This is going to be a tutorial on the XCS classifier system. I will
try to explain it so that everyone gets a good idea how it works.
I’ll spend most of the time on this. I will assume no prior knowledge
of classifier systems or XCS. Toward the end I will indicate some
important directions of current research.

The talk will not be about classifier systems in general. I remain
inspired by Holland’s basic framework. But, as some here know,
I believe certain key aspects must be changed in order for the
framework to be successful. Some of the changes are embodied in
XCS, which appears to work much better than previous classifier
systems. I think people at a tutorial would like to learn about
things that work better, so I will focus on XCS. &

However, it is important to know about the traditional system. I
would recommend Holland’s chapter in the 1986 Machine Learning
book, as well as the chapter in Dave Goldberg’s book. I would
also recommend papers by Lashon Booker, John Holmes, Rick Ri-
olo, Rob Smith, and Tom Westerdale among others. Plus my own
papers prior to 1995. At the end, if people are interested, I will
discuss the relationship between XCS and earlier classifier system
work. Tim Kovacs has investigated this and has some important
insights. [BREAK]

I will do this talk in a sort of question-answer format, posing and
then answering what would seem to be the next major question.
But, if you have another question as I go along, and it is urgent
enough, please interrupt and ask it. I will also deliberately pause for
questions. &

Okay, What is XCS? First of all, it is a learning machine—a learning
program within a computer. Here, learning means that behavior
improves with time, through interaction with the environment.



Many learning programs start with a prior: information about the
problems that will be faced. Such information is often called “do-
main knowledge”. If the program still goes on to improve its behav-
ior, this is not exactly cheating. But there can be confusion between
what is given in advance and what is actually learned.

To understand learning per se, and eventually to create really
powerful learning machines, I have felt it important to start with
minimum a priori information, so that as much of the machine’s
knowledge as possible results from adaptation to the environment.
Then whatever we do have to put in, in order to get to higher levels,
we will know is probably essential and cannot be left out.

Another aspect of XCS is that its learning is “on-line”. This means
that it has to learn as it goes along. It does not have the luxury
of collecting a lot of experience in some sort of temporary storage
and then processing it at leisure for the implications. Instead,
XCS must extract the implication of each experience as it occurs,
because the raw data cannot be saved.

This criterion is at odds with the way humans sometimes learn,
since we sometimes sit down and study large amounts of collected
data free of pressure for immediate performance. However, it seems
likely that the simpler the animal, the less this is possible, and that
they learn primarily “on-line”. Since simple animals can still be
amazingly competent, it seems essential to understand how our
machines can also learn on-line.

A third aspect of XCS is that as it learns it attempts to capture
regularities of the environment. This means to detect and lump
together situations that call for the same behavior—even though
the situations may appear different. A machine with even a small
number of sensors will encounter an enormous number of sensory
states in any reasonably complicated environment.



A sensory state means a particular vector of values on the sensors.
In order to avoid an explosive demand on memory, the learning
machine must be able to group states having the same implication
for its behavior. This is what I call the problem of generalization.
XCS is able to generalize quite powerfully, if the environment allows
it. &

What does XCS learn? Always, it learns to get reinforcements.
More precisely, it learns to act so as to maximize a summation of
current and future reinforcements. As the diagram indicates, XCS
receives inputs—sensory state vectors—from the environment and
emits actions that affect the environment and may result in payoffs.

The payoff is always a scalar. A payoff associated with need satis-
faction could be represented by a high positive number. A payoff
associated with pain could be represented by a large negative num-
ber, etc.

This is the framework of reinforcement learning, which seems to me
to be the appropriate framework for developing learning machines
that can function autonomously. Often, we don’t know what a
machine should do in order to achieve a goal that we set for it. We
do not “see” the environment the way its sensors do, and we cannot
predict how its effectors will affect the environment.

But we do often know the end results we want and can attach
reinforcement values to them. We can say, “I want the machine to
find as much dust as possible, so I will give it a small payoff every
time it finds some”, etc. This is usually much easier than telling
it—as a teacher might—just what to do to find dust. &



All right, what are XCS’s inputs and outputs? Now we are going
to simplify a lot. Most of the work so far with XCS has been
done with binary input vectors and discrete actions. Thus what I
called the sensory input vector is a string of bits. To make it
a little more organic, you can think of each bit as the result of
thresholding the continuous valued output of some sensor. Despite
the resulting loss of information, binary sensor values are adequate
in many behavioral situations.

There is nothing in principle that prevents XCS from using con-
tinuous sensor values directly, i.e., using real input vectors. I will
describe an approach to this later on.

