as for the niched GA with o, < dg B, we
do not show here a plot of absorption time versus N for 7, = 0 and various values of r¢. Such a graph is
shown in (Horn, 1993). However, since the two niching algorithms handle overlap differently, we do include
here a plot of absorption time versus N for overlapping niches. That is, we vary r, > 0 while holding 7
constant. In Figure 13 we show the growth in expected absorption (or niche loss) time as a function of N
for r, =0.0,0.1,0.3,0.5, and 7y = 2.

This growth (Figure 13) appears to be exponential. Indeed, for the case of perfect sharing (r, = 0),
we can find the exact exponent. Since the transition probabilities for all transient states are identical,
it follows that prior to absorption we always have the same probability of absorption, namely P,psorp =
p(4,0) 4+ p(¢,N), Vi : (0 < ¢ < N). Now, p(z,0) is simply the probability of choosing N Bs: p(¢,0) =
(p)N = (Tfl_l_1 )V, when r, = 0. Similarly, p(i, N) = (pa) = (%)N The expected time to absorption,
assuming that the chain is started in a transient state, is the inverse of the probability of absorption:

1 .
p(2,0)+p(s,1)"
1

E[tabs] = T
(Tfl-}—l)N + (Tf-fi—l

o (19)
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Figure 13: The expected time to niching failure in our two-rule LCS is the absorption time of the Markov chain.
This time grows exponentially with population size N (provably at least for r, = 0), a characteristic we propose as
fundamental to niching. The exponent of growth appears to decay with r,, representing a degradation of niching

pressure. When r, = %, selective pressure dominates and growth in absorption time becomes linear for r; = 1

implying genetic drift) or logarithmic for r 1 (implying selection pressure). Here ry = 2.
g8 g I g f

After some rearranging:
(ry + DY

Eltaps) =
[fass] ij—l—l

(20)

The expected absorption time above grows exponentially in N for any ry > 0. In particular, when ry =1,
the growth is O(2V).

When 7, # 0, it might be impossible to calculate a closed form expression for absorption time, thus
making it difficult to prove exponential growth. However, in Figure 13 it certainly appears that all such
growth is exponential, at least up until r, = 1/ry, at which time the growth should become logarithmic
(linear) in IV, since this is the case of selection (drift). It has been suggested (Horn, 1993) that exponential
growth in niche maintenance time, as N grows, is entailed by any restorative pressure, and thus could be
used as an indicator of a “true nicher”. If that is the case, then LCS implicit niching clearly qualifies.

5.3.3 Steady-state distributions and equilibrium points

Our results on niche maintenance times indicate that for realistically sized populations (i.e., N > 20) we
can expect the LCS to maintain a diverse set of good rules for a very long time (subject to the effects of
other sources of noise). We might want to know what kind of distribution the LCS will maintain during
that time. Goldberg and Richardson (1987) and Deb (1989) predict that a niched GA, under perfect
sharing conditions (i.e., no overlap of niches) should reach an equilibrium when the shared fitnesses of all
individuals are equal:

for all pairs of distinct niches A and B. If we assume non-overlapping niches centered on local optima, a
population size N, and knowledge of the number and objective fitnesses of the local optima fx, the above

20



equations allow us to calculate the expected distribution of the population (i.e., the mx) when the niched
GA is at equilibrium. For the two-class model, with o5, < d4 B, m4 = ¢,and mp = N —1, the steady-state
equation, Equation 21, reduces to

f_A _ fiB N — ieq fB 1 . TfIV

— = - = —_— = = = leg = .
teg N — g leg fa 1y | + 7y

(22)

But how well does the niched GA actually satisfy this equilibrium condition? Put another way, does the
population remain at or near this equilibrium point over the long term?

Horn (1993) calculated an approximation to a steady-state distribution for the Markov chain model of
the niched GA. He then used this to show that the expected distribution is approximately that predicted
by the equilibrium condition in Equation 22, although the small discrepancy grows with increasing overlap.

Here we perform the steady-state analysis on the model of LCS niching. We refer the reader to (Horn,
1993) for a description of the technique itself. The steady-state distribution calculation is a straightforward,
well-known procedure in Markov chain analysis, but only for ergodic Markov chains. Absorbing chains, like
the ones above, are not ergodic. However, if the absorption times are much longer than the “restorative
time” (that is, restoration to equilibrium), the chain can be considered quasi-ergodic. Horn (1993) contains
a brief discussion of this issue, while Darroch and Seneta (1965) treat the issue more thoroughly. Suffice
to say here that we can approximate the absorbing chain, for the purpose of calculating the steady-state
distribution, by an ergodic chain obtained by simply “chopping off” the rows and columns corresponding
to the absorbing states. We then have to normalize the resulting submatrix (often called the ¢ matrix in
the Markov chain literature) so that all rows sum to one. The normed matrix oy can then be used to
calculate the steady-state distribution of probabilities among the remaining N — 1 transient states.

