
Slackware Linux Essentials
The Official Guide To Slackware Linux

David Cantrell Logan Johnson Chris Lumens

Linux is a registered trademark of Linus Torvalds. Slackware is a registered trademark of BSDi and
Patrick Volkerding.

Slackware Linux Essentials. 1

The Official Guide To Slackware Linux. 1

David Cantrell Logan Johnson Chris Lumens. 1

Preface. 5

Conventions Used in This Book. 6

I. Introduction. 6

Chapter 1. An Introduction to Slackware Linux. 6

What is Linux?. 6

What is Slackware?. 7

Open Source and Free Software. 7

Chapter 2. Help. 8

System Help. 8

man. 8

The /usr/doc Directory. 9

HOWTOs and mini-HOWTOs. 9

Online Help. 10

Website and Forum.. 10

E-mail Support 10

II. Installation. 10

Chapter 3. Installation. 10

Getting Slackware. 10

The Official Disc and Box Sets. 10

Via the Internet 11

System Requirements. 11

The Software Series. 12

Installation Methods. 12

Floppy. 12

CD-ROM... 13

NFS. 13

Boot Disk. 13

Root Disk. 14

Supplemental Disk. 14

Making the Disks. 14

Partitioning. 14

The setup Program.. 16

HELP. 17

KEYMAP. 17

ADDSWAP. 17

TARGET. 18

SOURCE. 18

SELECT. 19

INSTALL. 19

CONFIGURE. 20

EXIT. 25

Summary. 25

III. Configuration. 25

Chapter 4. System Configuration. 26

System Overview.. 26

File System Layout 26

Finding Files. 28

which. 28

whereis. 28

find. 29

locate. 29

The /etc/rc.d Directory. 29

System Startup. 29

Runlevel Initialization Scripts. 30

Network Initialization. 31

System V Compatibility. 31

Other Files. 31

Selecting A Kernel 32

The /kernels Directory On The Slackware CD-ROM... 32

Compiling A Kernel From Source. 33

Using Kernel Modules. 35

Summary. 35

Chapter 5. Network Configuration. 35

Network Hardware. 35

netmods. 36

PCMCIA network devices. 36

Network Utilities. 36

ifconfig. 36

route. 37

netconfig. 37

pppsetup. 38

The /etc files. 44

/etc/inetd.conf 44

/etc/resolv.conf 45

/etc/hosts. 45

rc.inet1. 46

rc.inet2. 46

NFS (Network File System) 46

tcp_wrappers. 47

Summary. 48

Chapter 6. The X Window System.. 48

xf86config. 48

XF86Setup. 59

Session Configuration Files. 60

xinitrc and ~/.xinitrc. 60

.Xresources and .Xdefaults. 61

Servers and Window Managers. 62

Selecting a Desktop. 62

Exporting displays. 64

Summary. 66

Chapter 7. Booting. 66

LILO.. 66

LOADLIN.. 68

Dual Booting. 69

Windows 9x/DOS. 69

Using LILO.. 70

Using LOADLIN.. 71

Windows NT. 72

Linux. 73

Summary. 73

IV. Using Slackware Linux. 73

Chapter 8. The Shell 74

Users. 74

Logging In. 74

Root: The Superuser 74

The Command Line. 75

Running Programs. 75

Wildcard Matching. 75

Input/Output Redirection and Piping. 76

The Bourne Again Shell (bash) 76

Environment Variables. 76

Tab Completion. 77

Virtual Terminals. 78

Summary. 78

Chapter 9. Filesystem Structure. 79

Ownership. 79

Permissions. 79

Links. 81

Mounting Devices. 82

fstab. 82

mount and umount 83

NFS Mounts. 83

Summary. 83

Chapter 10. Handling Files and Directories. 84

ls. 84

cd. 85

more. 85

less. 86

cat 86

touch. 87

echo. 87

mkdir 87

ln. 88

cp. 88

mv. 89

rm.. 89

rmdir 89

Summary. 90

Chapter 11. Process Control 90

Backgrounding. 90

Foregrounding. 91

ps. 92

kill 94

top. 95

Summary. 96

Chapter 12. Essential System Administration. 96

Users and Groups. 96

Supplied Scripts. 96

By hand. 99

Changing Passwords. 101

Changing User Information. 102

Shutting Down Properly. 102

Summary. 104

Chapter 13. Basic Network Commands. 104

ping. 104

finger 104

elnet 105

FTP Clients. 106

ftp. 106

ncftp. 106

email 107

pine. 107

elm.. 108

mailx. 109

lynx. 110

wget 110

traceroute. 111

Talking to Other People. 111

talk. 111

ytalk. 112

Summary. 113

Chapter 14. Archive Files. 113

gzip. 113

bzip2. 114

tar 115

zip. 117

Summary. 117

Chapter 15. vi 118

Starting vi 118

Modes. 119

Command Mode. 119

Insert Mode. 120

Opening Files. 121

Saving Files. 121

Quitting vi 122

vi Configuration. 122

vi Keys. 123

Summary. 124

Chapter 16. Slackware Package Management 124

Overview of Package Format 124

Package Utilities. 125

pkgtool 125

installpkg. 126

removepkg. 127

upgradepkg. 127

rpm2tgz/rpm2targz. 128

Making Packages. 128

explodepkg. 128

makepkg. 129

Making Tags and Tagfiles (for setup) 129

Summary. 129

Chapter 17. ZipSlack and BigSlack. 130

What is ZipSlack/BigSlack?. 130

Advantages. 130

Disadvantages. 130

Getting ZipSlack/BigSlack. 130

Installation. 131

Booting ZipSlack/BigSlack. 131

Adding, Removing, and Upgrading Software. 132

Common Problems. 132

Unable to open initial console. 132

Kernel panic: VFS : Unable to mount root fs. 132

Getting Help. 132

ZipSlack FAQ.. 132

ZipSlack Discussion Forum.. 132

Support Via Email 133

Summary. 133

Glossary. 133

Appendix A. The GNU General Public License. 141

Preface
The Slackware Linux operating system is a powerful platform for Intel-based computers. It is designed to
be stable, secure, and functional as both a high-end server and powerful workstation.

This book is designed to get you started with the Slackware Linux operating system. It's not meant to
cover every single aspect of the distribution, but rather to show what it's capable of and give you a basic
working knowledge of the system.

As you gain experience with Slackware Linux, we hope you find this book to be a handy reference. We
also hope you'll lend it to all of your friends when they come asking about “that cool Slackware Linux
operating system you're running”.

While this book may not an edge-of-your-seat novel, we certainly tried to make it as entertaining as
possible. With any luck, we'll get a movie deal. Of course, we also hope you are able to learn from it and
find it useful.

And now, on with the show.

Conventions Used in This Book
This book is written in SGML using the DocBook 4.0 DTD. As such, we used the builtin DocBook
elements for filename reference, command reference, and file contents reference. This provides consistent
typefaces for all aspects of the book. You'll need to be familiar with a few of our conventions before you
continue.

Whenever we mention a command that you are to run, it will look like this:

 command
On rare occasion, a command might be longer than the space on one row of this book. When that
happens, we'll wrap the command onto the next line and use a backslash to indicate that the command
continues. Here's an example from later in the book:

 ifconfig eth0 192.168.1.10 broadcast 192.168.1.255 \

 netmask 255.255.255.0
Filenames and directories are referred to throughout the book. They will look like this:

 filename

 directory
Screens of command output and the contents of configuration files are also used in the book. They will
appear in this typeface:

 command output
Sometimes when we list commands that you're to run, we will display them as being run from a sample
prompt. When a command is meant to be run as a regular user, we will display it on a prompt that is a
dollar sign ($). When a command is meant to be run as root, we will display it on a prompt that is a hash

mark (#).

I. Introduction

Chapter 1. An Introduction to Slackware Linux
What is Linux?
Linux was started by Linus Torvalds in 1991 as a personal project. He was looking for a way to run a
Unix-based operating system without spending a lot of money. In addition, he wanted to learn the ins-
and-outs of the 386 processor. It was released free-of-charge to the public so that anyone could hack on it
and make improvements under the GNU General Public License (see the section called Open Source and
Free Software and Appendix A).

Today, Linux has grown into a major player in the operating system market. It has been ported to run on a
variety of architectures including Compaq's Alpha, Sun's SPARC and UltraSPARC, and Motorola's
PowerPC chips (through Apple Macintosh and IBM RS/6000 computers, for example). Linux is now
being developed by hundreds (if not thousands) of programmers from all over the world. It runs programs
like Sendmail, Apache, and BIND, which is some of the most popular server software on the Internet.

The term “Linux” really only refers to the kernel - the core of the operating system. This part is
responsible for controlling your processor, memory, hard drives, and peripherals. That's all that Linux
really does. It controls the operations of your computer and makes sure that all the programs behave. All
those programs that make Linux useful are developed by independant groups. The kernel and programs
are bundled together by various companies and individuals to make an operating system. We call this a
Linux distribution.

What is Slackware?
Slackware was the first Linux distribution to achieve widespread use. It was started by Patrick Volkerding
in late 1992. He had gotten introduced to Linux when he needed an inexpensive LISP interpreter for a
project. At that time, there were very few distributions, so Patrick went with the distribution from Soft
Landing Systems (SLS Linux).

However, SLS had some problems, so Patrick started to fix little bugs as he found them. Eventually, he
decided to merge all of those fixes into his own distribution for himself and friends. This private
distribution quickly gained popularity, and Patrick made it available to the public under the name of
Slackware.

Along the way, Patrick added new things to the distribution like a user-friendly installation program
based on a menuing system and the concept of package management. This allows users to easily add,
remove, or upgrade software packages from their system.

Open Source and Free Software
Within the Linux community, there are two major ideological movements at work. The Free Software
movement, which we'll get into in a moment, is working toward the goal of making all software free of
intellectual property restrictions, which it believes hamper technical improvement and work against the
good of the community. The Open Source movement is working toward most of the same goals, but takes
a more “pragmatic” approach to them, preferring to base its arguments on the economic and technical
merits of making source code freely available, rather than the moral and ethical principles that drive the
Free Software Movement.

The Free Software movement is headed up by the Free Software Foundation, which is a fund-raising
organization for the GNU project. Free software is more of an ideology. The oft-used expression is “free
speech, not free beer”. In essence, free software is an attempt to guarantee certain rights for both users
and developers. These freedoms include the freedom to run the program for any reason, the freedom to
study and modify the source code, the freedom to redistribute the source, and the freedom to share any
modifications you make. In order to guarantee these freedoms, the GNU General Public License (GPL)
was created. The GPL, in brief, provides that anyone distributing a compiled program which is licensed
under the GPL must also provide source code, and is free to make modifications to the program as long as
those modifications are also made available in source code form. This guarantees that once a program is
“opened” to the community, it cannot be “closed” except by consent of every author of every piece of
code (even the modifications) within it. Most Linux programs are licensed under the GPL.

It is important to note that the GPL does not say anything about price. As odd as it may sound, you can
charge for free software. The “free” part is in the liberties you have with the source code, not in the price
you pay for the software. (However, once someone has sold you, or even given you, a compiled program
licensed under the GPL they are obligated to provide its source code as well.)

At the forefront of the younger Open Source movement, the Open Source Initiative is an organization that
solely exists to gain support for open source software. That is, software that has the source code available
as well as the ready-to-run program. They do not offer a specific license, but instead they support the
various types of open source licenses available.

The idea behind the OSI is to get more companies behind open source by allowing them to write their
own open source licenses and have those licenses certified by the Open Source Initiative. Many
companies want to release source code, but do not want to use the GPL. Since they cannot radically
change the GPL, they are offered the opportunity to provide their own license and have it certified by this
organization.

While the Free Software Foundation and the Open Source Initiative work to help each other, they are not
the same thing. The Free Software Foundation uses a specific license and provides software under that
license. The Open Source Initiative seeks support for all open source licenses, including the one from the
Free Software Foundation. The grounds on which each argues for making source code freely available
sometimes divides the two movements, but the very fact that two ideologically diverse groups are
working toward the same goal lends credence to the efforts of each.

Chapter 2. Help
There are times when you may need help with a specific command, setting up a program, or getting a
piece of hardware to work. Luckily, there are a variety of ways that you can get help. If you installed the
packages from the F software series, you have a wealth of help already installed. Programs also come
with help about their options, configuration files, and usage. Finally, you can check the official Slackware
website for help.

System Help

man

man (short for “manual”) is a traditional form of online documentation in Unix and Linux operating
systems. Specially formatted files, “man pages”, are written for most commands and distributed with the
software. Running man somecommand will display the man page for (naturally) the command or
program somecommand.

Because there are so many of them, man pages are grouped into enumerated sections. This system has
been around so long that you will often see commands, programs, and even programming library
functions referred to with their man section number. For instance, you might see man(1). This tells you

that man is documented in section 1 (user commands); you can specify that you want the section 1 man
page for “man” with the command man 1 man. Specifying the section that man should look in is useful
in the case of multiple items with the same name.

Table 2-1. Man Page Sections

Section Contents
Section 1 user commands (intro only)
Section 2 system calls
Section 3 C library calls
Section 4 devices (e.g., hd, sd)
Section 5 file formats and protocols (e.g., wtmp, /etc/passwd, nfs)
Section 6 games (intro only)
Section 7 conventions, macro packages, etc. (e.g., nroff, ascii)
Section 8 system administration (intro only)
In addition to man(1), there are the commands whatis(1) and apropos(1), whose shared purpose is to
make it easier to find information in the man system. whatis gives a very brief description of system
commands, somewhat in the style of a pocket command reference. apropos is used to search for a man
page containing a given keyword.

See their man pages for details. ;)

The /usr/doc Directory

The source for most packages that we build comes with some sort of documentation. README files,
usage instructions, license files... any sort of documentation that comes with the source is included and
installed on your system in the /usr/doc directory.

If man pages don't provide enough information, /usr/doc should be your next stop.

HOWTOs and mini-HOWTOs

It is the true spirit of community that brings you the HOWTO/mini-HOWTO collection. These files are
exactly what they sound like-- documents describing how to do stuff. If you install the HOWTO
collection package, HOWTOs will be installed to /usr/doc/Linux-HOWTOs and the mini-HOWTOs to
/usr/doc/Linux-mini-HOWTOs.

Also included in the same package is a collection of FAQs (Frequently Asked Questions lists-- with
answers) which are installed to the same place.

These files are well worth reading whenever you're not quite sure how to proceed with something. An
amazing range of topics are covered in sometimes surprising detail.

Online Help
In addition to the documentation provided and installable with the Slackware Linux operating system,
there are several online resources available.

Website and Forum

www.slackware.com

The official Slackware Linux website is chock full of yummy Slackware documentation. There are
introductory help pages, an installation guide, Frequently Asked Questions lists, and all sorts of other
good stuff for new (and often experienced) users.

Also available at the website is the Slackware Forum, a section where users can discuss their Slackware
experiences and help each other with questions and problems. It's proven to be a very popular and helpful
resource, and should probably be your first stop for support. (Because of the wide audience that your
message will reach, you may sometimes have a better chance of getting a quick solution; chances are
someone's overcome almost any problem you might run into). Please do search the forum for your
question, to see if it has already been asked and answered, before posting.

E-mail Support

Anyone who buys an official CD set is entitled to free installation support via e-mail. That said, we're of
the old school. We do our best to help anyone who emails us with support questions. Please check your
documentation and the website (especially the FAQs and Forum) before e-mailing; you may get a faster
answer that way, and the less e-mail we have to answer, obviously the sooner we will be able to help
everyone.

The e-mail address for technical support is: <support@slackware.com>. Other e-mail addresses and
contact information are listed on the website.

II. Installation

Chapter 3. Installation
Before you can use Slackware Linux, you'll have to obtain and install it. Getting Slackware is as easy as
purchasing it or downloading it for free over the internet. Installing it is also easy as long as you have
some basic knowledge about your computer and are willing to learn a few other things. The installation
program itself is very much a step-by-step process. Because of this, you can be up and running very
quickly.

Getting Slackware

The Official Disc and Box Sets

The official Slackware Linux CD set is available from Slackware, Inc. By purchasing the official disc set,
you get the convenience of a CD installation, installation support via email, a 30-page installation
booklet, and more. The Slackware box set includes the CD set, plus the official Slackware Linux manual.
Perhaps most importantly, purchasing the disc set is an excellent way to directly support the Slackware
Linux Project (and help us buy nachos).

Table 3-1. Slackware, Inc. contact information

Method Information
telephone 1-800-786-9907
website http://www.slackware.com
email <orders@slackware.com>

snail mail 4041 Pike Lane, Suite F Concord, CA 94520-1207

Via the Internet

Slackware Linux is also freely available over the Internet. You may email in your support questions, but
higher priority will be given to those who have purchased the official CD set.

The official Slackware Linux Project website is located at:

http://www.slackware.com/

The primary FTP location for Slackware Linux is:

ftp://ftp.slackware.com/pub/slackware/

System Requirements
An easy Slackware installation requires, at minimum, the following:

Table 3-2. System Requirements

Hardware Requirement
Processor 386
RAM 16 MB
Disk Space 500MB
Floppy Drive 1.44 MB
If you have the bootable CD, you will probably not need a floppy drive. Of course, it stands to reason that
if you plan to install from CD you will need a CD-ROM drive. A network card is required for an NFS
install. See the section called NFS for more information.

The disk space requirement is somewhat tricky. The 500MB recommendation is usually safe, but if you
do a full install, you will need around one gigabyte of available hard disk space. Most users don't do a full
install. In fact, many run Slackware on as little as 100MB of hard disk space.

Slackware can be installed to systems with less RAM and smaller hard drives, but doing so will require a
little elbow grease. If you're up for a little work, take a look at the LOWMEM.TXT file in the distribution tree
for a few helpful hints.

The Software Series
For reasons of simplicity, Slackware has historically been divided into software series. Once called “disk
sets” because they were designed for floppy-based installation, the software series are now used primarily
to categorize the packages included in Slackware. Today, floppy installation is still possible for the A and
most of the N series (see below).