Outputs are also discrete, though not necessarily two-valued. In
some problems, XCS will learn to give a yes-no decision, and the
outputs will therefore be 1 and 0. In other problems, the out-
puts will be actions in a physical (or simulated physical) environ-
ment, such as move a predetermined distance forward, or turn left
through a predetermined angle.

For discrete actions to be effective, their size should be large enough
so that strings of such actions actually accomplish something in a
useful time, and small enough so that fine maneuvers can be carried
out if necessary. A better solution is for actions to be continuous,
such as “head 34 degrees left until you reach the door”, but this is in
the future for XCS. &

Now I’'m going to start talking about what’s inside of XCS. First, I
will describe the system after it has learned something, and show
how it arrives at a decision, given some input.

XCS’s knowledge is contained in a set of condition-action rules
called classifiers. Each classifier consists of a condition part, an
action part, and a prediction part. The classifier “says”: if my
condition matches the sensory input and my action is taken by the
system, I predict that the payoff will be as follows.

4



The example classifier says: if the first two bits of the input are
0 and 1 and the fourth bit is also 1, I predict a payoff of 943.2 if
the system takes action 1. (The # symbol means I don’t care what
the value of this component is.) This rule matches a total of eight
possible input vectors, so it is making a statement that applies to all
eight of those inputs. It is expressing a generalization in the sense
discussed at the beginning. It is saying that the environment seems
to have a regularity such that if three of the input bits are set as
just described and the action is action 1, the payoff will be 943.2
regardless of the settings of the other three bits.

Whether this classifier is correct is another matter. We can cer-
tainly doubt that the payoff will be exactly 943.2 for all eight match-
ing input vectors. In fact, 943.2 may be an average over a widely
different set of actual payoffs for those eight cases. Thus, while the
classifier asserts a generalization, the generalization’s accuracy may
be high or it may be low. So the classifier may be very useful to the
system as a predictor, or it may be of little use.

There are many classifiers within the system at any one time, per-
haps several hundred in the types of problems I have studied. If
you examine one of the classifiers, you will find that it makes a
payoff prediction, as above, with respect to some subset of the
input space in combination with one of the possible actions. After
XCS has learned for a while, it will contain classifiers that cover all
parts of the input and action space that it has experienced, plus
often much more that it has not experienced.

There is an important difference between XCS and learning systems
based on artificial neural networks. In XCS, the knowledge about
subsets of the problem space is encapsulated in individual clas-
sifiers. That is, given an input, information about payoff for that
input (in combination with a particular action) will be contained in
just a few individual classifiers, maybe just one. Conversely, given
a classifier, it makes an assertion with respect to a definite subspace
of the input, and says nothing about other parts of the input space.

5



In contrast, the nature of network-based systems is that payoff
information, for any input, is distributed over the whole network,
and is in general extracted from the network by adding up contribu-
tions from all parts of it. This is the nature of the connectionist or
“parallel distributed processing” (PDP) approach associated with
workers like Rumelhart and others.

While it is formally possible to relate XCS’s rule-based approach to
the PDP approach, they seem distinct enough to merit pursuing
quite separately on their own terms, at least until the potentials
of both are more fully understood. XCS is one of very few rule-
based approaches that are truly adaptive. I will say more about the
differences between XCS and PDP later on. &

Now I will begin to explain how XCS works by restricting attention
to the so-called performance cycle, i.e., what happens when XCS
simply makes a decision in the presence of an input. Learning steps
will be left out for the moment.

Also for simplicity, we will assume that XCS is in a “one-step”
problem environment. In a one-step problem, a single input is
put to the system, it chooses an action, and a reward is returned.
Then another one-step problem occurs, with no connection to the
first. This allows us, for the moment, to avoid the complication of a
sequential problem in which many steps may occur before there is a
reward.

Here is what you need of XCS for the performance cycle. Assume
that a population of classifiers [P] is already present in XCS (I'll get
to its origin shortly).



In the diagram, XCS receives an input 0011. The input is compared
with the conditions of all the classifiers in the system’s current
population [P]. Classifiers that match are placed in the match set
[M]. The other classifiers play no further role in this problem. The
contents of the match set embody the totality of XCS’s current
knowledge about what to do with this input. Formation of the
match set is a sort of recognition step. The classifiers in [M] can be
said to recognize this input.

Notice that of the four classifiers in [M], two have action 01 and two
have action 11. Consider the two with action 01. Their predictions
are quite different: 43 and 27. Which prediction should XCS use for
action 01?7 Perhaps it should combine them somehow?

We need a notion of the reliability of a classifier’s prediction. If we
had that, we could choose the more reliable prediction, or we could
blend the predictions in accordance with the reliabilities. In fact,
XCS blends them. Notice that there are two parameters associated
with each classifier besides its prediction: € and F'. € is an estimate
of the error in the prediction, and F', fitness, is an inverse function
of e.