We have performed the above calculation on the transition matrix for LCS niching, for a population
size N = 16, fitness ratio ry = 1, and various degrees of overlap r, > 0. Figure 14 plots the distribution
of probabilities for r, = 0.0, 0.5, 0.7, and 0.8. This distribution is similar to that plotted in (Horn, 1993)
for a niched GA (with fitness sharing). The highest probability is at the equilibrium point of ngy = 8.
The distribution degrades (i.e., the variance increases) with increasing overlap. The apparent variance
in the distribution at r, = 0 (i.e., perfect sharing), is due entirely to the stochastic selection operator
(proportionate selection).

Horn (1993) used the steady-state distribution to calculate the expected number of copies of individual
A at steady-state. He found that this was in exact agreement with the equilibrium prediction 7., for perfect
sharing (no overlap), and in very close agreement when niches do overlap. Although we do not show such
comparisons here, we have found the same agreement in the case of LCS niching. This result justifies our
use of the equilibrium point in the next section.

6 Niching Pressure at Equilibrium

The above results demonstrate the existence of a steady-state distribution centered on the equilibrium
point predicted by the equilibrium condition (where all shared fitnesses are equal). We can use 7., and the
derivation of Equation 22 to look at the LCS sharing function at the corresponding value of r,, (remember
that 7, = np/n4), naming this particular r, the “equilibrium ratio” r¢, . Since ng = icq and np = N —icq,
np jV—ieq _ /B _ 1

g _ Nt /B _ L 23
n4 leg fa 7y (23)

Tqun =

With this 74, in hand, we can go back to our LCS sharing function shown in Figure 7 as a function of
7, and 7, and look at slices of the surface corresponding to 7., , for various r¢. This gives us the sharing
function that influences the population most of the time, or at least in expectation, since we expect the
population distribution to stay near 7., ,. Such a sharing function is single dimensional, a function of r,
(overlap) only, allowing us to compare the LCS to GA fitness sharing more directly.

21



na
=p(ny )

0.175

0.125

Figure 14: The steady-state probability distribution of the Markov chain model of LCS niching. Here we use
population size N = 16, equally fit rules r; = 1, and various degrees of overlap r, = 0.0,0.5,0.7,0.8. In all four
cases, a distribution symmetric about the equilibrium point of n4 = 8 is maintained. This distribution appears to
gradually degrade with overlap.

Before taking such slices of the LCS sharing function, however, we note that r., , is calculated above
under the assumption of perfect sharing. That is, Goldberg and Richardson (1987) assumed no niche
overlap. However, since LCS implicit niching is different from GA explicit fitness sharing only when niches
do overlap, and because we are interested in cases where two rules overlap almost completely, we modify
the equilibrium condition results to account completely and exactly for overlap®. The general equilibrium
condition is:

fsha = fsh,B- (24)

Substituting the formulae for shared fitness in an LCS, Equation 12,

A — JAB AB B — JAB AB
fa=Ian | a5 _ 5D fap 25)
n4 N ng N
Solving for Z—f,
Is _ fap
na fa-Jfap 11— Le
A
Substituting our ratios ry and r,, rearranging, and naming the result 7, ,
1
! _ s
Tegn = R (27)
Note that r(,,, = Teqn When r, = 0. In Figure 15, we plot 7, , as a function of overlap r,, for several

different values of ry. We see that the equilibrium point changes with overlap, disappearing when overlap
is complete (r, = 1/rf). For ry = 1, there is no selective pressure and hence no preference. These curves

#Deb (1989; and with Goldberg, 1989) used the general equilibrium condition (Equation 24) to show that increasing niche
overlap, with a fixed population size, leads to niching failure.
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Figure 15: Equilibrium proportions change with varying overlap r, and fitness ratios ry.

lie in the (r,,7,) plane, and can be used to take slices of the LCS sharing function in Figure 7. We need

only substitute . . for r, in Equation 10, and simplify:

eq,n
oD T,
= . 28

We can then plot [%} as a function of 7, only: Figure 16 is a plot of such slices (Equation 28) through
eq

the general sharing function %. That is, Figure 16 gives the one-dimensional LCS sharing function that
is arguably of greatest interest. If we assume that the LCS will maintain a population distribution at
or near ’réqm in Equation 27, then each copy of rule B will increase the denominator in the “divisional

degradation” of rule A’s objective fitness by an amount that varies with the degree of overlap, as shown
in Figure 16.