The following is a brief description of each software series.

Table 3-3. Software Series

Series Contents
A The base system. Contains enough software to get up and running and have a text editor and

basic communication program.
AP Various applications that do not require the X Window System.
D Program development tools. Compilers, debuggers, interpreters, and man pages are all here.
DES Includes the GNU libc crypt() function.
E GNU emacs.
F FAQs, HOWTOs, and other miscellaneous documentation.
GTK The GNOME desktop environment, GTK widget library, and the GIMP.
K The source code for the Linux kernel.
KDE The K Desktop Environment. An X environment which shares a lot of look-and-feel features

with the MacOS and Windows. The Qt library, which KDE requires, is also in this series.
N Networking programs. Daemons, mail programs, telnet, news readers, and so on.
T teTeX document formatting system.
TCL The Tool Command Language. Tk, TclX, and TkDesk.
X The base X Window System.
XAP X Applications that are not part of a major desktop environment (for example, Ghostscript and

Netscape).

XD X11 program development. Libraries, server link kit, and PEX support.
XV XView libraries, the OpenLook Virtual and Non-Virtual Window Managers, and various other

XView applications.
Y Games

Installation Methods

Floppy

While it was once possible to install all of Slackware Linux from floppy disks, the increasing size of
software packages (indeed, of some individual programs) has forced the abandonment of the floppy
install for all but two of the software series. The A series is still fully installable from floppy disks, and
most of the N series is as well. This will give you a very basic system which can be used to install the rest
of the distribution via a network.

Please note that floppy disks are still required for a CD-ROM install if you do not have a bootable CD, as
well as for an NFS install.

CD-ROM

If you have the bootable CD, available in the official disc set published by Slackware, Inc. (see the
section called Getting Slackware), a CD-based installation will be a bit simpler for you. If not, you will
need to boot from floppies. Also, if you have special hardware that makes usage of the kernel on the
bootable CD problematic, you may need to use specialized floppies.

See the section called Boot Disk through the section called Supplemental Disk for information on
choosing and creating floppies from which to boot, if necessary.

NFS

NFS (the Network File System) is a way of making filesystems available to remote machines. An NFS
install allows you to install Slackware from another computer on your network. The machine from which
you are installing needs to be configured to export the Slackware distribution tree to the machine to which
you're installing. This, of course, involves some knowledge of NFS, which is covered in the section called
NFS (Network File System) in Chapter 5 .

It is possible to perform an NFS install via such methods as PLIP (over a parallel port), SLIP, and PPP
(though not over a modem connection). However, we recommend the use of a network card if available.
After all, installing an operating system through your printer port is going to be a very, very slow process.

Boot Disk
The boot disk is the floppy you actually boot from to begin the installation. It contains a compressed
kernel image which is used to control the hardware during installation. Therefore, it is very much required
(unless you're booting from CD, as is discussed in the section called CD-ROM). The boot disks are
located in the bootdsks.144/ directory in the distribution tree.

There are more Slackware boot disks than you can shake a stick at (which is to say about 60). A complete
list of boot disks, with a description of each, is available in the Slackware distribution tree in the file
bootdsks.144/WHICH.ONE. However, most people are able to use the bare.i (for IDE devices) or
scsi.s (for SCSI devices) boot disk image.

See the section called Making the Disks for instructions on making a disk from an image.

After booting, you will be prompted to insert the root disk. We recommend that you just humor the boot
disk and play along.

Root Disk
The root disk contains the setup program and a filesystem which is used during installation. It is also
required. The root disk images are located in the directory rootdsks in the distribution tree.

Fortunately, there are considerably fewer root disk images than there are boot disks. In fact, there are only
three.

• color.gz is the one most people use. It's in color, which is nice.

• text.gz is just like color.gz, only it's not in color. Go figure.

• umsdos.gz is used for installing to a FAT (Windows) partition, which is generally recommended
only for experimental purposes. For those interested in trying Slackware on a Windows partition, we
recommend using ZipSlack or BigSlack.

Supplemental Disk
A supplemental disk is needed if you are performing an NFS install or installing to a system with
PCMCIA devices. Supplemental disks are in the rootdsks directory in the distribution tree, with the
filenames network.dsk and pcmcia.dsk.

The root disk will instruct you on the use of supplemental disks when it is loaded.

Making the Disks
Once you've selected a boot disk image, you need to put it on a floppy. The process is slightly different
depending on which operating system you're using to make the disks. If you're running Linux (or pretty
much any Unix-like OS) you'll need to use the dd(1) command. Assuming hejaz.dsk is your disk image
file and your floppy drive is /dev/fd0, the command to make a hejaz.dsk floppy is:

 # dd if=hejaz.dsk of=/dev/fd0
If you're running a Microsoft OS, you'll need to use the RAWRITE.EXE program, which is included in
the distribution tree in the same directories as the floppy images. Again assuming that hejaz.dsk is your
disk image file and your floppy drive is A:, open a DOS prompt and type the following:

 c:\ rawrite a: hejaz.dsk

Partitioning
After booting from your preferred media, you will need to partition your hard disk. The disk partition is
where the Linux filesystem will be created and is where Slackware will be installed. At the very
minimum we recommend creating two partitions; one for your root filesystem (/) and one for swap space.

After the root disk finishes loading, it will present you with a login prompt. Log in as root (there is no
password). At the shell prompt, run either cfdisk(8) or fdisk(8). The cfdisk program provides a more
user-friendly interface than the regular fdisk program, but does lack some features. We will briefly
explain the fdisk program below.

Begin by running fdisk for your hard disk. In Linux, the hard disks do not have drive letters, but are
represented by a file. The first IDE hard disk (primary master) is /dev/hda, the primary slave is
/dev/hdb, and so on. SCSI disks follow the same type system, but are in the form of /dev/sdX. You will
need to start fdisk and pass it your hard disk:

 # fdisk /dev/hda

Like all good Unix programs, fdisk gives you a prompt (thought you were getting a menu, right?). The
first thing you should do is examine your current partitions. We do that by typing p at the fdisk prompt:

 Command (m for help): p
This will display all sorts of information about your current partitions. Most people pick a free drive to
install to and then remove any existing partitions on it to create room for the Linux partitions.

IT IS VERY IMPORTANT THAT YOU BACK UP ANY INFORMATION YOU WANT TO
SAVE BEFORE DESTROYING THE PARTITION IT LIVES ON.

There is no easy way to recover from deleting a partition, so always back up before playing with them.

Looking at the table of partition information you should see a partition number, the size of the partition,
and its type. There's more information, but don't worry about that for now. We are going to delete all of
the partitions on this drive to create the Linux ones. We run the d command to delete those:

 Command (m for help): d

 Partition number (1-4): 1
This process should be continued for each of the partitions. After deleting the partitions we are ready to
create the Linux ones. We have decided to create one partition for our root filesystem and one for swap. It
is worth noting that Unix partitioning schemes are the subject of many flame wars, and that most users
will tell you the best way to do it. Our advice is to make two partitions to start with, one for the root
filesystem and one for swap space. Over time you will learn a partitioning scheme that suits your system.

Now we create the partitions with the n command:

 Command (m for help):n

 Command action

 e extended

 p primary partition (1-4)

 p

 Partition number (1-4):1

 First cylinder (0-1060, default 0):0

 Last cylinder or +size or +sizeM or +sizeK (0-1060, default 1060):+64M
You need to make sure you create primary partitions. The first partition is going to be our swap partition.
We tell fdisk to make partition number 1 a primary partition. We start it at cylinder 0 and for the ending
cylinder we type +64M. This will give us a 64 megabyte partition for swap. (The size of the swap partition
you need actually depends on the amount of RAM you have. It is conventional wisdom that a swap space
double the size of your RAM should be created.) Then we define primary partition number 2 starting at
the first available cylinder and going all the way to the end of the drive.

 Command (m for help):n

 Command action

 e extended

 p primary partition (1-4)

 p

 Partition number (1-4):2

 First cylinder (124-1060, default 124):124

 Last cylinder or +size or +sizeM or +sizeK (124-1060, default 1060):1060
We are almost done. We need to change the type of the first partition to type 82 (Linux swap). Type t to
change the type, select the first partition, and type 82. Before writing your changes to the disk, you should
look at the new partition table one last time. Use the p in fdisk to display the partition table. If everything
looks good, type w to write your changes to the disk and quit fdisk.

The setup Program
Once you have created your partitions, you are ready to install Slackware. The next step in the installation
process is running the setup(8) program. To do so, simply type setup at the shell prompt. setup is a
menu-driven system for actually installing the Slackware packages and configuring your system.

The setup process goes something like this: You step through each option in the setup program, in the
order they are listed. (Of course, you are free to do things in almost any order you choose, but chances are
it isn't going to work out very well.) Menu items are selected using the up and down arrow keys, and the
“Okay” and “Cancel” buttons can be chosen by using the left and right arrow keys. Alternately, each
option has a corresponding key, which is highlighted in the option name. Options which are flaggable
(those indicated with a [X]) are toggled using the spacebar.

Of course, all of that is described in the “help” section of setup, but we believe in giving our readers their
money's worth.

HELP

If this is your first time installing Slackware, you might want to take a look at the help screen. It will give
a description of each part of setup (much like the one we're writing now, but less involved) and
instructions for navigating the rest of the install.

KEYMAP

If you require a keymap other than the United States “qwerty” layout, you may want to take a look at this
section. It offers a number of alternate layouts for your keyboarding enjoyment.

ADDSWAP

If you created a swap partition (back in the section called Partitioning), this section will allow you to
enable it. It will autodetect and display the swap partitions on your hard drive, allowing you to select one
to format and enable.

TARGET

The target section is where your other (non-swap) partitions are formatted and mapped to filesystem
mount points. A list of the partitions on your hard disk will be displayed. For each partition, you will be
given the option of whether to format (and if so, whether to check for bad blocks) and a selection of inode
sizes to choose from. For normal use, the default inode size is fine.

The first option in the target section is the selection of a partition on which to install your root (/)
filesystem. After that, you will be able to map other partitions to filesystems as you choose. (For instance,
you may want your third partition, say /dev/hda3, to be your home filesystem. This is just an example;
map the partitions as you see fit.)

SOURCE

The source section is where you select the source media from which you are installing Slackware.
Currently there are four sources to choose from. These are floppy, CD-ROM, NFS, or a premounted
directory.

The floppy selection starts the prompting of many many diskettes. This option requires a lot of time and
patience, but it is possible. Keep in mind that you need to make the floppies before you begin the setup
program.

The CD-ROM selection enables a CD-ROM based installation. It will offer the option of scanning for a
CD-ROM drive or displaying a list from which you can pick your type drive. Make sure you have the
Slackware CD in your drive before allowing it to scan. After the program finds your CD-ROM drive it
will ask if you want to perform a “slakware” or “slaktest” install. The default is slakware, which is a
standard installation. The slaktest option installs a minimal set of software to the hard disk and keeps the
majority of it on the CD. You will need the “live” CD in the official CD set for this option to work.

The NFS selection prompts for your network information and the network information for your NFS
server. The NFS server must be set up in advance. Also note that you cannot use hostnames, you must use
the IP addresses for both your machine and the NFS server (there is no name resolver on the setup disk).

The premounted directory offers the most flexibility. You can use this method to install from things such
as Jaz disks, NFS mounts over PLIP, and FAT filesystems. Mount the filesystem to a location of your
choosing before running setup, then specify that location here.

SELECT

The select option allows you to select the software series that you wish to install. These series are
described in the section called The Software Series . Please note that you must install the A series to have
a working base system. All other series are optional.

INSTALL

Assuming that you have gone through the “target”, “source”, and “select” options, the install option will
allow you to select packages from your chosen software series. If not, it will prompt you to go back and
complete the other sections of the setup program. This option allows you to select from six different
installation methods: full, newbie, menu, expert, custom, and tag path.

The full option will install every package from all the software series that you chose in the “select”
section. There is no further prompting. This is the easiest installation method, since you do not need to
make any decisions on the actual packages to install. Of course, this option also takes up the most hard
drive space.

The next option is newbie. This option installs all of the required packages in the selected series. For all
other packages, it offers a prompt where you can select “Yes”, “No”, or “Skip”. Yes and No do the
obvious, while Skip will go ahead to the next software series. Additionally, you will see a description and
size requirement for each package to help you decide if you need it. We recommend this option for new
users, as it ensures that you get all the required packages installed. However, it is a little slow because of
the prompting.

Menu is a faster and more advanced version of the newbie option. For each series, a menu is displayed,
from which you can select all the non-required packages you want to install. Required packages are not
displayed on this menu.

For the more advanced user, install offers the expert option. This allows you complete control over what
packages get installed. You can deselect packages that are absolutely required, resulting in a broken
system. On the other hand, you can control exactly what goes onto your system. Simply select the
packages from each series that you want installed. This is not recommended for the new user, as it is quite
easy to shoot yourself in the foot.

The custom and tag path options are also for advanced users. These options allow you to install based
upon custom tag files that you created in the distribution tree. This is useful for installing to large
numbers of machines fairly quickly. For more information on using tag files, see the section called
Making Tags and Tagfiles (for setup) in Chapter 16 .

After selecting your installation method, one of a few things will happen. If you selected full or menu, a
menu screen will appear, allowing you to select the packages to be installed. If you selected full, packages
will immediately start getting installed to the target. If you selected newbie, packages will be installed
until an optional package is reached.

Note that it is possible to run out of space while installing. If you selected too many packages for the
amount of free space on the target device, you will have problems. The safest thing to do is to select some
software and add more later, if you need it. This can easily be done using Slackware's package
management tools. For this information, see Chapter 16.

CONFIGURE

The configure section allows you to do some basic system configuration, now that the packages have
been installed. What you see here depends in large part upon which software you have installed. You will,
however, always see the following:

Kernel selection

Here you will be asked to select a kernel to install. You can install the kernel from the boot disk you used
to install, the Slackware CD-ROM, or from another floppy which you (always thinking ahead) have
prepared. Or you can elect to skip, in which case the default kernel will be installed and play will
continue to the dealer's left.

Make a boot disk

Making a boot disk for future use is probably a good idea. You will have the option of formatting a
floppy and then creating one of two types of boot disk. The first type, simple, simply (go figure) writes a
kernel to the floppy. A more flexible (and highly recommended) option is lilo, which will of course create
a lilo boot disk. See the section called LILO in Chapter 7 for information on lilo. Of course, you may also
choose to simply continue, in which case no boot disk will be made.

Modem

You will be prompted for modem information. More specifically, you will be asked whether you have a
modem, and if so, what serial port it is on.

These next configuration subsections may or may not appear, depending on whether or not you installed
their corresponding packages. (setup is all kinds of adaptive, yo.)

Timezone

This one's pretty straightforward: you will be asked what time zone you are in. If you operate on Zulu
time, we are very sorry; the (extremely long) list is alphabetically ordered, and you're at the bottom.

Mouse

This subsection simply asks what kind of mouse you have, and whether you want gpm(8) (console mouse
support) enabled on bootup.

Hardware clock

This subsection asks if your computer's hardware clock is set to Coordinated Universal Time (UTC or
GMT). Most PCs are not, so you should probably say no.

Font

The font subsection allows you to choose from a list of custom console fonts.

LILO

Here you are prompted for installation of LILO (the LInux LOader; see the section called LILO in
Chapter 7 for more information). If Slackware is to be the only operating system on your computer,
simple should work just fine for you. If you are dual-booting, the expert option is a better choice. See the
section called Dual Booting in Chapter 7 for more information on dual-booting. The third option, do not
install, is not recommended unless you know what you're doing and have a very good reason for not
installing LILO. If you are performing an expert install, you will be given a choice as to where LILO will
be put. You may place LILO in the MBR (Master Boot Record) of your hard drive, in the superblock of
your root Linux partition, or on a floppy disk.

Please note that if you are currently using another operating system's boot loader it is advisable to install
LILO either to the superblock of your root Linux partition or to a floppy. Installing to the MBR in such a
case will obliterate the other operating system's boot loader and can make life very difficult.

Network

The network configuration subsection is actually netconfig. See the section called netconfig in Chapter 5
for more information.

CD-ROM

The CD-ROM subsection simply asks if you would like the system to automatically scan for and mount
an available CD-ROM disc in /cdrom.

X Window Manager

This subsection will allow you to choose a default window manager for X. See Chapter 6 for more details
on X and window managers.

No matter which packages you installed, the last thing configure will do is ask you whether you want to
go ahead and set a root password. For security reasons, this is probably a good idea; however, like almost
everything else in Slackware, this is your call.

EXIT

The very existance of this section in the book is an insult to your intelligence. We humbly apologize and
beg your forgiveness.

Summary
You should now have Slackware Linux installed on your system. In addition, you should have some
familiarity with partitioning devices, software packages, the setup program, and some simple
configuration options. With this knowledge, you should be ready to get to work finishing up the
configuration of your system.

III. Configuration

Chapter 4. System Configuration
Before you can configure the more advanced parts of your system, it's a good idea to learn how the
system is organized and what commands can be used to search for files and programs. It's also good to
know if you need to compile a custom kernel and what the steps for doing that are. This chapter will
familiarize you with system organization and configuration files. Then, you can move on to configuring
the more advanced parts of the system.

System Overview
It's important to understand how a Linux system is put together before diving into the various
configuration aspects. A Linux system is significantly different from a DOS or Windows system (or even
a Macintosh), but these sections will help you get acquainted with the layout so that you can easily
configure your system to meet your needs.

File System Layout

The first noticeable difference between Slackware Linux and a DOS or Windows system is the
filesystem. For starters, we do not use drive letters to denote different partitions. Under Linux, there is
one main directory. You can relate this to the C: drive under DOS. Each partition on your system is
mounted to a directory on the main directory. It's kind of like an ever-expanding hard disk.

We call the main directory the root directory, and it's denoted with a single slash (/). This concept may
seem strange, but it actually makes life easy for you when you want to add more space. For example, let's
say you run out of space on the drive that has /home on it. Most people install Slackware and make one
big root drive. Well, since a partition can be mounted to any directory, you can simply go to the store and
pick up a new hard drive and mount it to /home. You've now “grafted” on some more space to your
system. And all without having to move many things around.