I will describe the calculation of € and F shortly. For now, just
notice that F' is large when € is small. XCS uses F' as the measure
of classifier reliability, so that reliability in effect goes up as error
goes down. Or up as the classifier’s accuracy goes up.

The net prediction for action 01 is simply calculated by taking
a weighted average of the two individual predictions, where the
weights are the respective values of F. I don’t have an equation
for that, but you know this is just the F’s times the p’s, divided
by the sum of the F’s. The result is placed in action 01’s position in
the Prediction Array. It is what I call the system prediction for that
action.



The system prediction is a quantity distinct from the prediction of
any individual classifier. Notice that here the system prediction,
42.5, is very close to the prediction of the more accurate classifier,
as it should be.

The system prediction for action 11 is similarly calculated. No
system predictions for actions 00 and 10 are computed, since [M]
contains no classifiers with those actions.

How should XCS now decide between actions 01 and 117 Well,
you say, obviously it should choose action 01. Yes, it should, if its
aim is to get the highest reward it can. Suppose it does do that.
Then action 01 is sent to the environment—meaning the system
tells its effectors to do the thing assigned to action 01. And the
environment returns some reward value.

Finally, the two classifiers which advocated action 01 are placed
in the action set [A]. So endeth the performance cycle. Let’s now
begin to ask about learning. &

We assumed that [P] was already full of classifiers. Let’s still assume
that, but inquire just how the classifiers acquire their predictions.
Consider the action set [A] from the problem just discussed. Each
of its classifiers made a prediction about what reward to expect, and
now we have in hand an actual reward. Let’s adjust the predictions
accordingly.

The update expression says “replace the current p; by p; plus o
times the difference between the current reward and p;”. (The left
arrow means “replace by” or re-assign). The value of a is often
about 0.2, so this step reduces the difference between p; and R by
20%. If R is always the same and the update occurs infinitely many
times, p; will become equal to R. p; will predict the reward exactly.



The interesting aspect of this update procedure, though, is that
it achieves a “recency-weighted” estimate of R. It is a sort of
exponential moving average of R, such that recent values of R have
a greater weight. This is expressed in the equation shown. Recency
weighting allows XCS to track an environment in which the reward
values for given inputs are slowly changing. Faster tracking results
from larger values of a. However, a should not be too large, or the
noise-suppression advantages of averaging will be lost.

Okay, this is how predictions of classifiers in [A] are updated. But
the classifiers in [A] were those which gave the highest system pre-
diction. How do other classifiers in the match set get updated?
Will they ever be in [A]? The answer is: they must sometimes be.
I.e., XCS must sometimes choose apparently sub-optimal actions,
in order to be sure it has sufficiently updated all classifiers. It must
do that to be sure that the apparently optimal classifiers are in fact
optimal!

This is an example of the famous—or infamous—explore/exploit
dilemma. The system would like to choose the best action all the
time in order to maximize its return. But it can’t determine the
best action without sampling other actions. So there is no way it
can ever be certain that its return is maximal. There are many ap-
proaches to the explore/exploit dilemma, and none is perfect. For
this talk, however, let’s assume that—some fixed percentage of the
time—the system chooses a random action from those in the predic-
tion array. I will call this “exploration”. The rest of the time it
will pick the apparently best, highest predicting action. This will be
called “exploitation”. &

Okay, those are the predictions. Where do the classifiers themselves
come from? I usually start with an empty population. So there is
nothing to match the first input. To get started, and for any un-
matched input afterwards, XCS creates a classifier by “covering”.
This occurs as shown. The created rule matches the input, has a
random action, and is assigned a low initial prediction.

9



Notice that the new rule has a certain number of #’s in random
positions. They give the rule an initial generality that will allow it
to be tested in several distinct input situations.

Covering is only necessary initially and the number of classifiers so
created is very small compared with the size of the input space. The
vast majority of new rules are derived from existing rules. &

How are new rules derived? First we need to examine a classifier’s
other two principal parameters, the error and fitness. They are also
updated whenever a classifier is in the action set. The error update
is like that for prediction, except the quantity being averaged is not
R, but the absolute difference between R and the current predic-
tion p;. This is a simple measure of the classifier’s current error.

Now look at the equation for accuracy. It and the next one are very
important in XCS. The classifier’s accuracy, k;, is a negative power-
function of its current error estimate. The power, n, is quite large,
around 5. Accuracy is thus very steeply inverse to error. However,
Kk; is not allowed to have an infinity. Any classifier with error less
than or equal to €y has a high but finite value for accuracy, as shown.