7 Limitations

Before discussing the implications of the above results, we address the limitations on our analysis imposed
by our simplifications and assumptions described in Section 3.1. Again, briefly, those assumptions are (1)
a ternary alphabet {0, 1,#}, (2) stimulus-response (S-R) rules, (3) binary classification task, and (4) equal
specificity of all rules.

Ternary alphabets are common in both practical and theoretical LCS work, and are equal in expressive
power to higher cardinality alphabets. So the assumption of a ternary alphabet is not a simplification and
hence does not limit the applicability of our results.

The restriction to S-R classifiers is a real simplification, however, and does place some limits on the
extension of our results. Still, the S-R LCS is quite powerful, and has been used to solve some hard prob-
lems. We could argue that before adding the complexities of message-passing, we should first understand
and master the power of the S-R LCS. We could also look at the additional rule interactions possible with
message-passing in terms of their effects on the steady-states of the S-R LCS, thus extending our results
to include non-S-R classifiers and strong cooperation.
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Figure 16: The LCS sharing function along the curves of equilibrium. We note the similarity in shape, but not
scale, of the function for different ry.

Our assumption of binary classification is a simplification that allowed us to graphically depict rule
coverage and overlap, but which actually has no effect on the mathematical analysis in this paper. The
concepts of rule coverage and overlap are just as valid in the case of k-ary classification, although they can
no longer be measured and ordered simply by numbers of examples.

The fourth assumption is the only one that places any significant limitations on the applicability
of our analytical results. Specifically, LCS implicit fitness sharing describes the effects of rules on the
“coverage” component of each other’s fitness function (where coverage is based on the number of correct
classifications). Rules of the same order of specificity can vary only in this component, and so implicit
fitness sharing captures the entirety of rule interaction within a single level of generality. Rules of different
orders, however, can vary in a second component of fitness: accuracy (which is based on the number of
errors). But coverage and accuracy are conflicting objectives, with no general way to combine them into
a single scalar fitness measure. So the extension of our results to include rules of all orders of specificity
will depend on the user-specified combination of the two fitness components. However, the effect of a more
general rule on a more specific rule, with overlapping coverage, will probably be some kind of sharing of
the overlapped resources.

8 Conclusions

To summarize, in this study we applied two general tactics in our analysis of the LCS:
o Functional decomposition of the LCS
o Application of lessons learned from GAs

Functional decomposition is important because of the complexity of the LCS. Once we identify separable,
quasi-independent subprocesses in the LCS, we can try to understand the behavior of each in isolation
from the others. In addition, each LCS mechanism by itself is a relatively minor modification of the simple
GA. By studying each mechanism separately, we can bring to bear the more advanced tools and results
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of GA theory. In a sense, GA theory and LCS analysis are converging. As GA theory advances, we are
able to understand more sophisticated variants of the simple GA, such as niching. If we can break down
the complexity of the LCS, we can start to map components of the LCS onto the advanced GAs. We hope
that in this paper we have begun that process.

The specific focus of this paper was on niching in the LCS. It has long been known that some kind of
natural and implicit speciation takes place in the LCS if we break tied competitions for resources arbitrarily
(Wilson, 1987). Smith, Forrest, and Perelson (1993) began the process of mapping this implicit or emergent
sharing to explicit fitness sharing. In this study, we have continued in that direction, although we focus
on the LCS rather than the immune system model. In addition, our focus has been on demonstrating an
LCS sharing funclion, restorative pressure, steady-state distribution, and a meaningful equilibrium point.
We have done so by applying tools and techniques from GA niching theory and GA theory in general.

The important lessons from this study include the close correspondence of LCS implicit niching and
GA fitness sharing. This should come as no surprise: Goldberg and Richardson were originally motivated
by the LCS in their development of fitness sharing. Indeed, they were trying to find some way to share the
fitness of a local neighborhood without knowing exactly what the boundaries of the neighborhood are. In
the LCS, by contrast, sharing is easy because we know exactly what resources are covered by a rule, so we
have no need for some artificial o5, niche radius. Niched GAs have to make do with much less information
about the fitness function. Still, GA fitness sharing might be improved by making it even more closely
analogous to LCS niching. For example, we saw how LCS niching seems to use a sharing function that
looks like Sh(d) with a sharing exponent ag, < 1. Yet the most common setting of ayy, in niched GAs is
exactly one (the triangular sharing function). We also saw how the LCS analog of the sharing function
changes with the changing sizes of niche subpopulations, yet Sh(d) for niched GAs is constant.