Below, you will find descriptions of the major top level directories under Slackware.

/bin

Essential user programs are stored here. These represent the bare minimum set of programs required for a
user to use the system. Things like the shell and the filesystem commands (ls, cp, and so on) are stored
here. The /bin directory usually doesn't receive modification after installation. If it does, it's usually in

the form of package upgrades that we provide.

/boot

Files that are used by the Linux Loader (LILO). This directory also receives little modification after an
installation.

/cdrom

Remember that all drives have to be mounted to a directory on the main root directory? Well, /cdrom is
provided as a mount point for your CD-ROM drive.

/dev

Everything in Linux is treated as a file, even hardware devices like serial ports, hard disks, and scanners.
In order to access these devices, a special file called a device node has to be present. All device nodes are
stored in the /dev directory. You will find this to be true across many UNIX-like operating systems.

/etc

This directory holds system configuration files. Everything from the X Window configuration file, the
user database, to the system startup scripts. The system administrator will become quite familiar with this
directory over time.

/home

Linux is a multiuser operating system. Each user on the system is given an account and a unique directory
for personal files. This directory is called the user's “home” directory. The /home directory is provided as
the default location for user home directories.

/lib

System libraries that are required for basic operation are stored here. The C library, the dynamic loader,
the ncurses library, and kernel modules are among the things stored here.

/lost+found

When the system boots, the filesystems are checked for any errors. If errors are detected, the fsck
program is run to see if any can be corrected. The corrected parts of the filesystem are written to the
/lost+found directory.

/mnt

This directory is provided as a temporary mount point for working on hard disks or removable drives.

/opt

Optional software packages. The idea behind /opt is that each software package installs to
/opt/<software package>, which makes it easy to remove later. Slackware distributes some things in
/opt (such as KDE in /opt/kde), but you are free to add anything you want to /opt.

/proc

This is a unique directory. It's not really part of the filesystem, but a virtual filesystem that provides
access to kernel information. Various pieces of information that the kernel wants you to know are
conveyed to you through “files” in the /proc directory. You can also send information to the kernel
through some of these “files”. Try doing cat /proc/cpuinfo.

/root

The system administrator is known as “root” on the system. root's home directory is kept in /root instead
of /home/root. The reason is simple. What if /home was a different partition from / and it could not be
mounted? root would naturally want to log in and repair the problem. If his home directory was on the
damaged filesystem, it would make it difficult for him to log in.

/sbin

Essential programs that are run by root and during the system bootup process are kept here. Normal users
will not run programs in this directory.

/tmp

The temporary storage location. All users have read and write access to this directory.

/usr

This is the big directory on a Linux system. Everything else pretty much goes here, programs,
documentation, the kernel source code, and the X Window system. This is the directory to which you will
most likely be installing programs.

/var

System log files, cache data, and program lock files are stored here. This is the directory for frequently-
changing data.

You should now have a good feel for which directories contain what on the filesystem. The next section
will help you find specific files easily, so you don't have to do it by hand.

Finding Files
You now know what each directory holds, but it still doesn't really help you find things. I mean, you
could go looking through directories, but there are quicker ways. There are four main file search
commands available in Slackware.

which

The first is the which(1) command. which is usually used to locate a program quickly. It just searches
your PATH and returns the first instance it finds and the directory path to it. Take this example:

 $ which bash

 /bin/bash
From that you see that bash is in the /bin directory. This is a very limited command for searching, since
it only searches your PATH.

whereis

The whereis(1) command works similar to which, but can also search for man pages and source files. A
whereis search for bash should return this:

 $ whereis bash

 bash: /bin/bash /usr/bin/bash /usr/man/man1/bash.1.gz
This command not only told us where the actual program, but also where the online documentation is
stored. Still, this command is limited. What if you wanted to search for a specific configuration file? You
can't use which or whereis for that.

find

The find(1) command will search for anything. I want to search the entire system for the default xinitrc
file on the system.

 $ find / -name xinitrc

 ./var/X11R6/lib/xinit/xinitrc
find will take a while to run, since it has to traverse the entire root directory tree. And if you run this
command as a normal user, you will probably get permission denied error messages for directories that
only root can see. But find found our file, so that's good. If only it could be a bit faster...

locate

The locate(1) command searches the entire filesystem, just like the find command can do, but it searches
a database instead of the actual filesystem. The database is set to automatically update at 4:40AM, so you
have a somewhat fresh listing of files on your system. You can manually run updatedb(1) to update the
locate database (before running updatedb by hand, you must first su to the nobody user). Here's an
example of locate in action:

 $ locate xinitrc # we don't have to go to the root

 /var/X11R6/lib/xinit/xinitrc

 /var/X11R6/lib/xinit/xinitrc.fvwm2

 /var/X11R6/lib/xinit/xinitrc.openwin

 /var/X11R6/lib/xinit/xinitrc.twm
We got more than what we were looking for, and quickly too. With these commands, you should be able
to find whatever you're looking for on your Linux system.

The /etc/rc.d Directory
The system initialization files are stored in the /etc/rc.d directory. Slackware uses the BSD-style layout
for its initialization files. Each task or runlevel is given its own rc file. This provides an organized
structure that is easy to maintain.

There are several categories of initialization files. These are system startup, runlevels, network
initilization, and System V compatibility. As per tradition, we'll lump everything else into an “other”
category.

System Startup

The first program to run under Slackware besides the Linux kernel is init(8). This program reads the
/etc/inittab(5) file to see how to run the system. It runs the /etc/rc.d/rc.S script to prepare the
system before going into your desired runlevel. The rc.S file enables your virtual memory, mounts your
filesystems, cleans up certain log directories, initializes Plug and Play devices, loads kernel modules,
configures PCMCIA devices, sets up serial ports, and runs System V init scripts (if found). Obviously
rc.S has a lot on its plate, but here are some scripts in /etc/rc.d that rc.S will call on to complete its
work:

rc.S

This is the actual system initialization script.

rc.modules

Loads kernel modules. Things like your network card, PPP support, and other things are loaded here. If
this script finds rc.netdevice, it will run that as well.

rc.pcmcia

Probes for and configures any PCMCIA devices that you might have on your system. This is most useful
for laptop users, who probably have a PCMCIA modem or network card.

rc.serial

Configures your serial ports by running the appropriate setserial commands.

rc.sysvinit

Looks for System V init scripts for the desired runlevel and runs them. This is discussed in more detail
below.

Runlevel Initialization Scripts

After system initialization is complete, init moves on to runlevel initialization. A runlevel describes the
state that your machine will be running in. Sound redundant? Well, the runlevel tells init if you will be
accepting multiuser logins or just a single user, whether or not you want network services, and if you will
be using the X Window System or agetty(8) to handle logins. The files below define the different
runlevels in Slackware Linux.

rc.0

Halt the system (runlevel 0). By default, this is symlinked to rc.6.

rc.4

Multiuser startup (runlevel 4), but in X11 with KDM, GDM, or XDM as the login manager.

rc.6

Reboot the system (runlevel 6).

rc.K

Startup in single user mode (runlevel 1).

rc.M

Multiuser mode (runlevels 2 and 3), but with the standard text-based login. This is the default runlevel in
Slackware.

Network Initialization

Runlevels 2, 3, and 4 will start up the network services. The following files are responsible for the
network initialization:

rc.inet1

Created by netconfig, this file is responsible for configuring the actual network interface.

rc.inet2

Runs after rc.inet1 and starts up basic network services.

rc.atalk

Starts up AppleTalk services.

rc.httpd

Starts up the Apache web server.

rc.samba

Starts up Windows file and print sharing services.

rc.news

Starts up the news server.

System V Compatibility

System V init compatibility was introduced in Slackware 7.0. Many other Linux distributions make use of
this style instead of the BSD style. Basically each runlevel is given a subdirectory for init scripts, whereas
BSD style gives one init script to each runlevel.

The rc.sysvinit script will search for any System V init scripts you have in /etc/rc.d and run them, if
the runlevel is appropriate. This is useful for certain commercial software packages that install System V
init scripts and scripts for BSD style init.

Other Files

The scripts described below are the other system initialization scripts. They are typically run from one of
the major scripts above, so all you need to do is edit the contents.

rc.cdrom

If enabled, this script will scan for a CD-ROM in a drive and mount it under /cdrom if it finds one.

rc.gpm

Starts up general purpose mouse services. Allows you to copy and paste at the Linux console.

rc.ibcs2

Starts up the Intel Binary Compatibility support. This is only needed if you plan on running programs
compiled on SCO UNIX, or other commercial Intel UNIX flavors. It is not needed to run Linux
programs.

rc.font

Loads the custom screen font for the console.

rc.local

Contains any specific startup commands for your system. This is empty after a fresh install, as it is
reserved for local administrators. This script is run after all other initialization has taken place.

To enable a script, all you need to do is add the execute permissions to it with the chmod command. To
disable a script, remove the execute permissions from it. For more information about chmod, see the
section called Permissions in Chapter 9 .

Selecting A Kernel
The kernel is the part of the operating system that provides hardware access, process control, and overall
system control. The kernel contains support for your hardware devices, so picking one for your system is
an important setup step.

Slackware provides around sixty precompiled kernels that you can pick from, each with a standard set of
drivers and additional specific drivers. You can run one of the precompiled kernels or you can build your
own kernel from source. Either way, you need to make sure that your kernel has the hardware support
your system needs.

The /kernels Directory On The Slackware CD-ROM

The precompiled Slackware kernels are available in the /kernels directory on the Slackware CD-ROM
or on the FTP site in the main Slackware directory. The available kernels change as new releases are
made, so the documentation in that directory is always the authoritative source. The /kernels directory
has subdirectories for each kernel available. The subdirectories have the same name as their
accompanying boot disk. In each subdirectory you will find the following files:

File Purpose
System.map The system map file for this kernel
bzImage (or zImage) The actual kernel image
config The source configuration file for this kernel
To use a kernel, copy the System.map and config files to your /boot directory and copy the kernel image
to /vmlinuz. Run /sbin/lilo(8) to install LILO for the new kernel, and then reboot your system. That's all
there is to installing a new kernel.

The kernels that end with a “.i” are IDE kernels. That is, they include no SCSI support in the base kernel.
The kernels that end with “.s” are SCSI kernels. They include all the IDE support in .i kernels, plus SCSI
support.

Compiling A Kernel From Source

The question “Should I compile a kernel for my system?” is often asked by new users. The answer is a
definite maybe. There are few instances where you will need to compile a kernel specific to your system.
Most users can use a precompiled kernel and the loadable kernel modules to achieve a fully working
system. You will want to compile a kernel for your system if you are upgrading kernel versions to one
that we do not currently offer in Slackware, or if you have patched the kernel source to get special device
support that is not in the native kernel source.

Building your own kernel is not that hard. The first step is to make sure you have the kernel source
installed on your system. Make sure that you installed the packages from the K series during the
installation. You will also want to make sure you have the D series installed, specifically the C compiler,
GNU make, and GNU binutils. In general, it's a good idea to have the entire D series installed if you plan
on doing any kind of development. Now we are ready to build a kernel:

 $ su -

 Password:

 # cd /usr/src/linux
The first step is to bring the kernel source into its base state. We issue this command to do that:

 # make mrproper
Now you can configure the kernel for your system. The current kernel offers three ways of doing this.
The first is the original text-based question and answer system. It asks a bunch of questions and then
builds a configuration file. The problem with this method is that if you mess up, you must start over. The

method that most people prefer is the menu driven one. Lastly, there is an X-based kernel configuration
tool. Pick the one you want and issue the appropriate command:

 # make config (text-based Q&A version)

 # make menuconfig (menu driven, text-based version)

 # make xconfig (X-based version, make sure you are in X first)
Figure 4-1. The menu-driven kernel configuration program.

New users will probably find menuconfig to be the easiest to use. Help screens are provided that explain
the various parts of the kernel. After configuring your kernel, exit the configuration program. It will write
the necessary configuration files. Now we can prepare the source tree for a build:

 # make dep

 # make clean
The next step is to compile the kernel. First try issuing the zImage command below. That will fail if your
kernel is too large. Don't worry, you can still build it with the bzImage command.

 # make zImage (try this first)

 # make bzImage (if make zImage fails, issue this command)
This may take a while, depending on your CPU speed. During the build process, you will see the
compiler messages. After building the kernel image, you will want to build any parts of the kernel that
you flagged as modular.

 # make modules
We can now install the kernel and modules that you compiled. To install the kernel on a Slackware
system, these commands should be issued:

 # mv /vmlinuz /vmlinuz.old

 # cat arch/i386/boot/zImage > /vmlinuz

 # mv /boot/System.map /boot/System.map.old

 # cp System.map /boot/System.map
Replace the zImage with bzImage if you had to build a big kernel. You will want to edit

/etc/lilo.conf and add a section to boot your old kernel in case your new one does not work. After
doing that, run /sbin/lilo to install the new boot block. You can now reboot with your new kernel.

Using Kernel Modules

Kernel modules are another name for device drivers that can be inserted into a running kernel. They allow
you to extend the hardware supported by your kernel without needing to pick another kernel or compile
one yourself.

Modules can also be loaded and unloaded at any time, even when the system is running. This makes
upgrading specific drivers easy for system administrators. A new module can be compiled, the old one
removed, and the new one loaded, all without rebooting the machine.

Modules are stored in the /lib/modules/<kernel version> directory on your system. They can be
loaded at boot time through the rc.modules file. This file is very well commented and offers examples
for major hardware components. To see a list of modules that are currently active, use the lsmod(1)
command:

 # lsmod

 Module Size Used by

 parport_pc 7220 0

 parport 7844 0 [parport_pc]
You can see here that I only have the parallel port module loaded. To remove a module, you use the
rmmod(1) command. Modules can be loaded by the modprobe(1) or insmod(1) command. modprobe is
usually safer because it will load any modules that the one you're trying to load depends on.

A lot of users never have to load or unload modules by hand. They use the kernel autoloader for module
management. All you have to do is uncomment the /sbin/kerneld(8) line in /etc/rc.d/rc.modules and
the autoloader will start up. It will take care of loading and unloading modules as you request them. A
request just involves trying to access that device.

More information can be found in the man pages for each of these commands, plus the rc.modules file.

Summary
You should now be familiar with commands for searching the filesystem, organization of the filesystem,
and the configuration files in the /etc directory. These skills will be extremely helpful as you learn more
about the system. In addition, you should know how to configure and compile a kernel from source.

Chapter 5. Network Configuration

Network Hardware
Like most interesting things you can do with a computer, attaching it to a network involves some
specialized hardware. You'll need a NIC (Network Interface Card) to connect to a LAN, perhaps a
modem to connect to an Internet provider, or perhaps both (or several of each, or none).

For the purposes of configuration, we can divide said hardware into PCMCIA (for laptops) and non-
PCMCIA categories. The reason for this somewhat lopsided division is that currently PCMCIA hardware
is not supported by the kernel distribution, but by a separate package which includes the necessary drivers
(as kernel modules) and some software for configuration and management of PCMCIA devices.
Everything else, of course, is handled by the standard kernel distribution.

netmods
The drivers for network devices that the kernel supports are included in the netmods package
(slakware/n3/netmods.tgz). If you haven't installed netmods yet, you'll need to do so now. (See
Chapter 16 for help with installing packages.)

Kernel modules that are to be loaded on boot-up are loaded from the rc.modules file in /etc/rc.d. The
default rc.modules file includes a “Network device support” section. If you open rc.modules and look
for that section, you'll notice that it first checks for an executable rc.netdevice file in /etc/rc.d;
rc.netdevice is created if setup successfully autoprobes for your network device during installation. If
it did, you're probably not reading this (ooh, paradox); if it didn't, read on.

Below that “if” block is a list of network devices and modprobe lines, each commented out. Find your
device and uncomment the corresponding modprobe line, then save the file. Running rc.modules as root
should now load your network device driver (as well as any other modules that are listed and
uncommented). Note that some modules (such as the ne2000 driver) require parameters; make sure you
select the correct line.

PCMCIA network devices
PCMCIA network devices should be even easier than others. Make sure you have the pcmcia package
(slakware/a11/pcmcia.tgz) installed. (see Chapter 16 for details on package installation.) Upon
installation, the pcmcia package will create an rc.pcmcia file in /etc/rc.d and an /etc/pcmcia
directory, and will install drivers to /lib/modules/<kernel version>/pcmcia. The cool thing about
the pcmcia package is that it will attempt to autodetect the insertion and removal of supported pcmcia
devices; you should be able to simply insert your pcmcia network adapter and listen for the beep it gives
when loading the necessary modules. If you remove the card, its driver modules should be automatically
removed.

Unfortunately, if you compile a newer kernel version you will probably have to recompile pcmcia-cs to
get the drivers updated. Of course, the source is included; check the source/a/pcmcia directory for
source, scripts, and any documentation we have to help you with that.

Network Utilities

ifconfig

Now that your kernel can talk to your network hardware, what's needed is a way for software to tell the
kernel to pass some information along, and vice versa. We need to configure an interface. We need
ifconfig(8).

ifconfig is probably best learned by example; you may want to just take a look at your rc.inet1 file
(covered in the section called rc.inet1) to see how it's done there. The simplest and most common case
looks something like this:

 # ifconfig eth0 192.168.1.10 broadcast 192.168.1.255 \

 netmask 255.255.255.0
This line brings up eth0 (the first ethernet interface; for token ring use tr0, ppp use ppp0, etc.) with an IP
of 192.168.1.10, a broadcast address of 192.168.1.255 (the entire 192.168.1 subnet) and a netmask of
255.255.255.0 (indicating that all of the first three parts of the “dotted quad” of the IP address refer to the
network, while all of the last part, .10, refers to the host). Unless you're doing something funky, you can
almost always use a broadcast address that's the first three parts of your IP followed by 255. You can also
almost always use a netmask of 255.255.255.0. If you are doing something funky, you probably know
enough that this part of the book isn't going to be of much use to you.

ifconfig can also be used just to see what's there. Run it without any options or parameters to get a listing
of all of your current network interfaces and their settings.

route

In order to know where to send which data, the kernel maintains a routing table. I'm not going to go into
much detail about it here, but you can view the routing table by running /sbin/route(8). route -n will
give you the table with IP addresses instead of names; this is useful if you're having trouble talking to
your name server or if you're just not interested in the illusory world of domain names. Fortunately, if you
have a simple network setup (and most people do), the 2.2 kernels will automatically create the necessary
routing table entries for you.

netconfig

netconfig is part of the Slackware setup program, but like most of setup's components it can be run on its
own. netconfig is very straightforward, and will walk you through setting up a basic network connection.
It's an especially good program to use if you're not very familiar or comfortable with the network rc files.
When you run netconfig, you'll be greeted with this screen:

Next, you'll be prompted to enter the hostname and domain name of your computer. You can probably
just make something up for both of these, unless you are setting up a server or other machine that lots of
people will use. Then, you will be asked if you will be using a static IP, DHCP, or just loopback.