The next step is to compute k;/, termed relative accuracy. It is
Jjust k; divided by the sum of the accuracies of all classifiers in the
current action set. This is important, because what we really want
to know is how the classifiers in [A] compare in terms of accuracy,
and not their absolute accuracies per se.

Finally, the classifier’s fitness F}; is computed by updating its cur-
rent F; using the value of k;/. Thus the fitness of a classifier is
an estimate of its accuracy with respect to the accuracies of other
classifiers in the action sets in which it occurs.

10



Now, let’s make some new classifiers! With some probability—not
always—we run a genetic algorithm in the action set. In XCS,
the GA’s population consists of just the classifiers in the current
action set, not the population [P] as a whole. The steps are as
shown. Two classifiers are selected with probability proportional
to their fitnesses and copied. The copies will be the offspring.

Often, the offspring are crossed, for example as shown, where the
vertical line is a randomly selected crossover point. You can see
that the result of exchanging parts at the crossover point is the
pair of classifiers on the right. As a last step, mutation occurs
at individual positions with a low probability like 0.02. Then the
resulting classifiers are inserted into the population.

Notice what is happening here. In the first place, the more accu-
rate classifiers in [A] tend to reproduce. And, through crossover,
their parts are often recombined. In this example, the results of
crossing are a classifier that is more general than both parents,
and a classifier that is more specific than both. This is not al-
ways the case, but the process tends on balance to search along
the generality-specificity dimension, using pieces of existing higher
accuracy classifiers.

A classifier that is more specific can never be less accurate, as a
moment’s reflection will show. Since the GA often produces a more
specific offspring, it is clear that the population will tend, over time,
toward having classifiers with greater accuracy, i.e., greater ability
to predict the consequences of actions. &

Here is the previous overall diagram, adding the updating and GA
components. The updates occur on every action set. The GA
occurs less often, at a rate set to allow sufficient updating for the
fitness values to be reasonably stable. &

11



Let’s not forget the parents. What happens to them? They stay in
[P], where in effect they enter into competition with their offspring.
But this means that the population has enlarged by two. We do not
want an indefinitely increasing population, so two classifiers must
be deleted from [P].

There are a number of ways to do it, gracefully. Deletion in fact
provides an opportunity to keep the system’s resources balanced.
Here, balance means that approximately the same number of classi-
fiers are devoted to each action set “niche”. This is achieved by
letting the probability that classifier C; will be deleted from [P] be
proportional to the average size of the action sets in which it occurs.

All that is required is to add to the action set updates, an update
of an estimate, kept by each classifier, of the number of classifiers
in its action sets! The probability of deletion is made proportional
to this estimate. Then classifiers in action sets larger than average
will tend to be deleted more often, and the sizes will come down.
Members of small action sets will be less likely to be deleted. As a
result, action sets will tend to be about the same size. Methods for
preferentially eliminating very low fitness classifiers can be added to
this balancing based on action set size. The best deletion technique
so far, in my opinion, is due to Tim Kovacs. [BREAK] &

Let’s look at some results on a classical one-step problem, the
Boolean multiplexer. I’ve used this problem a lot because it is
difficult and non-linear, and because the multiplexers form a fam-
ily of functions from which complexity estimates may be derived.
I’ll use the Boolean 6-multiplexer as the primary example.

12



Let’s first define the function. The “6” means the input vector is
six bits long. It goes into the function box and out comes an answer,
1 or 0. In the example shown, the correct answer is 0. We can get it
two ways. You can get the right answer by thinking of the first two
bits as an address into the remaining four bits. Thus the address
bits, 10, address data bit 2 as shown by the arrow, and that is the
answer. The other way is to process the input through the Boolean
formula. For this input, none of the terms is true, so the result is 0.

The formula in bold says that there is a multiplexer function for
integer values of k greater than 0. So k = 2 gives the 6-multiplexer.
k = 3 gives the 11-multiplexer. k = 4 gives the 20-multiplexer,
whose formula is shown. &

These are results for the 6-multiplexer. In this experiment, random
inputs were presented. If XCS’s decision was correct, the reward
was 1000; if incorrect, 0. Learning problems alternated with test
problems. In a learning problem, XCS functioned as described,
but in the action selection step, it chose a random action. Thus
every learning problem was done in exploration. Updates, GA, and
everything else occurred as described. On test problems, XCS did
the same, except it always chose the action—decision— with the
maximum prediction.

The upper curve plots the fraction of correct test decisions, av-
eraged over the preceding 50 test problems. It reaches 1.0 within
2,000 problems. The dashed curve shows the fall in the system
error. This is the absolute difference between the reward and the
system prediction for the action chosen on test, divided by 1000. I
need to take a moment to explain the third curve.