The LCS « niched GA mapping we have established is a two-way street. We can apply to the LCS
other lessons learned in our studies of niched GAs, in addition to analytical tools. Goldberg, Deb, and
Horn (1992) characterize three fundamental challenges for a niched GA with fitness sharing:

e Deception
e Massive multimodality
e Separation

Even with its extra knowledge of the search space, these three difficulties plague the LCS nicher as well
(Goldberg, Horn, & Deb, 1992). Deception? can be built into any type of search space, including the S-R
LCS binary classification “schema space” introduced earlier. Constructing and overcoming LCS deception
is a topic of future work. Massive multimodality becomes a problem when our desirable rules have fitnesses
within an order of magnitude of the fitnesses of a very large number of undesirable rules. Here “very large”
means on the order of population size N. In such a situation just a few copies of a desirable rule, perhaps
as few as two, degrade its shared fitness until it is below that of the undesirables. This leads to the large
field of undesirables “swallowing up” our entire population, with an occasional appearance of one or two
copies of a desirable rule.

Separation also carries over as a problem for LCS niching, but in a more subtle way. Although we no
longer have to worry about setting o, just right, we do have a problem separating cooperative pairs from
competitive pairs. As overlap increases, two rules become less cooperative and more competitive. Because
implicit niching has no parameters for us to adjust (it is fixed), the LCS will decide for itself when a pair
becomes so competitive that a lesser individual (lower fitness than either of the pair) with no overlap of
coverage, is preferable. LCS niching might be in need of the same kind of parameterized tweaking we have
in GA niching, so that we can finely adjust the equilibrium distribution of the population. The ability to
predict and control the location of the cooperative-competitive boundary in the LCS is critical to users,
and is a subject of future work.

Building block misleadingness (Goldberg, 1989).
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A fourth type of difficulty for niched GAs also carries over to the LCS via implicit niching. Oei, Gold-
berg, and Chang (1991) demonstrated the unstable, chaotic behavior of fitness sharing in a generational
GA with tournament selection. They showed that even binary tournament selection overcompensates for
small deviations from the equilibrium distribution, resulting in large swings in subpopulation sizes and
hence early niche loss. This chaotic behavior will also occur in the LCS if tournament selection is substi-
tuted directly for proportionate selection. Their suggested solution, continuously updating niche counts
using the partially filled new population, should apply to LCS niching as well.

Besides carrying over fundamental niching problems from the niched GA, our LCS < niched GA
mapping also brings to the LCS the demonstration of true niching capability. We have shown the ability of
the LCS to balance selective pressure with restorative force, and thus maintain high quality, diverse niches
virtually indefinitely. This balance in turn allows us to apply the GA more vigorously in the LCS. We
can then hope to improve LCS rule discovery. But for successful exploration and exploitation of niches,
the LCS must have a large enough population to maintain subpopulations at all desirable niches. Here
again theoretical work on niched GAs carries over. The closed form expressions for expected absorption
times in the Markov chain models can be solved for N in terms of desired rule maintenance times. Such a
result would yield the first analytical population sizing guideline for the LCS, and for coadaptive systems
in general. LCS population sizing is another fruitful area for extending the results of this paper.

The most important point of this paper, however, is the demonstration that niching in an LCS is
absolutely necessary to any kind of cooperation. By definition a cooperative group of rules is a set of
diverse rules, and without some kind of niching the GA in the LCS will not maintain diversity. If we
want serious GA search in our LCS, we must have significant selective pressure. If we want to maintain
cooperative rules, we must balance that selective pressure with a restorative pressure. If we can’t do that,
we won’t be able to induce any type of strong cooperation, such as that necessary for temporal rule chains
and default hierarchies. All such strong cooperation implies successful weak cooperation (i.e., covering).
Because of such entailment, niching is fundamental to the success of rule search and maintenance in the
LCS. Fortunately, we already know a fairly successful niching method: fitness sharing. And the inspiration
for explicit fitness sharing in GAs came from implicit niching in the LCS. Besides, implicit niching is
nature’s way.
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