If you are not going to be connected to a network, choose loopback. If you are setting up a computer that
will be attached to a university or large office network, you should most likely choose DHCP. Otherwise,
choose static IP. Unless you chose static IP, you are now done. If you did choose static IP, you will now
have to enter your computer's IP address, network mask, broadcast address, and name server address.
netconfig will tell you how to figure out all of those numbers.

pppsetup

Slackware includes the pppsetup utility for configuring a dialup connection to an ISP. It is located in the
ppp.tgz package in the N software series. pppsetup uses the same interface as the setup program. If you
don't remember how to use this interface, refer back to the section called The setup Program in Chapter 3
for some instructions. pppsetup asks you a series of questions and sets up several configuration files in
/etc/ppp for you. As root, run pppsetup; we'll walk through the questions here.

Phone number

The first question prompts for the phone number of your ISP, prefixed by the type of dialing. For most
people, you will want to use tone dialing. If your ISP's phone number was 555-1013 and you used tone
dialing, you would enter atdt5551013 into the dialog box.

If you have call waiting on your phone line and want it disabled for when you connect (probably a good
idea), make sure to enter something like this into the dialog box: atdt*70,5551013

The comma is required. It puts a 1.5 second pause between the *70 to disable call waiting and the ISP's
phone number. It won't work without the comma.

Modem device

Next, select the location of your modem. If you know what COM device it was under Windows, you can
select the listed equivalent. Otherwise, you might have to do some experimenting. The best course is to
start at ttyS0 and work your way down the list.

Modem baud rate

Next, pick the baud rate that's closest to your modem's. If you don't know the baud rate, you could check
the modem's box or any documentation that came with it. Each selection has several examples, so it
shouldn't be hard to figure out.

Callback

Now, you'll need to start referring to any information that your ISP gave you. Few ISPs use callback, so
you can probably safely select “NO”. Callback is where you dial up the ISP and they then call you back
so you can log in.

If you have to use callback, select “YES”. Then, you'll be prompted to enter your phone number, a login
name, and a password. You may not have to enter an initial login name and password. Finally, you'll be
asked what kind of authentication scheme your ISP uses. If they use CHAP or PAP, select “YES”. Later
on, you'll need to set this up. Refer to the section below. If they don't use either of those, select “NO” and
refer to the “Chat script” section below.

Modem init string

Unless you have a strange modem, you can probably just hit enter to select the default init string
(“AT&FH0”). Otherwise, refer to any documentation that came with your modem as to what to use for
the init string.

Domain name

Now, you'll need to enter the domain name of your ISP. This will be something of the form
“example.net”, “slackware.com”, or something similar. (Okay, it's most definitely not going to be

slackware.com :)

DNS IP address

Your ISP should have provided you with the IP address of their nameserver. If you've got that IP address,
punch it into the box. Otherwise, check in with your ISP to see what number to use.

Authentication method

This question might also take some trial and error work. You need to figure out if your ISP uses CHAP,
PAP, or neither for user authentication. The easiest way to figure this out is to call your ISP. However, if
you are presented with login and password prompts when you connect, you should most likely choose
"SCRIPT". Otherwise, check with your ISP to determine which one to use.

PAP or CHAP

If you selected “PAP” or “CHAP” on the authentication method screen, you'll be prompted to enter your
username. Your ISP should have assigned you a username. If they didn't, there is something terribly
wrong. You will need to contact them and get a username.

Then, you should enter the password that your ISP assigned to you in the next dialog box.

Chat script

If you selected “SCRIPT” on the authentication method screen, you'll be presented with a fairly lengthy
discussion of what a chat script is. Make sure to read it because it describes everything very well.
Basically, you want to tell it what kind of information your ISP is going to send and what your computer
should send back to log in.

You'll then go into a loop of entering some text for what your computer should expect from your ISP,
followed by what information it should send back. You can break this loop by hitting enter on an empty
box.

Done

Finally, you'll be shown your complete ppp configuration files. You can't really do anything about them,
but you can at least check everything out. Hit enter to save everything and leave pppsetup.

This screen also has a lot of information about how to bring up your dialup connection and how to drop it
after you are done. The basic idea is this: as root, run ppp-go to start the connection. Once it gives you a
local and remote IP, you are connected and on the internet. When you are done, run ppp-off as root and it
will drop the connection.

The /etc files

/etc/inetd.conf

On a network-centric operating system, it's not uncommon for a lot of services to be running. Typically
for each service that is available a program needs to be sitting around listening for connections, which can
get a bit burdensome on a system that runs a lot of these servers. In order to reduce overhead, inetd was
created. inetd is the “internet super-server”-- it sits around and listens for connections on many sockets,
and when one comes in inetd fires up the appropriate server to handle it. Thus the many waiting servers
are reduced to one.

/etc/inetd.conf is the configuration file for inetd. It specifies which servers get run for which
connections. The inetd(8) man page has more detailed information, of course, but let's take a quick look
at a basic service line:

 ftp stream tcp nowait root /usr/sbin/tcpd wu.ftpd -l -i -a
This is the line for the ftp server. Note the protocol name (“ftp”) first, and last the command to run to
respond. In this case, the program that is run in response to a connection attempt is /usr/sbin/tcpd; it is
a “wrapper” program that provides some basic security options for the server it wraps. wu.ftpd is our
actual ftp server, but tcpd runs that for us. More information on tcpd is given in the section called
tcp_wrappers.

Like many system files, lines in inetd.conf are commented by the # character; you can add and remove
services from inetd simply by commenting their lines in or out and restarting inetd.

/etc/resolv.conf

This is the file that tells the rest of the system where to get its DNS information. Any name servers you
use are listed here, as well as your host's domain name. Here's a sample resolv.conf (from the laptop
I'm typing this on, ninja.tdn):

 domain tdn

 nameserver 192.168.1.1

 search tdn. slackware.com
The first line describes ninja's domain name; this is everything after the hostname in my address. The
second is the DNS server for our house network. You can have as many of these as you need; they will be
checked in order from first to last whenever a program needs to look up a domain name's corresponding

IP address.

The last line is a bit more interesting. It describes any domain names that should be assumed by my
system. For instance, suppose I have the machines zuul.tdn and hejaz.slackware.com. I can simply do
ping zuul and ping hejaz to ping them, respectively. This is because ping first tries to add “.tdn” to
zuul's name, and finds a match and goes with it. In the case of “hejaz”, it first tries “hejaz.tdn”. There's no
match, so it then tries “hejaz.slackware.com”-- bingo. Note that all domains listed in the search line need
to end with a '.' except the last one; if there's only one, it is the last one and needs no trailing '.'.

/etc/hosts

The hosts file allows the simplest kind of domain lookup. It is a list of hostnames and their
corresponding IPs. This is useful in a small network where DNS is not worthwhile, in instances where
DNS is unreliable, etc. and is used by the machine during boot time when no name servers are accessible.
Mine might look like this:

 127.0.0.1 localhost

 192.168.1.32 ninja.tdn ninja
The first line should be self-explanatory. The second, however, may not. You can list as many names and
aliases for an address as you like, separated by a space. So I have “192.168.1.32” translated to “ninja.tdn”
(and vice versa), but the alias “ninja” can also be used when I'm too lazy to type “.tdn” (which is most of
the time).

rc.inet1
/etc/rc.d/rc.inet1 is the file used to set up network “infrastructure”-- it initializes devices and sets
addresses and routes. The rc.inet1 that ships with Slackware is pretty heavily commented, so we'd just
be repeating ourselves if we went through it all again here.

rc.inet2
The /etc/rc.d/rc.inet2 file is there for the other part of networking: setting up services and daemons
and handling any interesting networking options. Let's look at a sample block:

 # Start the NAMED/BIND name server:

 if [-f ${NET}/named]; then

 echo -n " named"

 ${NET}/named -u daemon -g daemon

 fi
The important line here is the fourth, which actually runs named(8). The rest is icing: that “if” statement
checks to see if there's actually a named program where it's expected to be, and the echo line reports that
named is being started when the system is booting. You'll find that most of the servers started from
rc.inet2 are run from within blocks like these; simple tests to see if there's any obvious reason they
shouldn't be run, a report that they're being started, and then the commands to start the services
themselves. Again, rc.inet2 is pretty heavily commented; poke around in it for a while.

NFS (Network File System)
The Network File System is used, obviously, to share files between machines on a network. The cool part
about NFS is that it's designed such that one machine can mount shares from another transparently, and
treat them like local files.

A couple of things have to happen for this to take place, though. First is the appropriate services have to
be running on the server machine: these are portmap(8), nfsd(8), and mountd(8). Second is the server
has to explicitly “export” a filesystem tree to the client, which is accomplished via exports(5) file in
/etc.

The first part of the equation is handled by installing the tcpip1.tgz package (from the N series) and
letting rc.inet2 do its thing. /etc/exports is a bit more fun.

Suppose I have a directory of images on battlecat.tdn that I want to mount on ninja.tdn. On battlecat, I'll
need a line in /etc/exports that looks something like this:

 /var/media/images ninja.tdn(ro)
Then on ninja, I can simply

 # mount -t nfs battlecat.tdn:/var/media/images /mnt
to mount the images directory as /mnt locally. Unfortunately, I've forbidden myself from writing to the
shared directory-- that “(ro)” bit in battlecat's /etc/exports line is an option meaning “read-only”. Any
such options need to exist after the client's name, inside parentheses, in a comma-separated list. For
instance:

 /var/media/images ninja.tdn(rw,no_root_squash)
The “rw” is obviously “read-write”-- subject to user and group id mapping (see the exports(5) man page
for an explanation), users on ninja are allowed to write to the shared directory. I don't like squash, so I
think I'll leave it up to that man page to explain that one to you; if you plan on doing much with NFS,
exports(5) will be your best friend. Might as well get comfy, right?

tcp_wrappers
tcp_wrappers is a basic system for preventing (and explicitly allowing) access to services from specified
hosts. In a nutshell, it works like this:

inetd (the internet super-server) runs a lot of servers, many of which are “wrapped” by tcpd. In other
words, tcpd is what actually runs these servers, but inetd doesn't know that (or care, really). tcpd logs the
attempt to connect and then checks the files /etc/hosts.allow and /etc/hosts.deny files to see
whether the connection should be allowed.

The rules contained in these files can be somewhat complex, but let's suppose pyramid.tdn is being really
obnoxious and won't leave poor little mojo.tdn alone. mojo.tdn might throw a line into /etc/hosts.deny
that looks like this:

 ALL: pyramid.tdn
This line should be pretty clear: it prevents pyramid from using all of the services on mojo that are
protected by tcpd. Were I to be annoyed by an entire domain in addition to pyramid, I could make that
line read:

 ALL: pyramid.tdn, .annoying.domain
But wait! My pal Hobbes is stuck with a machine on .that.annoying.domain, but I want him to be able to
access me (just not the rest of his annoying friends). That's simple enough. Leaving hosts.deny as it
stands, the following line in hosts.allow will let Hobbes in:

 ALL: hobbes.annoying.domain
For much more detail, see tcpd(8), hosts_access(5), and hosts_options(5). The tcp_wrappers system is
much more flexible than this, and is well worth checking out in more depth.

Summary
In this chapter, you learned how to configure your system to attach it to a network, how to tweak the
configuration files, and some basic security principles. In addition, you learned what the Network File

System is and how to get it working on your system. Making your system a part of a network allows you
to access all sorts of resources like mail, news, and websites. See Chapter 13 for information about how to
use some basic network programs.

Chapter 6. The X Window System
he X Window System is the standard GUI for all UNIX platforms, and this includes Linux. Unlike
Windows and MacOS, in Linux and Unix the GUI is separate from the main operating system kernel.
This adds stability to the system: if the GUI crashes, it doesn't take out the entire system.

One problem with X is that it has traditionally been very hard to configure for a system. However,
Slackware 7 introduced a configure-less X setup that uses the framebuffer driver. This means that you
don't have to go through the procedures described in the section called xf86config and the section called
XF86Setup. The framebuffer will also work on any VESA 2.0-compliant video cards. This means that just
about any modern video card will work under X. However, the framebuffer is noticeably slower than
using an X configuration tailored to your system.

If you choose to use the framebuffer server, you should install the xxfb.tgz package from the X software
series. You should also choose one of the console resolutions during the configuration section of the
installer. The recommended option for X is probably best for most people.

If you choose to configure X for your system, you'll need to follow the instructions in the section called
xf86config or the section called XF86Setup . The first section describes using xf86config(1), a
commandline-based program for configuring X. The second section describes XF86Setup(1), a graphical
version of the configuration program.

xf86config

xf86config is one of two programs that can be used to configure X on your system. The basic idea is
simple: you will be presented with a series of questions and multiple choice answers. Choose the answer
that best fits your system. After proceeding through the entire program, the /etc/XF86Config(5) file will
be written and you will be ready to use X. If you mess up at some point, you'll have to kill the program
using control-c and start over from the beginning.

It helps to know as much as possible about your monitor and video card before using xf86config. You can
get information about your video card using the SuperProbe program:

 # SuperProbe
This will give you a warning about possibly locking up the system. If this scares you off, quit using
control-c before the five second time limit is up. Otherwise, you'll get some information about your
video setup:

 First video: Super-VGA

 Chipset: ATI 264GT3 (3D Rage Pro) (Port Probed)

 Memory: 4096 Kbytes

 RAMDAC: ATI Mach64 integrated 15/16/24/32-bit

 DAC w/ clock

 (with 8-bit wide lookup tables)

 (programmable for 6/8-bit wide lookup tables)

 Attached graphics coprocessor:

 Chipset: ATI Mach64

 Memory: 4096 Kbytes
That's what the information for an ATI Rage Pro video card looks like. Write down the information for
you card, or switch over to another virtual terminal (using the alt-function key combinations) and run
xf86config from there. You'll need your video card's information later. xf86config must be run as root,
since it will be writing files and making symbolic links in places only root is allowed to:

 # xf86config
Once you start xf86config, it will present a screen full of text telling you what it is going to do.
Remember, there is no way to go back to the previous screen if you make a mistake, so pick carefully.
Otherwise, you might have to do this a few times. Press enter, like it prompts you to do.

Mouse protocol

Choose the kind of mouse you have from the list. These days, most mice will be PS/2 or a Microsoft
Intellimouse. Older mice will probably require one of the other types listed.

Emulate3Buttons

If your mouse has only two buttons on it, you can choose to emulate a third button. Clicking both the left
and right mouse buttons at the same time will be interpreted as a third button click. As many programs
will make use of a third button, enabling it is recommended. If you have a three button mouse, this won't
do anything.

Mouse device name

The default of /dev/mouse is usually acceptable. However, if you have your mouse plugged into some
strange port, you might need to change this. For most serial mice and PS/2 mice, the default is fine.

XKEYBOARD extension

You will probably want to use the X keyboard extensions. Not choosing this will cause some strange
behavior with the backspace and delete keys. Choosing the keyboard extensions will cause keys to behave
like they should.

Bindings for alt keys

If you want to enter characters from different languages, you should enable the bindings for alt keys. If
you're only going to be typing in English, you don't need to enable these bindings.

Horizontal sync range

This is the first of the questions relating to the monitor. It is important that you choose wisely here. Don't
pick a range that is outside of your monitor's specifications. This is less important on newer monitors, as
they will not attempt to do something outside of their specifications. Older monitors might be damaged,
though. When in doubt, pick a conservative range.

Having your monitor's documentation would be a good reference for these next few questions. For most
newer monitors, you can probably pick 31.5-48.5 or 31.5-57.0. Those of you will high-end monitors can
choose one of the larger ranges. Or, you can enter your own horizontal sync range if you don't see one
that fits quite right.

Vertical sync range

Once again, you'll need to know the specifications of your monitor to answer this question. When in
doubt, go for a narrow range. A safe choice would probably be 50-90 or 50-100. If you don't see one that
fits your monitor, you can choose to enter your own range.

Identification strings

You are now presented with three questions asking for identification strings for your monitor. These are
not terribly important. You can just hit enter for all three of them if you'd like. Or, you can name them
with whatever you want. These strings will be used in the configuration file for identification purposes.

Video card database

The next large section of configuring X deals with your video card. Your card's documentation and the
information from SuperProbe will both prove handy right now. You will want to look through the card
database to pick out your card, so answer “y” to the question. Just hitting enter will take you past the card
database and into the next section.

There are over 800 cards in the database. The left column contains a number for each card and the card's
name. The right column contains the chipset for that card. Keep hitting enter until you find your video
card in the list. When you've found your card, enter the number and hit enter. If you don't know what kind
of video card you have, there are a few options. First, you could look at the “Chipset” line from
SuperProbe and look for a card matching that chipset in the database. Or, you could use a generic SVGA
card type. Many cards that do not have their own server are supported by the SVGA server, so this could
be a safe choice.

After picking a card, it will give you some more information. Following the ATI Rage Pro example from
above, it would give this kind of information:

 Your selected card definition:

 Identifier: ATI Mach64

 Chipset: ATI-Mach64

 Server: XF86_Mach64

 Do NOT probe clocks or use any Clocks line.
At this point, you should check to make sure that you installed the server package. The XF86_Mach64
server is in the xma64.tgz package. Make sure that the correct server package is installed, or X will not
be able to run.