13



I said that offspring classifiers are added to the population. Well,
not exactly. Given a new offspring, the population is first searched
to see if a classifier with the same condition and action is already
present. If so, the existing classifier’s numerosity parameter is
incremented by one, and the new offspring is discarded. If not, the
new offspring is added with its own numerosity set to 1.

As a result of this creation of so-called macroclassifiers, each mem-
ber of the population is unique. Said another way, what would
otherwise be n structurally identical classifiers are represented in
the population by a single macroclassifier. Macroclassifiers make
the system faster, plus they make it easier to “see the system’s
knowledge”. But, where appropriate, all system operations take
place as though the macroclassifier consisted of its constituent
“micro”-classifiers; i.e., they take the numerosity into account.

The third curve shows the population size in these macroclassifiers.
You can see that it initially rises rapidly from zero but then begins a
gradual fall to 77 by 5,000 problems. What this indicates is that
XCS is finding general classifiers to replace specific ones, so that the
whole problem space can be handled by fewer classifiers. Let’s look
inside after 5,000 problems and see the classifiers that have actually
been evolved. &

This is a listing of the population in descending order of numerosity.
Notice first that the error estimates of all classifiers except the bot-
tom two are zero. Thus accurate classifiers have been found. But
note the first sixteen classifiers. Their address bits are specified,
together with precisely the bit indexed by the address bits.

These classifiers are not only accurate, but are maxzimally general,
in the sense that if you change any specified bit to #, the classifier
will become highly inaccurate. Thus XCS has evolved classifiers
that are both accurate and maximally general. The 16 classifiers
correspond directly to the terms of the Boolean formula.

14



In fact, they constitute an optimal cover of the problem space.
Tim Kovacs has studied the development of classifiers in XCS, and
has made the hypothesis that XCS always drives toward an optimal
cover.

Well, what about the other classifiers in the list? They are present
because the system’s search of the classifier space, of its model,
continues on. New classifiers, not maximally general and some-
times inaccurate, are still present. However, note the developing
abrupt fall in numerosity between numbers 15 and 16. Eventually
it will be very sharp with even fewer classifiers beyond 15 and at
lower numerosities and fitnesses (the fitness values in this listing are
multiplied by 1000). These residual classifiers already have no effect
on performance, as seen from the graph. &

Finally, it is fun to try to observe the creation, or at least the
arrival, of one of these accurate maximally general classifiers. This
shows some action sets for the particular input 101001 and action
0, when that input happened to arrive at problem numbers given
on the left. On problem 247, the action set has three matching
classifiers, including the completely general one, and all have huge
errors. At problem 1135, all of these are gone, and the classifier we
want has appeared, with zero error and a fitness already dominating
the others.

At 1333, our favorite dominates a much smaller action set and its
numerosity is growing. At 2410 it has just one companion, with
fitness zero. And at 2725 it is joined by a couple of more-specific
versions of itself. They are equally accurate but have much lower
numerosities and fitnesses. Why is that?

15



We now should address the question of why XCS drives not only
toward accurate classifiers, but ones that are also maximally gen-
eral, as seen in the previous population listing. If fitness is based on
accuracy, shouldn’t XCS drive toward more specific classifiers, not
more general ones? The answer is at the heart of XCS’s ability to
detect and represent the regularities in its environment. &

I’ve written the explanation out since it is so important. Let’s
go over it in conjunction with the two example classifiers shown.
“Consider...”

The essence is that reproductive success depends not only on fit-
ness, but on reproductive opportunity. A more general classifier
will occur in more action sets, and so have more reproductive
opportunities. By reproducing more, it will attain a greater nu-
merosity. The greater numerosity will mean that more of the fitness
update, which always sums to a constant, one, will be “steered” to-
ward it and less toward its less general competitors. Gradually, if all
are equally accurate, the more general classifier will drive the others
out of the population. I.e., they will disappear.

The system will keep searching for yet more general versions of
an accurate classifier until the point is reached where adding a #
anywhere results in a loss of accuracy. Then the process will stop:
any more general classifier will have little chance of survival.

This generalization mechanism is responsible for the gradual as-
cendancy of the 16 highest numerosity classifiers shown in the
6-multiplexer listing. XCS has in effect detected and represented
the terms of the Boolean formula. For the multiplexer problem,
these are the environmental regularities. [BREAK] &

16



Scale-up is an essential property of a learning system. As problems
get larger, we want the system’s memory or learning effort to grow
much less rapidly than the size of the problem domain. In general,
problem domains grow exponentially with the number of variables
describing them. The worst case would be a system that must also
grow exponentially. This would be a system that treated each input
state individually, say using a gigantic table.