Which server to run?

This next question presents several servers that you can use. If you've selected your video card correctly,
you can safely hit Enter. That will tell X to use the server that the card specified. Otherwise, you can pick
to use the Mono server, VGA16 server, SVGA server, or an accelerated server. The best choice is to use
the server that the card specified.

Setting the symbolic link

Select “y” for setting the symbolic link. This will set up a link to the appropriate X server.

Video memory

Select the amount of memory that your card has. SuperProbe can be used to give this information as
well. If you've got something other than one of the choices, you can select “Other” and enter in a different
amount. Make sure that you specify the amount of memory in kilobytes.

Identification strings

You'll be prompted to enter three more identification strings. These apply to your video card. As with the
monitor strings, it is safe to hit enter for all three, unless you'd like to name your video card.

RAMDAC

You'll only need to choose a RAMDAC setting if you're using the S3, AGX, or W32 servers.
SuperProbe will tell you what kind of RAMDAC chip is present on your video card. Go through the list
until you've found the correct chip, then enter the corresponding number. If you're not using the S3, AGX,
or W32 servers, enter a “q” to continue without selecting a RAMDAC.

Clockchip setting

If your card has a programmable clockchip, you'll want to select one from this next listing. Keep in mind
that most cards do not have a programmable clockchip, so you should be safe by just hitting enter.
SuperProbe should report if your card has a clockchip.

Clocks line

The next screenful of text talks about what a clocks line is. As it explains, you won't want one on most
modern configurations. It will then prompt you, asking if it should probe for a clock. It will also tell you
if the card needs to be probed or not. In the case of the ATI card, xf86config would say:

 The card definition says to NOT probe clocks.
If it says something like that, choose “n” to the question of probing the card for clocks. Very old graphics
cards will need to be probed. xf86config will tell you what needs to be done.

Video modes

Now it's time to select the video modes that your X server will use. You will see four different color
depths - 8bpp, 16bpp, 24bpp, and 32bpp. Each will have a listing of the various video modes that can be
run at that color depth. When you start up X, it will enter a default color depth and run at the first
resolution listed for that color depth. If you'd like X to start up in a different resolution by default, now is
the time to do that.

If the ordering of the video modes is fine, you can select “OK”, which will continue on with the
configuration process. Otherwise, select the color depth that you'd like to change. For example, suppose
you were presented with the following choices:

 "640x480" "800x600" "1024x768" "1280x1024" for 8bpp

 "640x480" "800x600" "1024x768" "1280x1024" for 16bpp

 "640x480" "800x600" "1024x768" "1280x1024" for 24bpp

 "640x480" "800x600" "1024x768" for 32bpp
If you'd like X to start up in a different resolution by default, you would first select a color depth to
change. Then you would follow the directions given by xf86config. It will prompt you to enter the digits
that correspond to the order of the resolutions. If you simply wanted to reverse the order of the
resolutions, you could answer like so:

 Which modes? 5432
This also allows you to delete resolutions. If your video card cannot run at 1280x1024, there's no reason
to have it try. You could remove that line by answering with the following digits:

 Which modes? 432
After selecting your modes at that color depth, you will be asked if you'd like a virtual screen that is
bigger than the physical screen. A virtual screen is a screen that is bigger than the actual monitor. When
you move the mouse around on the virtual screen, it will scroll a bit before coming to the edge. This
allows you to fit more windows onto your monitor. However, because you will not be able to see
everything at once, the virtual screen can be a bit annoying. It is still an interesting thing to play with, so
you might want to try it out.

Then you'll be sent back to the list of video modes. After altering the video modes for the 24bpp color
depth, it would look like this:

 "640x480" "800x600" "1024x768" "1280x1024" for 8bpp

 "640x480" "800x600" "1024x768" "1280x1024" for 16bpp

 "1280x1024" "1024x768" "800x600" "640x480" for 24bpp

 "640x480" "800x600" "1024x768" for 32bpp
Continue altering the video modes until you are satisfied with them. When you're done with this section,
select “OK” to continue on.

Write the config file

At this point, configuration of X is complete. xf86config will ask if it should write the config file to
/etc/XF86Config. If you'd like to be able to run X, you should answer “y” to that question, as that is
where X will look for its configuration file.

Assuming that you answered all the questions correctly and have the X server package installed, you
should now be able to start up X as follows:

 $ startx
If you've installed KDE or GNOME, it should come up at this time. Otherwise, you might want to run
xwmconfig and select the window manager that you want to use by default. Window managers will be
described later on in this chapter. xwmconfig sets up the default window manager only for the user who

runs it. If you have several users on your system, each will need to select their own window manager.

There are a few special keystrokes that might come in handy when using X. If you need to quit X at some
point and you cannot close it down properly, there is a force-quit combination. control-alt-backspace
will kill X and dump you back to a command line. You can switch back to the command line terminals
while running X by pressing control-alt-function key, which is similar to switching virtual
terminals at the console. The X session is located on terminal 7, so you can get back into X with alt-F7.
Finally, you can change video modes while running X. control-alt-numeric keypad + will switch to
the next highest resolution, while control-alt-numeric keypad - will switch to the next lowest
resolution.

XF86Setup

The second way to configure X is to use XF86Setup, a graphical configuration program that comes as
part of the xset.tgz package. You'll also need to install the xvg16.tgz package.

To run XF86Setup, log in as root and type:

 # XF86Setup
If you've already got an /etc/XF86Config file (because you've already configured X), you'll be asked if
you want to use the existing XF86Config file for defaults. Otherwise, it'll switch right into graphics mode.

Figure 6-1. The initial XF86Setup screen.

XF86Setup is very similar to xf86config. It asks the same kind of questions, but presents them in a
graphical environment. If you are wondering what one of the questions means, refer to the previous
section for information. XF86Setup has a lot of help as well, so you should not have any difficulties in
figuring it out.

Session Configuration Files

xinitrc and ~/.xinitrc

xinit(1) is the program that actually starts X; it is called by startx(1), so you may not have noticed it (and
probably don't really need to). Its configuration file, however, determines which programs (including and
especially the window manager) are run when X starts up. xinit first checks your home directory for a
.xinitrc file. If the file is found, it gets run; otherwise, /var/X11R6/lib/xinit/xinitrc (the
systemwide default) is used. Here's a simple xinitrc file:

 #!/bin/sh

 # $XConsortium: xinitrc.cpp,v 1.4 91/08/22 11:41:34 rws Exp $

 userresources=$HOME/.Xresources

 usermodmap=$HOME/.Xmodmap

 sysresources=/usr/X11R6/lib/X11/xinit/.Xresources

 sysmodmap=/usr/X11R6/lib/X11/xinit/.Xmodmap

 # merge in defaults and keymaps

 if [-f $sysresources]; then

 xrdb -merge $sysresources

 fi

 if [-f $sysmodmap]; then

 xmodmap $sysmodmap

 fi

 if [-f $userresources]; then

 xrdb -merge $userresources

 fi

 if [-f $usermodmap]; then

 xmodmap $usermodmap

 fi

 # start some nice programs

 twm &

 xclock -geometry 50x50-1+1 &

 xterm -geometry 80x50+494+51 &

 xterm -geometry 80x20+494-0 &

 exec xterm -geometry 80x66+0+0 -name login
All of those “if” blocks are there to merge in various configuration settings from other files. We'll get to
.Xresources in just a moment, but .Xmodmap we're going to leave alone. The interesting part of the file
is toward the end, where various programs are run. This X session will begin with the twm(1) window

manager, a clock, and three terminals. Note the exec before the last xterm. What that does is replace the
currently running shell (the one that's executing this xinitrc script) with that xterm(1) command. When
the user quits that xterm, the X session will end.

To customize your X startup, copy the default /var/X11R6/lib/xinit/xinitrc to ~/.xinitrc and edit
it, replacing those program lines with whatever you like. The end of mine is simply:

 # Start the window manager:

 exec startkde
Note that there are several xinitrc.* files in /var/X11R6/lib/xinit that correspond to various
window managers and GUIs. You can use any of those, if you like.

.Xresources and .Xdefaults

Many X programs use a system called the X Resource Database to get various user preferences (fonts,
colours, etc.) This database is maintained via the xrdb(1) program, which you will likely never need to
run directly. Instead, it is run in Slackware from the xinitrc. The file that xinitrc tells xrdb to source
for options is ~/.Xresources. xrdb will also load ~/.Xdefaults, so either of these filenames will work.
A minimal .Xresources file looks like this:

 xterm*background: black

 xterm*foreground: gray

 xterm*scrollBar: true

 xterm*font: -*-lucidatypewriter-*-r-*-*-15-*-*-*-*-*-*-*
These four lines specify configuration information for the xterm program. An X resource is listed as
follows:

program*option: setting/value
Thus, the sample .Xresources above should be fairly self-explanatory. Don't be thrown off by the “font”
line; X fonts are always specified that way.

Servers and Window Managers
The X Window System was originally designed to work transparently across a network. One large server
would actually run the X programs, but they would get displayed on various clients machines elsewhere
on the network. The ability to remotely display programs can be a great advantage. The main
disadvantage to this networking concept is that it is less secure than running applications on the local
machine, and it takes a lot of network bandwidth to do. This is discussed later on in the section called
Exporting displays.

Even when you're running X on your own machine, you are still dealing with the client-server model. The
server is the video-card specific portion. When you configured X and told it what kind of video card you
had, that was telling it what server program to use. The client portion is all other programs you run under
X. A special client, called the window manager, is responsible for the look and feel of your particular X
session. The window manager is discussed in detail later.

The job of a window manager is to handle drawing windows on the screen with programs in them, as well
as handling input from the mouse and keyboard. The first window managers did that and not much else.
Today's window managers are much more complicated programs and are customizable in just about any
way imaginable. They have all sorts of fancy options that let your desktop look different from anyone
else's.

Having several window managers really separates Linux from Windows on the desktop. Under Windows,
you have the one basic windowing environment. Under Linux, you can run one of many different window

managers, each with a different look and different features. Some people would call this a weakness,
because there is no consistent look. However, most Linux users would call this a strength because you
can configure your system as much as you want.

Selecting a Desktop
For years, Unix was used almost exclusively as the operating system for servers, with the exception of
high-powered professional workstations. Only the technically inclined were likely to use a Unix-like
operating system, and the user interface reflected this fact. GUIs tended to be fairly bare-bones, designed
to run a few necessarily graphical applications like CAD programs and image renderers. Most file and
system management was conducted at the command line. Various vendors (Sun Microsystems, Silicon
Graphics, etc) were selling workstation installations with an attempt at cohesive “look and feel”, but the
wide variety of GUI toolkits in use by developers led inevitably to the dissolution of the desktop's
uniformity. A scrollbar might not look the same in two different applications. Menus might appear in
different places. Programs would have different buttons and checkboxes. Colors ranged widely, and were
generally hard-coded in each toolkit. As long as the users were primarily technical professionals, none of
this mattered much.

With the advent of free Unix-like operating systems and the growing number and variety of graphical
applications, X has recently gained a wide desktop user base. Most users, of course, are accustomed to the
consistent look and feel provided by Microsoft's Windows or Apple's MacOS; the lack of such
consistency in X-based applications became a barrier to its wider acceptance. In response, two open
source projects have been undertaken: The K Desktop Environment, or KDE, and the GNU Network
Object Model Environment, known as GNOME. Each has a wide variety of applications, from taskbars
and file managers to games and office suites, written with the same GUI toolkit and tightly integrated to
provide a uniform, consistent desktop.

The differences in KDE and GNOME are generally fairly subtle. They each look different from the other,
because each uses a different GUI toolkit. KDE is based on the Qt library from Troll Tech AS, while
GNOME uses GTK, a toolkit originally developed for The GNU Image Manipulation Program (or The
GIMP, for short). As separate projects, KDE and GNOME each have their own designers and
programmers, with different development styles and philosophies. The result in each case, however, has
been fundamentally the same: a consistent, tightly integrated desktop environment and application
collection. The functionality, usability, and sheer prettiness of both KDE and GNOME rival anything
available on other operating systems.

The best part, though, is that these advanced desktops are free. This means you can have either or both
(yes, at the same time). The choice is yours.

In addition to the GNOME and KDE desktops, Slackware includes a large collection of window
managers. Some are designed to emulate other operating systems, some for customization, others for
speed. There's quite a variety. Of course you can install as many as you want, play with them all, and
decide which you like the most.

To make desktop selection easy, Slackware also includes a program called xwmconfig that can be used to
select a desktop or window manager. It is run like so:

 $ xwmconfig
Figure 6-2. The Slackware xwmconfig program.

You'll be given a list of all the desktops and window managers installed. Just select the one you want
from the list. Each user on your system will need to run this program, since different users can use
different desktops, and not everyone will want the default one you selected at installation.

Then just start up X, and you're good to go:

 $ startx

Exporting displays
As was previously mentioned, it is possible to run X programs on one computer and display them on
another. This is incredibly bandwidth-intensive, so you probably won't want to do this over a modem
connection or over very long distances. Additionally, there are security considerations: exporting a
display is not a very secure thing to do, since you'll be letting the entire network look at what you're
doing. Still, it can be very useful on a local network.

An important thing to note here is the use of the words “client” and “server”. When exporting the display,
you may become confused as to what's a client and what's a server. We refer to the machine that actually
runs the X programs and sends the display information as the “server”. The machine that you use to
display the remote program is called the “client”. When discussing the design of X, this is reversed. The
program that displays things is called the “server”, while the running program is called the “client”. It's
not too terribly confusing, but worth pointing out.

For this example, we'll be making use of two computers: golf is a fairly powerful server sitting
underneath a desk on one side of a crowded room. It has a lot of RAM and a nice processor in it. In
addition, it has lots of X programs on it, but no monitor. On the other side of the room is couch, an old
machine with little RAM and not much disk. It is way too weak to run resource-intensive programs like
Netscape. couch has two major advantages, though: it has a monitor, and it is sitting right next to the
couch so you don't even have to get up to use it. Ideally, you would be able to run Netscape without
getting off the couch. Exporting is the answer.

First, log in to couch and start up X. Then open your favorite terminal program (xterm, rxvt, eterm, aterm,
or a host of others). The first step to remotely displaying X programs is to set up the client machine so
that other machines are allowed to display to the machine. This uses the xhost program to control access.
If you are on a secure internal network, you probably don't care who can remotely display programs. In
that case, you would just let anyone on the network display:

 couch$ xhost +

 access control disabled, clients can connect from any host
On the other hand, you might want to do this using machines that are on an insecure network (the
Internet, a college network, or anything else that you don't have control over). You certainly don't want
just anyone to connect. xhost allows you to be selective about who can display:

 couch$ xhost + golf.foc

 golf.foc being added to access control list
Now, only golf.foc (the server mentioned earlier) can display programs to couch. You can see who has
access to display programs by running xhost with no arguments:

 couch$ xhost

 access control enabled, only authorized clients can connect

 INET:golf.foc

 INET:localhost

 INET:couch.foc

 LOCAL:
This is all you have to do to set up the client end of things. The next step is to set up the server so that it
knows to display programs somewhere other than the monitor. Since the server doesn't have a monitor on
it (and therefore doesn't have X running), it'll need to know where to display.

Setting up the server is not very difficult either. After connecting, you'll need to modify the $DISPLAY
environment variable. By default, it will probably not be set to anything. You'll need to set $DISPLAY to
the value of the remote host, plus a number that represents which X session to display to. You will almost
always have only one X session running, so dealing with that variable shouldn't be an issue.

Here's how the $DISPLAY variable would be set on our example server using Bash as the shell. Other
shells would use a different syntax, but the value should be the same.

 golf$ export DISPLAY=couch.foc:0.0
That's all there is to setting up the server side of things. Now you just stay logged into the server and run
X programs from there. All the screen output from the program will get sent across the network to the
client machine, even though it's running on a computer across the room.

 golf$ netscape &
This would run netscape off the server machine, but since the DISPLAY variable is set to couch,
everything will get displayed there. You don't even have to get up to run those big X programs on your
old terminal. One important note about this: the server machine will have to have all the X libraries and
other support files needed to run the program. However, you won't need an X server or a
/etc/XF86Config file, since nothing is getting displayed to the server.

Afterwards, you might want to disable display exporting by removing the server from your client's access
control list:

 couch$ xhost - golf.foc

 golf.foc being removed from access control list

 couch$
You can see how this a great way to share computing resources. But be careful, you may be the host of
many X programs for many remote computers and not even know it.

Summary

In this chapter, you learned how to configure the X Window System using xf86config and XF86Setup.
You should also know what a desktop environment and a window manager are, and how to switch around
among the various choices. You should be able to export your X session to another computer. At this
point, you should be up and running in a graphical environment.

Chapter 7. Booting
The process of booting your Linux system can sometimes be easy and sometimes be difficult. Many users
install Slackware on their computer and that's it. They just turn it on and it's ready to use. Others,
however, must use another operating system for certain tasks, so they need both operating systems
available on the machine.

This section covers using LILO and Loadlin, the two booters included with Slackware. It also explains
some typical dual booting scenarios and how you could go about setting it up.

LILO
The Linux Loader, or LILO, is the most popular booter in use on Linux systems. It is quite configurable
and can easily be used to boot other operating systems.

Slackware Linux comes with a menu-driven configuration utility called liloconfig. This program is first
run during the setup process, but you can invoke it later by typing liloconfig at the prompt.

LILO reads its settings from the /etc/lilo.conf(5) file. It is not read each time you boot up, but instead
is read each time you install LILO. LILO must be reinstalled to the boot sector each time you make a
configuration change. liloconfig will help you build the configuration file so that you can install LILO for
your system. If you prefer to edit /etc/lilo.conf by hand, then reinstalling LILO just involves type
/sbin/lilo at the prompt.

When you first invoke liloconfig, it will look like this:

Figure 7-1. The initial liloconfig screen.

If this is your first time setting up LILO, you should pick “simple”. Otherwise, you might find “expert” to
be faster if you are familiar with LILO and Linux. Selecting “simple” will begin the LILO configuration.

If kernel frame buffer support is compiled into your kernel, liloconfig will ask which video resolution you
would like to use. This is the resolution that is also used by the XFree86 frame buffer server. If you do
not want the console to run in a special video mode, selecting normal will keep the standard 80x25 text
mode in use.

Figure 7-2. Liloconfig asking what video mode to use for the framebuffer.

The next part of the LILO configuration is selecting where you want it installed. This is probably the
most important step. The list below explains the installation places:

Root

This option installs LILO to the beginning of your Linux root partition. This is the safest option if you
have other operating systems on your computer. It ensures that any other booters are not overwritten. The
disadvantage is that LILO will only load from here if your Linux drive is the first drive on your system.

Floppy

This method is even safer than the previous one. It creates a boot floppy that you can use to boot your
Linux system. This keeps the booter off the hard disk entirely, so you only boot this floppy when you
want to use Slackware.

MBR

You will want to use this method if Slackware is the only operating system on your computer, or if you
will be using LILO to choose between multiple operating systems on your computer.

This option will overwrite any other booter you have in the MBR.

After selecting the installation location, liloconfig will write the configuration file and install LILO.
That's it. If you select the “expert” mode you will receive a special menu. This menu allows you to tweak
the /etc/lilo.conf file, add other operating systems to your boot menu, and set LILO to pass special
kernel parameters at boot time. The expert menu looks like this:

Figure 7-3. liloconfig “expert” mode.

Whatever your system configuration is, setting up a working boot loader is easy. liloconfig makes setting
it up a cinch. However, there are instances where LILO just won't work on a system. Fortunately, there
are other options.

LOADLIN
The other booting option that comes with Slackware Linux is LOADLIN. LOADLIN is a DOS
executable that can be used to start Linux from a running DOS system. It requires the Linux kernel to be
on the DOS partition so that LOADLIN can load it and properly boot the system.

During the installation process, LOADLIN will be copied to root's home directory as a .ZIP file. There is
no automatic setup process for LOADLIN. You will need to copy the Linux kernel (/vmlinuz) and the
LOADLIN file from root's home directory to the DOS partition.

LOADLIN is useful if you would like to make a boot menu on your DOS partition. A menu could be
added to your AUTOEXEC.BAT file that would allow you to pick between Linux or DOS. A choice of Linux
would run LOADLIN, thus booting your Slackware system. This AUTOEXEC.BAT file under Windows 95
will provide a sufficient boot menu:

 @ECHO OFF

 SET PROMPT=PG

 SET PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\

 CLS

 ECHO Please Select Your Operating System:

 ECHO.

 ECHO [1] Slackware Linux

 ECHO [2] Windows 95

 ECHO.

 CHOICE /C:12 "Selection? -> "

 IF ERRORLEVEL 2 GOTO WIN

 IF ERRORLEVEL 1 GOTO LINUX

 :WIN

 CLS

 ECHO Starting Windows 95...

 WIN

 GOTO END

 :LINUX

 ECHO Starting Slackware Linux...

 CD \LINUX

 LOADLIN C:\LINUX\VMLINUZ ROOT=<root partition device> RO

 GOTO END

 :END
You will want to specify your root partition as a Linux device name, like /dev/hda2 or something else.
You can always use LOADLIN at the command line. You simply use it in the same manner as it is in the
example above. The LOADLIN documentation comes with many examples on how to use it.

Dual Booting
Many users set up their computers to boot Slackware Linux and another operating system. We've
described several typical dual boot scenarios below, in case you are having difficulty setting up your
system.

Windows 9x/DOS

Setting up a computer with both Windows 9x and Linux is probably the most common dual boot scenario.
There are numerous ways you can setup the booting, but this section will cover two.

Often times when setting up a dual boot system, a person will devise a perfect plan for where everything
should go but mess up the installation order. It is very important to understand that operating systems

need to be installed in a certain order for a dual boot setup to work. Linux always offers control over
what, if anything, gets written to the Master Boot Record. Therefore, it's always advisable to install Linux
last. Windows should be installed first, since it will always write its booter to the Master Boot Record.

Using LILO

Most people will want to use LILO to chose between Linux and Windows. As stated above, you should
install Windows first, then Linux.

Let's say you have a 47GB IDE hard disk as the only drive in your system. Let's also say that you want to
give half of that space to Windows and half of that space to Linux. This will present a problem when
trying to boot Linux. I do not know the specific geometry of the drive, but chances are that 23.5GB down
the drive will be well past the 1024th cylinder. A better layout for this drive would be:

 1GB Windows boot (C:)

 1GB Linux root (/)

 22.5 Windows misc (D:)

 22.5 Linux /usr (/usr)

You would also want to set aside an adequate amount of space for a Linux swap partition. The unwritten
rule is to use twice the amount of RAM you have in disk space. A 64MB system would have 128MB of
swap, and so on.

With your partitions layed out, you should proceed to install Windows. After that is set up and working,
you should install Linux. The LILO installation needs special attention. You will want to select the
“expert” mode for installing LILO.

Begin a new LILO configuration. You will want to install it to Master Boot Record so that it can be used
to choose between the two operating systems. From the menu, add your Linux partition and add your
Windows (or DOS) partition. Once that's complete, you can install LILO.

Reboot the computer. LILO should load and wait for user interaction. You can press Alt to get the boot:
prompt. Type the name of the operating system you want to load (these names were selected when you
setup LILO). If you forgot the name, press Tab to get a list of operating systems that you can boot.

You can configure LILO even further by editing the /etc/lilo.conf file on your Linux partition. You
can set it up to display a text menu, and always present the prompt. For example, if I wanted my LILO
display to do this:

 System Boot Menu

 ================

 1 - Linux

 2 - Windows

 LILO boot:
My /etc/lilo.conf file would look like this:

 # LILO configuration file

 boot = /dev/hda

 vga = normal

 message = /boot/message

 image = /vmlinuz

 root = /dev/hda2

 label = 1

 read-only

 other = /dev/hda1

 label = 2

 table = /dev/hda
And my /boot/message file would look like this:

 System Boot Menu

 ================

 1 - Linux

 2 - Windows
LILO is quite a configurable boot loader. It's not just limited to booting Linux or DOS. It can boot just
about anything. The man pages for lilo(8) and lilo.conf(5) provide more detailed information.

What if LILO doesn't work? There are instances where LILO just won't work on a particular machine.
Fortunately, there is another way to dual boot Linux and Windows.

Using LOADLIN

This method can be used if LILO doesn't work on your system, or if you just don't want to set up LILO.
This method is also ideal for the user that reinstalls Windows often. Each time you reinstall Windows, it
will overwrite the Master Boot Record, thus destroying any LILO installation. With LOADLIN, you are
not subject to that problem. The biggest disadvantage is that you can only use LOADLIN to boot Linux.

With LOADLIN, you can install the operating systems in any order desired. Be careful about installing
things to the Master Boot Record, you do not want to do that. LOADLIN relies on the Windows partition
being bootable. So during the Slackware installation, make sure you skip the LILO setup.

After installing the operating systems, copy the lodlinX.zip (where “X” is a version number, such as
“16a”) file from root's home directory to your Windows partition. Also copy your kernel image to the
Windows partition. You will need to be in Linux for this to work. This example shows how to do this:

 # mkdir /win

 # mount -t vfat /dev/hda1 /win

 # mkdir /win/linux

 # cd /root

 # cp loadlin* /win/linux

 # cp /vmlinuz /win/linux

 # cd /win/linuz

 # unzip loadlin16a.zip

That will create a C:\LINUX directory on your Windows partition (assuming it's /dev/hda1) and copy
over the necessary stuff for LOADLIN. After doing this, you will need to reboot into Windows to setup a
boot menu.

Once in Windows, get to a DOS prompt. First, we need to make sure the system is set to not boot into the
graphical interface.

 C:\>cd \

 C:\>attrib -r -a -s -h MSDOS.SYS

 C:\>edit MSDOS.SYS

Add this line to the file:

 BootGUI=0

Now save the file and exit the editor. Now edit C:\AUTOEXEC.BAT so we can add a boot menu. The
following provides an example of what a boot menu block in AUTOEXEC.BAT would look like:

 cls

 echo System Boot Menu

 echo.

 echo 1 - Linux

 echo 2 - Windows

 echo.

 choice /c:12 "Selection? -> "

 if errorlevel 2 goto WIN

 if errorlevel 1 goto LINUX

 :LINUX

 cls

 echo "Starting Linux..."

 cd \linux

 loadlin c:\linux\vmlinuz root=/dev/hda2 ro

 goto END

 :WIN

 cls

 echo "Starting Windows..."

 win

 goto END

 :END
The key line is the one that runs LOADLIN. We tell it the kernel to load, the Linux root partition, and that
we want it mounted read-only initially.

The tools for these two methods are provided with Slackware Linux. There are numerous other booters on
the market, but these should work for most dual boot setups.

Windows NT

This is the second most common dual booting situation. Windows NT presents several more problems
than dual booting between Windows 9x and Linux. The one we are most concerned with is if the Master
Boot Record is overwritten with LILO, NT will not boot successfully. Therefore, we must use the OS
Loader that comes with Windows NT. The steps below show how you should setup a Windows NT and
Linux dual boot system.

1. Install Windows NT

2. Install Linux, making sure LILO is installed to the superblock of the Linux partition

3. Get the first 512 bytes of the Linux root partition and store it on the Windows NT partition

4. Edit C:\BOOT.INI under Windows NT to add a Linux option

Installing Windows NT should be fairly straightforward, as should installing Linux. From there, it gets a
little more tricky. Grabbing the first 512 bytes of the Linux partition is easier than it sounds. You will
need to be in Linux to accomplish this. Assuming your Linux partition is /dev/hda2, issue this
command:

 # dd if=/dev/hda2 of=/tmp/bootsect.lnx bs=1 count=512

That's it. Now you need to copy bootsect.lnx to the Windows NT partition. Here's where we run into
another problem. Linux does not have stable write support for the NTFS filesystem. If you installed
Windows NT and formatted your drive as NTFS, you will need to copy this file to a FAT floppy and then
read from it under Windows NT. If you formatted the Windows NT drive as FAT, you can simply mount
it under Linux and copy the file over. Either way, you will want to get /tmp/bootsect.lnx from the
Linux drive to C:\BOOTSECT.LNX on the Windows NT drive.

The last step is adding a menu option to the Windows NT boot menu. Under Windows NT open a
command prompt.

 C:\WINNT>cd \

 C:\>attrib -r -a -s -h boot.ini

 C:\>edit boot.ini

Add this line to the end of the file:

 C:\bootsect.lnx="Slackware Linux"

Save the changes and exit the editor. When you reboot Windows NT, you will have a Linux option on the
menu. Choosing it will boot into Linux.

Linux

Yes, people really do this. This is definitely the easiest dual boot scenario. You can simply use LILO and
add more entries to the /etc/lilo.conf file. That's all there is to it.

Summary
This chapter discussed booting your system using either LILO or Loadlin. It also discussed booting
between Linux and other operating systems. You should be able to configure your booting method
properly and dual boot with another operating system, should you choose to.

IV. Using Slackware Linux

Chapter 8. The Shell
In a graphical environment, the interface is provided by a program that creates windows, scrollbars,
menus, etc. In a commandline environment, the user interface is provided by a “shell”, which interprets
commands and generally makes things useable. Immediately after logging in (which is covered in this
chapter), users are put into a shell and allowed to go about their business. This chapter serves as an
introduction to the shell, and to the most common shell among Linux users-- the Bourne Again Shell
(bash). For more detailed information on anything in this chapter, check out the bash(1) man page.

Users

Logging In

So you've booted, and you're looking at something that looks like this:

 Welcome to Linux 2.2.14

 darkstar login:
Hmm.. nobody said anything about a login. And what's a darkstar? Don't worry; you probably didn't
accidentally fire up a hyperspace comm-link to the Empire's artificial moon. (I'm afraid the hyperspace
comm-link protocol isn't currently supported by the Linux kernel.) No, darkstar is just the name of one of
our computers, and its name gets stamped on as the default. If you specified a name for your computer
during setup, you should see it instead of darkstar.

As for the login... If this is your first time, you'll want to log in as root. You'll be prompted for a
password; if you set one during the setup process, that's what it's looking for. If not, just hit enter. That's
it-- you're in!

Root: The Superuser

Okay, who or what is “root”? And what's it doing with an account on your system?

Well, in the world of Unix and similar operating systems (like Linux), there are users and then there are
users. We'll go into this in more detail later, but the important thing to know now is that root is the user
above all users; root is all-powerful and all-knowing, and nobody disobeys root. It just isn't allowed. Root
is what we call a “superuser”, and rightly so. And best of all, root is you.

Cool, huh?

If you're not sure: yes, that's very cool. The catch is, though, that root is inherently allowed to break
anything it so desires. You might want to skip ahead to Chapter 12 and see about adding a user; then login
as that user and work from there. The traditional wisdom is that it's best to only become superuser when
absolutely necessary, so as to minimize the possibility of accidentally breaking something.

By the way, if you decide you want to be root while you're logged in as someone else, no problems. Just
use the su(1) command. You'll be asked for root's password and then it will make you root until you exit
or logout. You can also become any other user using su, provided you know that user's password: su
logan, for instance, would make you me.

The Command Line

Running Programs

It's hard to get much accomplished without running a program; you might be able to prop something up
with your computer or hold a door open, and some will make the most lovely humming noise when
running, but that's really about it. And I think we can all agree that its use as a humming doorstop isn't
what brought the personal computer the popularity it now enjoys.

So, remember how almost everything in Linux is a file? Well, that goes for programs, too. Every
command you run (that isn't built into the shell) resides as a file somewhere. You run a program simply
by specifying the full path to it.

For instance, remember that su command from the last section? Well, it's actually in the /bin directory:
/bin/su would run it nicely.

So why, then, does just typing su work? After all, you didn't say it was in /bin. It could just as easily
have been in /usr/local/share, right? How did it know? The answer to that lies in the PATH
environment variable; most shells have either PATH or something very like PATH. It basically contains a
list of directories to look in for programs you try to run. So when you ran su, your shell ran through its list
of directories, checking each one for an executable file called su that it could run; the first one it came to,
it ran. This happens whenever you run a program without specifying a full path to it; if you get a Command
not found error, that only means that the program you tried to run isn't in your PATH. (Of course, this
would be true if the program doesn't exist at all...) We'll discuss environment variables in more depth in
the section called The Bourne Again Shell (bash) .

Remember also that “.” is shorthand for “the directory I'm in”, so if you happened to be in /bin, ./su
would have worked as an explicit full path.

Wildcard Matching

Nearly every shell recognizes some characters as being substitutes or abbreviations that mean “anything
goes here”. Such characters are aptly named “wildcards”; the most common are * and ?. By convention, ?
usually matches any single character. For instance, suppose you're in a directory with three files:
ex1.txt, ex2.txt, and ex3.txt. You want to copy all of those files (using the cp command we cover in
the section called cp in Chapter 10) to another directory, say /tmp. Well, typing cp ex1.txt ex2.txt ex3.txt
/tmp is entirely too much work. It's much easier to type cp ex?.txt /tmp; the ? will match each of the
characters “1”, “2”, and “3”, and each in turn will be substituted in.

What's that you say? That's still too much work? You're right. It's appalling; we have labor laws to protect
us from that sort of thing. Fortunately, we also have *. As was already mentioned, * matches “any
number of characters”, including 0. So if those three files were the only ones in the directory, we could
have simply said cp * /tmp and gotten them all in one fell swoop. Suppose, though, that there is also a
file called example.txt and one called hejaz.txt. We want to copy example.txt but not hejaz.txt;
cp example* /tmp will do that for us.

cp example?.txt /tmp, would, of course, only get our original three files; there's no character in
example.txt to match that ?, so it would be left out.

Input/Output Redirection and Piping

(Here comes something cool.)

 $ ps > blargh
Y'know what that is? That's me running ps to see which processes are running; ps is covered in Chapter
11 That's not the cool part. The cool part is > blargh, which means, roughly, “take the output from ps
and write it to a file called blargh”. But wait, it gets cooler.

 $ ps | less
That one takes the output from ps and “pipes” it through less, so I can scroll through it at my leisure.

 $ ps > > blargh
This is the third most commonly used redirector; it does the same thing as “>”, except that “> >” will
append output from ps to the file blargh, if said file exists. If not, just like “>”, it will be created. (“>”
will obliterate the current contents of blargh.)

There is also a “<” operator, which means “take your input from the following”, but it's not used nearly so
often.

 $ fromdos < dosfile.txt > unixfile.txt
Redirection gets really fun when you start piling it up:

 $ ps | tac > > blargh

That will run ps, reverse the lines of its output, and append those to the file blargh. You can stack as
many of these up as you want; just be careful to remember that they get interpreted from left to right.

See the bash(1) man page for more detailed information on redirection.

The Bourne Again Shell (bash)

Environment Variables

A Linux system is a complex beast, and there's a lot to keep track of, a lot of little details that come into
play in your normal interactions with various programs (some of which you might not even need to be
aware of). Nobody wants to pass a bunch of options to every program that gets run, telling it what kind of
terminal is being used, the hostname of the computer, how their prompt should look...

So as a coping mechanism, users have what's called an environment. The environment defines the
conditions in which programs run, and some of this definition is variable; the user can alter and play with
it, as is only right in a Linux system. Pretty much any shell will have environment variables (if not, it's
probably not a very useable shell). Here we will give an overview of the commands bash provides for
manipulating its environment variables.