Intuitively, if the problem domain contains regularities, we would
like the learning system to grow only as fast as the number of regu-
larities. The multiplexer family of functions permits a test of XCS’s
capability in this regard. The three graphs show results for the 6-,
11-, and 20-multiplexers. Let us look at learning effort, as measured
by the number of inputs required to reach 100% performance.

For the three tasks, the 100% point is reached at approximately
2,000, 10,000, and 50,000 problems, respectively. Thus each differs
from the previous by a factor of five. Examination of the Boolean
formulas shows that the number of terms doubles in going from one
task to the next, i.e., a factor of two. At the same time, the input
domain size goes from 2° to 21! to 229, i.e., it grows exponentially. In
fact, the 20-multiplexer domain is so large that XCS has seen only
about 5% of it by the time XCS reaches 100% performance.

My tentative conclusion from these relationships is that XCS’s
learning effort—in effect, its learning complexity—is much more
closely tied to the number of regularities or generalizations in the
input domain, than it is to the size of the domain itself. This is
a very desirable property, if true. Several popular network-based or
network-like approaches do not have the property. [BREAK]| &

Let us go on to sequential or multi-step problems. They have the
new complication that reward does not necessarily arrive on every
step. Sometimes there is no reward on a step, so what should the
system do, or learn?

17



Theoretical treatment of this issue is by now quite vast, and forms
much of the subject called reinforcement learning. 1 will show one
basic approach through a fairly simple example and some appeal to
intuition.

Consider this portion of a grid-world. The system wants to be
able to reach food, F, from any starting point, and it cannot pass
through cells containing an O. One widely used reinforcement learn-
ing approach, called Q-learning, is to learn a value function of the
states and actions. Then, in a state, the system chooses the action
with the highest value.

How would this work out? Suppose we are in the state, or cell, just
below the F. If we move North, we will get an external, a real, re-
ward. So it makes sense to make the value function, say, 1, for that
action in that state. What if we are one step away from that state,
say under the O, and we move to the East? Well, we could then go
North and get the reward, so maybe the East move should be valued
the same, 1. That does not seem satisfactory, since the state under
the O is two steps from the F. Let us instead value the East move
at v times the value of the best move in the state under the F, i.e., v
times 1, where « is a constant somewhat less than 1, like 0.9.

Now let’s go back to the state under the F, and consider a move to
the West. How should it be valued? Using the rule just mentioned,
we should value it at v times the value of the best move from the
resulting state, thus v times v, or 42. That’s nice, because it reflects
the fact that the minimal path if you start by moving West is three
steps long. Continuing this way, we can fill in the action-values
for every move in every state, and they will all reflect similarly the
minimal distance to food.

Notice that we can fill in all the action-values based only on local
updates. At any one time, we only need to remember the values
of the current and succeeding states. By trying the moves and doing
the updates, the action-values will gradually become reliable.

18



What has been proved for Q-learning is that if the environment
is Markov and the updates are done sufficiently often, the action-
value estimates will converge to values such that taking the action
with the maximum value in every state will always result in the
shortest path to the goal. If external reward occurs in more than
one state, a similar, more general result holds stating that the
above procedure will result in action-values such that following
their maxima will result in an optimal flow of (discounted) future
reward.

Now, to put this in XCS terms, the expression below shows the up-
date procedure for updating predictions p; in multi-step problems.
The prediction is updated based on the maximum system predic-
tion in the succeeding state plus any external reward, 7;,m,, in
the current state. While this procedure is based on the Q-learning
model, it is new because it is based on predictions of rules, which
may be general in some degree, and not on predictions tied to indi-
vidual states. Like all reinforcement learning procedures involving
generalization, there are no proofs that the procedure results in an
optimal policy. But empirically it works quite well. &

Here, quickly, is the full XCS diagram, with the multi-step parts
added in. You see max, discount, summation, and time delay boxes
required for the update expression on the last slide. For computa-
tional reasons, the update is actually done retrospectively, but the
effect is identical to that expression. [BREAK] &

Now I will rather quickly go over some multi-step results. While
XCS has by now been tried in quite a number of environments,
the one here, called Woods2, is good to talk about because it
has a surprising number of regularities that XCS captures in its
generalizations.

19



The system, an animat represented by an asterisk, is placed ran-
domly in an open cell of Woods2 and then, under control of XCS,
moves until it bumps into food. There are two kinds of food, which
look different to the animat, and there are two kinds of impen-
etrable rocks, which also look different. The actual coding of the
sensory input vector is shown at the right. The sense vector is 24
bits long.

The left-hand graph shows performance, in average steps to food,
versus the number of explore problems so far. An explore problem
is a problem in which the animat starts at a random position, moves
randomly, updating and doing the GA as it goes, all as previously
described, and finally arrives at a food. Performance measures
the number of steps to food on interleaved test problems, in which
the animat always chooses the best move. You see that performance
rather quickly comes down to the optimum. The three curves are
for three different XCS regimes.