 $ set
set by itself will show you all of the environment variables that are currently defined, as well as their
values. Like most bash built-ins, it can also do several other things (with parameters); we'll leave it to the
bash(1) man page to cover that, though. An excerpt from a set command on one of my computers looks
like this:

 PATH=/usr/local/lib/qt/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:

 /usr/openwin/bin:/usr/games:.:/usr/local/ssh2/bin:/usr/local/ssh1/bin:

 /usr/share/texmf/bin:/usr/local/sbin:/usr/sbin:/home/logan/bin

 PIPESTATUS=([0]="0")

 PPID=4978

 PS1='\h:\w\$ '

 PS2='> '

 PS4='+ '

 PWD=/home/logan

 QTDIR=/usr/local/lib/qt

 REMOTEHOST=ninja.tdn

 SHELL=/bin/bash
Notice that PATH variable we discussed earlier; I can run anything in any of those directories simply by
typing its base filename.

 $ unset VARIABLE
unset will remove any variables that you give it, wiping out both the variable and its value; bash will
forget that variable ever existed. (Don't worry. Unless it's something you explicitly defined in that shell
session, it'll probably get redefined in any other session.)

 $ export VARIABLE=some_value
Now, export is truly handy. Using it, you give the environment variable VARIABLE the value
“some_value”; if VARIABLE didn't exist, it does now. If VARIABLE already had a value, well, it's gone.

That's not so good, if you're just trying to add a directory to your PATH. In that case, you probably want to
do something like this:

 $ export PATH=$PATH:/some/new/directory
Note the use of $PATH there: when you want bash to interpret a variable (replace it with its value), tack a
$ onto the beginning of the variable's name. For instance, echo $PATH will echo the value of PATH, in
my case:

 $ echo $PATH

 /usr/local/lib/qt/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:

 /usr/openwin/bin:/usr/games:.:/usr/local/ssh2/bin:/usr/local/ssh1/bin:

 /usr/share/texmf/bin:/usr/local/sbin:/usr/sbin:/home/logan/bin

Tab Completion

(Here comes something cool again.)

1. A commandline interface means lots of typing.

2. Typing is work.

3. Nobody likes work.

From 3 and 2, we can determine that 4) nobody likes typing. Fortunately, bash saves us from 5 (nobody
likes a commandline interface).

How does bash accomplish this wonderful feat, you ask? In addition to the wildcard expansion we
discussed before, bash features “tab completion”.

Tab completion works something like this: You're typing the name of a file. Maybe it's in your PATH,
maybe you're typing it out explicitly. All you have to do is type enough of the filename to uniquely
identify it. Then hit the tab key. bash will figure out what you want and finish typing it for you!

Example time. /usr/src contains two subdirectories: /usr/src/linux and /usr/src/sendmail. I want
to see what's in /usr/src/linux. So I just type ls /usr/src/l, hit the TAB key, and bash gives me ls
/usr/src/linux.

Now, suppose there are two directories /usr/src/linux and /usr/src/linux-old; If I type
/usr/src/l and hit TAB, bash will fill in as much as it can, and I'll get /usr/src/linux. I can stop
there, or I can hit TAB again, and bash will show a list of directories that match what I've typed so far.

Hence, less typing (and hence, people can like commandline interfaces). I told you it was cool.

Virtual Terminals
So you're in the middle of working on something and you decide you need to do something else. You
could just drop what you're doing and switch tasks, but this is a multi-user system, right? And you can log
in as many times simultaneously as you want, right? So why should you have to do one thing at a time?

You don't. We can't all have multiple keyboards, mice, and monitors for one machine; chances are most
of us don't want them. Clearly, hardware isn't the solution. That leaves software, and Linux steps up on
this one, providing “virtual terminals”, or “VTs”.

By pressing Alt and a function key, you can switch between virtual terminals; each function key

corresponds to one. Slackware has logins on 6 VTs by default. Alt+F2 will take you to the second one,
Alt+F3 to the third, etc.

The rest of the function keys are reserved for X sessions. Each X session uses its own VT, beginning with
the seventh (Alt+F7) and going up. When in X, the Alt+Function key combination is replaced with
Ctrl+Alt+Function; so if you are in X and want to get back to a text login (without exiting your X
session), Ctrl+Alt+F3 will take you to the third. (Alt+F7 will take you back, assuming you're using the
first X session.)

Summary
This chapter discussed users, the shell, the command line, and virtual terminals. You should feel
comfortable working on the command line, running programs, and using pipes and redirection operators
to combine commands. Finally, you should have some idea of the power of the root user and why always
running as root is a bad thing.

Chapter 9. Filesystem Structure
We have already discussed the directory structure in Slackware Linux. You are able to find files and
directories that you need. But there is more to the filesystem than just the directory structure.

Linux is a multiuser operating system. Every aspect of the system is multiuser, even the filesystem. The
system stores information like who owns a file and who can read it. There are other unique parts about the
filesystems, such as links and NFS mounts. This section explains these, as well as the multiuser aspects of
the filesystem.

Ownership
The filesystem stores ownership information for each file and directory on the system. This includes what
owner and group own a particular file. The easiest way to see this information is with the ls command:

 $ ls -l /usr/bin/wc

 -rwxr-xr-x 1 root bin 7368 Jul 30 1999 /usr/bin/wc

We are interested in the third and fourth columns. These contain the username and group name that owns
this file. We see that the user “root” and the group “bin” own this file.

We can easily change the file owners with the chown(1) (which means “change owner”) and chgrp(1)
(which means “change group”) commands. To change the file owner to “daemon”, we would use chown:

 # chown daemon /usr/bin/wc

To change the group owner to “root”, we would use chgrp:

 # chgrp root /usr/bin/wc

We can also use chown to specify the user and group owners for a file:

 # chown daemon.root /usr/bin/wc

File ownership is a very important part of using a Linux system, even if you are the only user. You
sometimes need to fix ownerships on files and device nodes.

Permissions
Permissions are the other important part of the multiuser aspects of the filesystem. With these, you can
change who can read, write, and execute files.

The permission information is stored as four octal digits, each specifying a different set of permissions.
There are owner permissions, group permissions, and world permissions. The fourth octal digit is used to
store special information such as set user ID, set group ID, and the “sticky” bit. The octal values assigned
to the permission modes are (they also have letters associated with them that are displayed by programs
such as ls and can be used by chmod):

Table 9-1. Octal Permission Values

Permission Type Octal Value Letter Value
"sticky" bit 1 t
set user ID 4 s
set group ID 2 s
read 4 r
write 2 w
execute 1 x
You add the octal values for each permission group. For example, if you want the group permissions to be
“read” and “write”, you would use “6” in the group portion of the permission information.

bash's default permissions are:

 $ ls -l /bin/bash

 -rwxr-xr-x 1 root bin 477692 Mar 21 19:57 /bin/bash

The first dash would be replaced with a “d” if this was a directory. The three permission groups (owner,
group, and world) are displayed next. We see that the owner has read, write, and execute permissions
(rwx). The group has only read and execute (r-x). And everyone else has only read and execute (r-x).

How would we set permissions on another file to resemble bash's? First, let's make an example file:

 $ touch /tmp/example

 $ ls -l /tmp/example

 -rw-rw-r--- 1 david users 0 Apr 19 11:21 /tmp/example

We will use chmod(1) (which means “change mode”) to set the permissions on the example file. Add the
octal numbers for the permissions you want. For the owner to have read, write, and execute, we would
have a value of 7. Read and execute would have 5. Run those together and pass them to chmod like this:

 $ chmod 755 /tmp/example

 $ ls -l /tmp/example

 -rwxr-xr-x 1 david users 0 Apr 19 11:21 /tmp/example

To set special permissions, add the numbers together and place them in the first column. For example, to
make it set user ID and set group ID, we use 6 as the first column:

 $ chmod 6755 /tmp/example

 $ ls -l /tmp/example

 -rwsr-sr-x 1 david users 0 Apr 19 11:21 /tmp/example

If the octal values confuse you, you can use letters with chmod. The permission groups are represented
as:

Owner u
Group g
World o
All of the above a
To do the above, we would have to use several command lines:

 $ chmod a+rx /tmp/example

 $ chmod u+w /tmp/example

 $ chmod ug+s /tmp/example

Some people prefer the letters over the numbers. Either way will result in the same set of permissions.

We mentioned set user ID and set group ID permissions in several places above. You may be wondering
what this is. Normally when you run a program, it is operating under your user account. That is, it has all
the permissions that you as a user have. The same is true for the group. When you run a program, it
executes under your current group. With set user ID permissions, you can force the program to always
run as the program owner (such as “root”). Set group ID is the same, but for the group.

Be careful with this, set user ID and set group ID programs can open major security holes on your system.
If you frequently set user ID programs that are owned by “root”, you are allowing anyone to run that
program and run it as root. Since root has no restrictions on the system, you can see how this would pose
a major security problem. In short, it's not bad to use set user ID and set group ID permissions, just use
common sense.

Links
Links are pointers between files. With links, you can have files exist in many locations and be accessible
by many names. There are two types of links: hard and soft.

Hard links are names for a particular file. They can only exist within a single directory and are only
removed when the real name is removed from the system. These are useful in some cases, but many users
find the soft link to be more versatile.

The soft link, also called a symbolic link, can point to a file outside of its directory. It is actually a small
file containing the information it needs. You can add and remove soft links without affecting the actual
file.

Links do not have their own set of permissions or ownerships, but instead reflect those of the file they
point to. Slackware uses mostly soft links. Here is a common example:

 $ ls -l /bin/sh

 lrwxrwxrwx 1 root root 4 Apr 6 12:34 /bin/sh -> bash

The sh shell under Slackware is actually bash. Removing links is done using rm. The ln command is

used to create links. These commands will be discussed in more depth in Chapter 10.

Mounting Devices
As was previously discussed in the section called File System Layout in Chapter 4 , all the drives and
devices in your computer are one big filesystem. Various hard drive partitions, CD-ROMs, and floppies
are all placed in the same tree. In order to attach these drives to the filesystem so that you can access
them, you have to use the mount(1) and umount(1) commands.

Some devices are automatically mounted when you boot up your computer. These are listed in the
/etc/fstab file. Anything that you want to be mounted automatically gets an entry in that file. For other
devices, you'll have to issue a command every time you want to use the device.

fstab

Let's look at an example of the /etc/fstab file:

 /dev/sda1 / ext2 defaults 1 1

 /dev/sda2 /usr/local ext2 defaults 1 1

 /dev/sda4 /home ext2 defaults 1 1

 /dev/sdb1 swap swap defaults 0 0

 /dev/sdb3 /export ext2 defaults 1 1

 none /dev/pts devpts gid=5,mode=620 0 0

 none /proc proc defaults 0 0

 /dev/fd0 /mnt ext2 defaults 0 0

 /dev/cdrom /cdrom iso9660 ro 0 0

The first column is the device name. In this case, the devices are five partitions spread out across two
SCSI hard drives, two special filesystems that don't need a device, a floppy, and a CD-ROM drive. The
second column is where the device will be mounted. This needs to be a directory name, except in the case
of a swap partition. The third column is the filesystem type of the device. For normal Linux filesystems,
this will be ext2 (second extended filesystem). CD-ROM drives are iso9660, and Windows-based
devices will either be msdos or vfat.

The fourth column is a listing of options that apply to the mounted filesystem. “defaults” is fine for just
about everything. However, read-only devices should be given the ro flag. There are a lot of options that
can be used. Check the fstab(5) man page for more information. The last two columns are used by fsck
and other commands that need to manipulate the devices. Check the man page for that information, as
well.

When you install Slackware Linux, the setup program will build much of the fstab file. Then only time
you will need to edit it is if you add disks or want devices to be automatically mounted at boot time.

mount and umount

Attaching another device to your filesystem is easy. All you have to do is use the mount command, along
with a few options. Using mount can also be made much more simple if the device has an entry in the
/etc/fstab file. For example, let's say that I wanted to mount my CD-ROM drive and that my fstab file
looked like the example from the previous section. I would call mount like so:

 # mount /cdrom

Since there is an entry in fstab for that mount point, mount knows what options to use. If there wasn't an
entry for that device, I would have to use several options for mount:

 # mount -t iso9660 -o ro /dev/cdrom /cdrom

That command line includes the same information as the example fstab did, but we'll go over all the
parts anyways. The -t iso9660 is the filesystem type of the device to mount. In this case, it would be the
iso9660 filesystem which is what CD-ROM drives most commonly use. The -o ro tells mount to mount
the device read-only. The /dev/cdrom is the name of the device to mount, and /cdrom is the location on
the filesystem to mount the drive.

Before you can remove a floppy, CD-ROM, or other removable device that is currently mounted, you'll
have to unmount it. That is done using the umount command. Don't ask where the “n” went because we
couldn't tell you. You can use either the mounted device or the mount point as the argument to umount.
For example, if you wanted to unmount the CD-ROM from the previous example, either of these
commands would work:

 # umount /dev/cdrom

 # umount /cdrom

NFS Mounts
NFS stands for the Network Filesystem. It is not really part of the real filesystem, but can be used to add
parts to the mounted filesystem.

Large Unix environments often times share the same programs, sets of home directories, and mail spool.
The problem of getting the same copy to each machine is solved with NFS. We can use NFS to share one
set of home directories between all of the workstations. The workstations then mount that NFS share as if
it were on their own machines.

See the section called NFS (Network File System) in Chapter 5 and the man pages for exports(5),
nfsd(8), and mountd(8) for more information.

Summary
In this chapter, you should have gained knowledge of ownerships and permissions. You should know
why these exist and how to set them. You also should know about links between files, mounting devices,
and NFS mounts. These three things are important aspects of the filesystem. You should have a basic idea
of how to use them.

Chapter 10. Handling Files and Directories
Slackware Linux aims to the most Unix-like it can be. Traditionally, Unix operating systems have been
command-line oriented. We do have a graphical user interface in Slackware, but the command-line is still
the main level of control for the system. Therefore, it is important to understand some of the basic file
management commands.

The following sections explain the common file management commands and examples of how they are
used. There are many other commands, but these will help you get started. Also, the commands are only
briefly discussed here. You will find more detail in the accompanying man pages for each command.

ls

This command lists files in a directory. Windows and DOS users will notice its similarity to the dir
command. By itself, ls(1) will list the files in the current directory. To see what's in your root directory,
you could issue these commands:

 $ cd /

 $ ls

 bin cdr dev home lost+found proc sbin tmp var

 boot cdrom etc lib mnt root suncd usr vmlinuz

The problem a lot of people have with that output is that you cannot easily tell what is a directory and
what is a file. Some users prefer that ls add a type identifier to each listing, like this:

 $ ls -FC

 bin/ cdr/ dev/ home/ lost+found/ proc/ sbin/ tmp/ var/

 boot/ cdrom/ etc/ lib/ mnt/ root/ suncd/ usr/ vmlinuz

Directories get a slash at the end of the name, executable files get an asterisk at the end of the name, and
so on.

ls can also be used to get other statistics on files. For example, to see the creation dates, owners, and
permissions, you would look at a long listing:

 $ ls -l

 drwxr-xr-x 2 root bin 4096 May 7 1994 bin/

 drwxr-xr-x 2 root root 4096 Feb 24 03:55 boot/

 drwxr-xr-x 2 root root 4096 Feb 18 01:10 cdr/

 drwxr-xr-x 14 root root 6144 Oct 23 18:37 cdrom/

 drwxr-xr-x 4 root root 28672 Mar 5 18:01 dev/

 drwxr-xr-x 10 root root 4096 Mar 8 03:32 etc/

 drwxr-xr-x 8 root root 4096 Mar 8 03:31 home/

 drwxr-xr-x 3 root root 4096 Jan 23 21:29 lib/

 drwxr-xr-x 2 root root 16384 Nov 1 08:53 lost+found/

 drwxr-xr-x 2 root root 4096 Oct 6 1997 mnt/

 dr-xr-xr-x 62 root root 0 Mar 4 15:32 proc/

 drwxr-x---x 12 root root 4096 Feb 26 02:06 root/

 drwxr-xr-x 2 root bin 4096 Feb 17 02:02 sbin/

 drwxr-xr-x 5 root root 2048 Oct 25 10:51 suncd/

 drwxrwxrwt 4 root root 487424 Mar 7 20:42 tmp/

 drwxr-xr-x 21 root root 4096 Aug 24 1999 usr/

 drwxr-xr-x 18 root root 4096 Mar 8 03:32 var/

 -rw-r---r--- 1 root root 461907 Feb 22 20:04 vmlinuz

Suppose you want to get a listing of the hidden files in the current directory. This command will do just
that:

 $ ls -a

 . bin cdrom home mnt sbin usr

 .. boot dev lib proc suncd var

 .pwrchute_tmp cdr etc lost+found root tmp vmlinuz

Files beginning with a period (called “dot files”) are “hidden” when you run ls. You will only see them if
you pass the -a option.

There are many more options that can be found in the online manual page. Don't forget that you can
combine options that you pass to ls.

cd

The cd command is used to change working directories. You simply type cd followed the path name to
change to. Here's some examples:

 darkstar:~$ cd /bin

 darkstar:/bin$ cd usr

 bash: cd: usr: No such file or directory

 darkstar:/bin$ cd /usr

 darkstar:/usr$

Notice that without the preceding slash, it tries to change to a directory in the current directory.

The cd command is not like the other commands. It is a builtin shell command. Shell builtins are
discussed in the section called Environment Variables in Chapter 8 . This may not make any sense to you
right now. Basically it means there is no man page for this command. Instead, you have to use the shell
help. Like this:

 $ help cd

It will display the options for cd and how to use them.

more

more(1) is what we call a pager utility. Oftentimes the output of a particular command is too big to fit on
one screen. The individual commands do not know how to fit their output to separate screens. They leave
this job to the pager utility.

The more command breaks the output into individual screens and waits for you to press the space bar
before continuing on to the next screen. Pressing the enter key will advance the output one line. Here is a
good example:

 $ cd /usr/bin

 $ ls -l

That should scroll for a while. To break up the output screen by screen, just pipe it through more:

 $ ls -l | more

That is the pipe character (shift backslash). The pipe is short for saying “take the output of ls and feed it
into more”. You can pipe just about anything through the more command, not just ls. Piping is also
covered in the section called Input/Output Redirection and Piping in Chapter 8 .

less

The more command is quite handy, but oftentimes you will find that you have advanced past the screen
you wanted. more does not provide a way to go back. The less(1) command provides this functionality. It
is used in the same way as the more command, so the previous examples apply here too. So, less is more
than more.

cat

cat(1) is short for “concatenate”. It was originally designed to merge text files into one, but can be used
for many other purposes.