The graph on the right shows population size in terms of macroclas-
sifiers. The message is that for the dashed regime, the number of
classifiers condenses, via generalization, to a value less than 100.
Since there are 560 distinct state-action pairs in Woods2, this indi-
cates XCS’s ability to detect and represent regularities in Woods2.

&

In particular, this slide shows two of the generalizations found. Ac-
tually this data is from Woodsl, which has just 2 bits per object in-
stead of 3, but the results are similar. The first classifier matches in
all positions marked “3”. It says, in effect, I don’t care about any-
thing else, but if there is a blank cell to the West, then the action-
value of moving North is 504. Since 504 equals 1000 times ~2 in
this case, the classifier in effect predicts a distance to food of three
steps. XCS has discovered this truth about all states marked 3 and
expressed it in a single classifier. Similarly, the other classifier ex-
presses a regularity about all states with a non-blank object to the
West. [BREAK]

20



I’d like to pause now and show a couple of videos. The first shows
XCS after having learned Woods2. You will see the animat start in
a random state, then proceed as in a test problem to food— nearly
always by the shortest path. [SHOW VIDEO]

Now I’ll show a brief video from another environment, Maze5. The
video shows XCS learning from scratch. Again the animat will start
at a random position. During a learning problem, its steps will be
random with probability 0.5. It will choose the apparent best move
the rest of the time. In between learning problems will be a test
problem, in which all steps are exploit steps. The display is much
faster in this video. At the beginning, the movements are very
random looking. But that changes... [SHOW VIDEO)]

Now I will describe a few current research directions. &

It is important to move from discrete inputs and actions, and also
time—meaning finite “time-steps”—to continuous spaces. Inputs
are of course often continuous, so that the sense vector becomes a
real vector. The first expression suggests a way of doing classifier
conditions for real vector inputs.

For each input component, there are two values, a “center”, and a
“spread”. The center plus or minus the spread constitutes a sort
of receptive field. For each component there is a receptive field and
if the input components all fall within the corresponding receptive
fields, the condition is satisfied, or matches. If there are n input
components, the condition consists of 2n numbers.

21



The GA would act on these 2n numbers. Most often, the GA
works with bitstrings. Real number strings are a somewhat differ-
ent world. The reason is that the sampling implicitly performed
by the GA is most effective on bitstrings, that is, on numbers ex-
pressed using the smallest possible practical base, 2. For real num-
bers, instead of converting everything to base 2, there has grown
up a set of genetic operators including blending recombination and
hill-climbing-like mutation. There is also a distinct evolutionary ap-
proach, originally from Germany, known as the Evolutionsstrateg:e.

For continuous actions, note that it is quite natural to express the
classifier as shown in the second expression. It says, if the input
is within these ranges, then if the action, a continuous quantity
like a turn angle, is within this range, then the payoff prediction
is p. This just reflects the fact that it is the space of inputs and
actions, not just inputs, that we are concerned with. Of course, this
classifier will have some finite error—the actual payoff received over
its domain will vary—but the error may be acceptable.

With such classifiers, it may be possible to compute continuous
actions by some form of combination of the classifiers that match.
Combinations are analogously computed in the field of fuzzy logic,
and in fact there are some fuzzy classifier systems in existence,
though they do not define fitness as in XCS.

Finally, continuous time. Suppose you want to make mid-course
corrections in your action very frequently, in order to achieve fine
control. On a discrete basis, this could enormously expand the
number of states, and it would take forever to learn the action-
values. This problem is just beginning to be addressed in the
reinforcement learning literature. I can’t offer much at this point
except the hint shown.

I’d like to go back now to the case of continuous, or real inputs. I’ll
show a few slides from some recent work I’ve done on that problem.
[DISCUSS REAL SLIDES] &

22



Up to now I have talked about Markov environments. But non-
Markov environments are by far the predominant kind. McCal-
lum’s Maze is a very simple example. The two states marked with
* look identical to an animat that sees only one cell away. Yet the
optimal actions in each are different. How can the system learn
what to do?

In a Markov environment, the optimal action is always determinable
from the current sensory input. No past information need be re-
membered. In a non-Markov environment, this is no longer the
case. For the animat in those two positions, current input is insuf-
ficient to decide what to do. Markov environments are rare in the
real world. Non-Markov environments are the rule. So it is vital to
understand how to learn them.

One approach, the “history window”, would concatenate sufficient
previous inputs to the current input vector to make the environ-
ment, in effect, Markov. Classifier conditions would be extended
accordingly. In McCallum’s Maze, only the current and one previ-
ous input vector would be necessary. But other environments need
larger history windows to resolve their so-called aliased states. In
general, the space of input histories grows exponentially. Further-
more, the window information is only needed at aliased states. For
all other states it’s excess baggage.

In light of these problems, some systems, including neural net-
works, attempt to detect correlations between the current best
action and past input events. The so-called ”curse of dimensional-
ity” is still not avoided, however.

The checked approach, “adaptive internal state”, looks to me more
promising than these, and is directly suitable for XCS. Observe that
many decisions based on the past require only one or a few bits of
information: Have I had lunch? If so, turn left toward class; if not,
turn right toward the cafeteria. Such information could be stored in
a short internal bit-register.

23



Consider extending the classifier format as shown at the bottom.
The condition is extended to include an internal condition and the
action is extended to include an internal action. The overall action
performed by the system is then a combination of the internal
action, in which the system writes into the register, and an external
action, which is a physical action in the environment. Furthermore,
to enter the match set, a classifier’s condition must match both the
environmental input and the contents of the register.

The hypothesis is that in non-Markov environments, this exten-
sion of XCS will evolve classifiers that write and read the internal
register in such a way as to do the right thing in the aliased states!

Dave CIliff and Suzi Ross first tried the memory-register approach
with the classifier system ZCS. They got good, though not optimal,
performances in non-Markov environments such as McCallum’s
Maze. Recently, Pier Luca Lanzi extensively investigated using
the register with XCS. I will discuss some slides from his work.
[DISCUSS MEMORY SLIDES] &

Next, while we have seen that XCS is powerful at detecting and
representing conjunctive generalizations—ANDs of variables— it is
restricted with respect to other kinds of regularities, since it can-
not straightforwardly express them. Consider the simple example
shown here. It is a perfectly reasonable environmental regularity.
Yet it would take a whole set of ordinary classifiers to express it.
However, with a condition which said simply (> « y)—this is Lisp’s
way of saying true if x is greater than y—you could say it in one
classifier.

Why not express classifier conditions as Lisp expressions (which are
called s-expressions)? The whole energetic field called genetic pro-
grammaing has devoted itself to the evolution of such expressions.
So the time is ripe to see if a classifier system can be built using
s-classifiers! I actually thought of this five years ago, and hoped
someone expert in genetic programming would try it.

24



Pier Luca Lanzi, who is expert in both XCS and genetic program-
ming, took it up about a year ago. He’s had fascinating results, and
will give a talk on this topic in the conference on Saturday.

To be sure that you don’t get the impression that XCS is only good
in simulation, I should mention that I have done some preliminary
work with XCS in both the Khepera robot simulator and the Khep-
era robot itself. This is really the subject of a full talk, so I will
just show a video in which Khepera has learned to move around a
simple environment without bumping into the walls. To teach this,
reinforcements were only given if, when the robot was not close to a
wall, it went straight ahead. In contrast, the behavior near a wall
was not directly reinforced, but was learned as discussed earlier for
sequential problems. [SHOW VIDEO] &

Finally, let me make this summary, which suggests some key differ-
ences between XCS and other reinforcement learning systems.

The big difference is that XCS is rule-based, not network-based.
Under that heading it seems important that XCS’s structure, the
classifiers, is created as needed; this differentiates it from things like
back-prop networks in which sufficient structure must be present
in advance. In things like radial basis function and nearest neighbor
approaches, structure can be created as needed, but that structure
tends to be fixed and is not further adapted, as are XCS’s classifiers.

Second, from comparisons—for instance on the multiplexer—the
learning speed of XCS is at least as fast as for network approaches.
I think this is because a classifier is already a non-linear structure,
so that non-linear problems are more quickly adapted to.

Third, from the multiplexer results, it is likely that the learning
complexity is significantly better than for networks. Many kinds
of networks are known not to scale up well. They grow with the
problem space, not the complexity of the problem function. The
same is true of radial basis function approaches.

25



Fourth, classifiers have this neat ability to keep lots of statistics
about themselves, such as their error, etc. It is very awkward to
do this with networks—you end up needing a separate network for
each type of statistic! I think that as we explore, we will find many
more statistics that are useful in classifier systems.

Fifth, since classifiers are rules, the knowledge they embody is rea-
sonably “transparent”. In contrast to systems like networks where
knowledge is distributed over the elements, knowledge in XCS is
represented relatively clearly and compactly. This ability to “see
the knowledge” will turn out very important as XCS is applied to
data inference and other areas where understandability to human
users is vital.

Finally, the fact that classifiers are rules, and can be manipulated
like rules, may turn out very important when we want our systems
to do things like reason. This is a bow to standard AI. But maybe
adaptive classifiers are at just the right midpoint between symbolic
and connectionist approaches to intelligence.

26