To merge two or more files into one, you simply list the files after the cat command and then redirect the
new output to a file. cat works with standard input and standard output, so you have to use the shell
redirection characters. For example:

 $ cat file1 file2 file3 > bigfile

This command takes the contents of file1, file2, and file3 and merges it all together. The new output
is sent to standard out.

One can also use cat to display files. Many people “cat” text files through the more or less commands,
like this:

 $ cat file1 | more

That will display the file1 file and pipe it through the more command so that you only get one screen at
a time.

Another common use for cat is copying files. You can copy any file around with cat, like this:

 $ cat /bin/bash > ~/mybash

The /bin/bash program is copied to your home directory and named “mybash”.

cat has many uses and the ones discussed here are just a few. Since cat makes extensive use of standard
input and standard output, it is ideal for use in shell scripts or part of other complex commands.

touch

touch(1) is used to change the timestamp on a file. You can change access timestamps and modification
timestamps with this command. If the file specified does not exist, touch will create a zero length file
with the name specified. To mark a file with the current system time, you would issue this command:

 $ touch file1

There are several options for touch, including options to specify which timestamp to modify, the time to
use, and many more. The online manual page discusses these in detail

echo

The echo(1) command displays the specified text on the screen. You specify the string to display after the
echo command. By default echo will display the string and print a newline character after it. You can
pass the -n option to suppress the printing of the newline. The -e option will cause echo to search for
escape characters in the string and execute them.

mkdir

mkdir(1) will create a new directory. You simply specify the directory to create when you run mkdir.
This example creates the hejaz directory in the current directory:

 $ mkdir hejaz

You can also specify a path, like this:

 $ mkdir /usr/local/hejaz

The -p option will tell mkdir to make any parent directories. The above example will fail if /usr/local
does not exist. The -p option will create /usr/local and /usr/local/hejaz:

 $ mkdir -p /usr/local/hejaz

ln

ln(1) is used to create links between files. These links can be either hard links or soft (symbolic) links.
The differences between the two kinds of links were discussed in the section called Links in Chapter 9 . If
you wanted to make a symbolic link to the directory /var/media/mp3 and place the link in your home
directory, you would do this:

 $ ln -s /var/media/mp3 ~/mp3

The -s option tells ln to make a symbolic link. The next option is the target of the link, and the final
option is what to call the link. In this case, it will just make a file called mp3 in your home directory that
points to /var/media/mp3. You can call the link itself whatever you want by just changing the last
option.

Making a hard link is just as simple. All you have to do is leave off the -s option. Making a hard link out
of the previous command would be done as follows:

 $ ln /var/media/mp3 ~/mp3

cp

cp(1) copies files. DOS users will notice its similarity to the copy command. There are many options for
cp, so you should have a look at the man page before using it.

A common use is to use cp to copy a file from one location to another. For example:

 $ cp hejaz /tmp

This copies the hejaz file from the current directory to the /tmp directory.

Many users prefer to keep the timestamps preserved, as in this example:

 $ cp -a hejaz /tmp

This ensures that the timestamps are not modified in the copy.

To recursively copy the contents of a directory to another directory, you would issue this command:

 $ cp -R adirectory /tmp

That will copy the adirectory directory to the /tmp directory.

cp has many more options that are discussed in detail in the online manual page.

mv

mv(1) will move files from one location to another. DOS users will notice the similarity to the move
command. You name the source and destination when you run mv. This example shows a common use of
mv:

 # mv myfile /usr/local/share/hejaz

mv has several command line options which are documented in detail in the online manual page.

rm

rm(1) removes files and directory trees. DOS users will notice the similarity to both the del and deltree
commands. rm can be very dangerous if you do not watch yourself. Unlike DOS or Windows, Linux does
not provide a way to undelete files.

To remove a single file, specify its name when you run rm:

 $ rm file1

If the file has write permissions removed, you may get a permission denied error message. To force
removal of the file no matter what, pass the -f option, like this:

 $ rm -f file1

To remove an entire directory, you use the -r and -f options together. This is a good example of how to
delete the entire contents of your hard drive. You really don't want to do this. But here's the command
anyway:

 # rm -rf /

Be very careful with rm; you can shoot yourself in the foot. There are several command line options,
which are discussed in detail in the online manual page

rmdir

rmdir(1) removes directories from the filesystem. The directory must be empty before it can be removed.
The syntax is simply:

 $ rmdir <directory>

This example will remove the hejaz subdirectory in the current working directory:

 $ rmdir hejaz

If that directory does not exist, rmdir will tell you. You can also specify a full path to a directory to
remove, as this example shows:

 $ rmdir /tmp/hejaz

That example will try to remove the hejaz directory inside the /tmp directory.

You can also remove a directory and all of its parent directories by passing the -p option.

 $ rmdir -p /tmp/hejaz

This will first try to remove the hejaz directory inside /tmp. If that is successful, it will try to remove
/tmp. rmdir will continue this until an error is encountered or the entire tree specified is removed.

Summary
This chapter covered a lot of programs that manipulate files and directories. You should know how to
create, delete, and move just about anything on the filesystem. You should also know how to list and
touch files if needed. Finally, you should know why rm -rf / is a very bad idea.

Chapter 11. Process Control
Every program that is running is called a process. These processes range from things like the X Window
System to system programs (daemons) that are started when the computer boots. Every process runs as a
particular user. Processes that are started at boot time usually run as root or nobody. Processes that you
start will run as you. Processes started as other users will run as those users.

You have control over all the processes that you start. Additionally, root has control over all processes on
the system, including those started by other users. Processes can be controlled and monitored through
several programs, as well as some shell commands.

Backgrounding
Programs started from the command line start up in the foreground. This allows you to see all the output
of the program and interact with it. However, there are several occasions when you'd like the program to
run without taking up your terminal. This is called running the program in the background, and there are a
few ways to do it.

The first way to background a process is by adding an ampersand to the command line when you start the
program. For example, assume you wanted to use the command line mp3 player amp to play a directory
full of mp3s, but you needed to do something else on the same terminal. The following command line
would start up amp in the background:

 $ amp *.mp3 &
The program will run as normal, and you are returned to a prompt.

The other way to background a process is to do so while it is running. First, start up a program. While it is
running, hit control+z. This suspends the process. A suspended process is basically paused. It
momentarily stops running, but can be started up again at any time. Once you have suspended a process,
you are returned to a prompt. You can background the process by typing:

 $ bg
Now, the suspended process is running in the background.

Foregrounding
If you need to interact with a backgrounded process, you can bring it back into the foreground. If you've
only got one backgrounded process, you can bring it back by typing:

 $ fg
If the program is not done running, the program will take control over you terminal and you will not be

returned to a prompt. Sometimes, the program will finish running while backgrounded. In this instance,
you'll get a message like this:

 [1]+ Done /bin/ls $LS_OPTIONS
That tells you that the backgrounded process (in this case ls - not terribly interesting) has completed.

It is possible to have several processes backgrounded at once. When this happens, you'll need to know
which process you want to bring back to the foreground. Just typing fg will foreground the process that
was last backgrounded. What if you had a whole list of processes in the background? Luckily, bash
includes a command to list all the processes. It's called jobs and gives output like so:

 $ jobs

 [1] Stopped vim

 [2]- Stopped amp

 [3]+ Stopped man ps
This shows you a list of all the processes that are backgrounded. As you can see, they are all stopped.
This means that the processes are suspended. The number is a sort of ID for all the backgrounded
processes. The ID with a plus sign beside it (man ps) is the process that will be foregrounded if you just
type fg.

If you wanted to foreground vim, you would type:

 $ fg 1
and vim would spring back up to the console. Backgrounding processes can be very useful if you only
have one terminal open over a dialup connection. You can have several programs running on that one
terminal, periodically switching back and forth between them.

ps
So now you know how to switch back and forth between several processes that you've started from the
command line. And you also know that there are lots of processes running all the time. So how do you list
all of these programs? Well, you make use of the ps(1) command. This command has a lot of options, so
we'll only cover the most important ones here. For a complete listing, see the man page for ps. Man pages
are covered in-depth in the section called man in Chapter 2 .

Simply typing ps will get you a listing of the programs running on your terminal. Many times, that will be
a very short listing:

 $ ps

 PID TTY TIME CMD

 7923 ttyp0 00:00:00 bash

 8059 ttyp0 00:00:00 ps
Even though this is not a lot of processes, the information is very typical. You'll get the same columns
using regular ps no matter how many processes are running. So what does it all mean?

Well, the PID is the process ID. All running processes are given a unique identifier. On 2.2.x kernels, this
process ID can be anywhere between 1 and 32767. Each process is assigned the next free PID. When a
process quits (or is killed, as you will see in the next section), it gives up its PID. When the max PID is
reached, the next free one will wrap back around to the lowest free one. This will most likely change in
the upcoming 2.4 kernel series and the introduction of 32-bit PIDs.

The TTY column indicated which terminal the process is running on. Doing a plain ps will only list all
the programs running on the current terminal, so all the processes give the same information in the TTY

column. As you can see, both processes listed are running on ttyp0. This indicates that they are either
running remotely or from an X terminal of some variety.

The TIME column indicated how much CPU time the process has been running. This is different from the
actual amount of time that a process runs. Remember that Linux is a multitasking operating system. There
are many processes running all the time, and these processes each get a small portion of the processor's
time. So, the TIME column should show much less time for each process than it actually takes to run. If
you see more than several minutes in the TIME column, it could mean that something is wrong.

Finally, the CMD column shows what the program actually is. It only lists the base name of the program,
not any command line options or similar information. To get that information, you'll need to use one of
the many options to ps. We'll discuss that shortly.

You can get a complete listing of the processes running on your system using the right combination of
options. This will probably result in a long listing of processes (fifty-five on my laptop as I write this
sentence), so I'll abbreviate the output:

 $ ps -ax

 PID TTY STAT TIME COMMAND

 1 ? S 0:03 init [3]

 2 ? SW 0:13 [kflushd]

 3 ? SW 0:14 [kupdate]

 4 ? SW 0:00 [kpiod]

 5 ? SW 0:17 [kswapd]

 11 ? S 0:00 /sbin/kerneld

 30 ? SW 0:01 [cardmgr]

 50 ? S 0:00 /sbin/rpc.portmap

 54 ? S 0:00 /usr/sbin/syslogd

 57 ? S 0:00 /usr/sbin/klogd -c 3

 59 ? S 0:00 /usr/sbin/inetd

 61 ? S 0:04 /usr/local/sbin/sshd

 63 ? S 0:00 /usr/sbin/rpc.mountd

 65 ? S 0:00 /usr/sbin/rpc.nfsd

 67 ? S 0:00 /usr/sbin/crond -l10

 69 ? S 0:00 /usr/sbin/atd -b 15 -l 1

 77 ? S 0:00 /usr/sbin/apmd

 79 ? S 0:01 gpm -m /dev/mouse -t ps2

 94 ? S 0:00 /usr/sbin/automount /auto file /etc/auto.misc

 106 tty1 S 0:08 -bash

 108 tty3 SW 0:00 [agetty]

 109 tty4 SW 0:00 [agetty]

 110 tty5 SW 0:00 [agetty]

 111 tty6 SW 0:00 [agetty]

 [output cut]
Most of these processes are started at boot time on most systems. I've made a few modifications to my
system, so your mileage will most likely vary. However, you will see most of these processes on your
system too. As you can see, these options display command line options to the running processes. It also
brings up a few more columns and some other interesting output.

First, you'll notice that most of these processes are listed as running on tty “?”. Those are processes that
were started from a no-longer active terminal. Therefore, they are no longer attaached to any particular
terminal.

Second, there is a new column: STAT. It shows the status of the process. S stands for sleeping: the
process is waiting for something to happen. Z stands for a zombied process. A zombied processes is one

whose parent has died, leaving the child processes behind. This is not a good thing.

If you want to see even more information about the running processes, try this out:

 $ ps -aux

 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

 root 1 0.0 0.0 344 80 ? S Mar02 0:03 init [3]

 root 2 0.0 0.0 0 0 ? SW Mar02 0:13 [kflushd]

 root 3 0.0 0.0 0 0 ? SW Mar02 0:14 [kupdate]

 root 4 0.0 0.0 0 0 ? SW Mar02 0:00 [kpiod]

 root 5 0.0 0.0 0 0 ? SW Mar02 0:17 [kswapd]

 root 11 0.0 0.0 1044 44 ? S Mar02 0:00 /sbin/kerneld

 root 30 0.0 0.0 1160 0 ? SW Mar02 0:01 [cardmgr]

 bin 50 0.0 0.0 1076 120 ? S Mar02 0:00 /sbin/rpc.port

 root 54 0.0 0.1 1360 192 ? S Mar02 0:00 /usr/sbin/sysl

 root 57 0.0 0.1 1276 152 ? S Mar02 0:00 /usr/sbin/klog

 root 59 0.0 0.0 1332 60 ? S Mar02 0:00 /usr/sbin/inet

 root 61 0.0 0.2 1540 312 ? S Mar02 0:04 /usr/local/sbi

 root 63 0.0 0.0 1796 72 ? S Mar02 0:00 /usr/sbin/rpc.

 root 65 0.0 0.0 1812 68 ? S Mar02 0:00 /usr/sbin/rpc.

 root 67 0.0 0.2 1172 260 ? S Mar02 0:00 /usr/sbin/cron

 root 77 0.0 0.2 1048 316 ? S Mar02 0:00 /usr/sbin/apmd

 root 79 0.0 0.1 1100 152 ? S Mar02 0:01 gpm

 root 94 0.0 0.2 1396 280 ? S Mar02 0:00 /usr/sbin/auto

 chris 106 0.0 0.5 1820 680 tty1 S Mar02 0:08 -bash

 root 108 0.0 0.0 1048 0 tty3 SW Mar02 0:00 [agetty]

 root 109 0.0 0.0 1048 0 tty4 SW Mar02 0:00 [agetty]

 root 110 0.0 0.0 1048 0 tty5 SW Mar02 0:00 [agetty]

 root 111 0.0 0.0 1048 0 tty6 SW Mar02 0:00 [agetty]

 [output cut]
That's a whole lot of information. Basically, it adds information including what user started the process,
how much of the system resources the process is using (the %CPU, %MEM, VSZ, and RSS columns),
and on what date the process was started. Obviously, that's a lot of information that could come in handy
for a system administrator. It also brings up another point: the information now goes off the edge of the
screen so that you cannot see it all. Well, the “-w” option will do that.

It's not terribly pretty, but it does the job. You've now got the complete listings for each process. There's
even more information that you can display about each process. Check out the very in-depth man page for

ps. However, the options shown are the most popular ones and will be the ones you need to use the most
often.

kill
On occasion, programs misbehave and you'll need to put them back in line. The program for this kind of
administration is called kill(1), and it can be used for manipulating processes in several ways. The most
obvious use of kill is to kill off a process. You'll need to do this if a program has run away and is using up
lots of system resources, or if you're just sick of it running.

In order to kill off a process, you'll need to know its PID or its name. To get the PID, use the ps command
as was dicsussed in the last section. For example, to kill off process 4747, you'd issue the following:

 $ kill 4747
Note that you'll have to be the owner of the process in order to kill it. This is a security feature. If you
were allowed to kill off processes started by other users, it would be possible to do all sorts of malicious
things. Of course, root can kill off any process on the system.

There's another variety of the kill command called killall(1). This program does exactly what it says: it
kills all the running processes that have a certain name. If you wanted to kill off all the running vim
processes, you could type the following command:

 $ killall vim
Any and all vim processes you have running will die off. Doing this as root would kill off all the vim
processes running for all users. This brings up an interesting way to kick everyone (including yourself)
off the system:

 # killall bash
Sometimes a regular kill doesn't get the job done. Certain processes will not die with a kill. You'll need to
use a more potent form. If that pesky PID 4747 wasn't responding to your kill request, you could do the
following:

 $ kill -9 4747
That will almost certainly cause process 4747 to die. You can do the same thing with killall. What this is
doing is sending a different signal to the process. A regular kill sends a SIGTERM (terminate) signal to
the process. kill -9 sends a SIGKILL (kill) signal to the process. There's a whole list of signals at your
disposal. You can get a listing of signals by typing the following:

 $ kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

 13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD

 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN

 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

 30) SIGPWR
The number must be used for kill, while the name minus the leading “SIG” can be used with killall.
Here's another example:

 $ killall -KILL vim
A final use of kill is to restart a process. Sending a SIGHUP will cause most processes to re-read their

configuration files. This is especially helpful for telling system processes to re-read their config files after
editing.

top
Finally, there's a command you can use to display updating information about the processes running on
the system. This command is called top(1), and is started like so:

 $ top
This will display a full screen of information about the processes running on the system, as well as some
overall information about the system. This includes load average, number of proceses, the CPU status,
free memory information, and details about processes including PID, user, priority, CPU and memory
usage information, running time, and program name.

Figure 11-1. Example output of the top program.

It's called top because the most CPU intensive programs will be listed at the top. An interesting note is
that top will be listed first on most inactive (and some active) systems because of its CPU utilization.
However, top is quite useful for determining what program is misbehaving and needs to be killed off.

Summary
This chapter discussed what a process is and how you can control one. This includes backgrounding and
foregrounding, as well as using ps, top, and kill to keep them in line. You should be able to determine
what processes are running on your system and know how to get rid of them if they stop behaving.

Chapter 12. Essential System Administration
You are the administrator of any computers that you have root on. This might be your desktop box with
one or two users, or it might be a big server with several hundred. Regardless, you'll need to know how to
manage users and safely bring down the system. They are both seemingly simple, but do have some
quirks to get used to. In addition, you'll have to deal with some of the ideas behind how the password
system works.

Users and Groups

Supplied Scripts

The easiest way to manage users and groups is with the supplied scripts and programs. Slackware
includes the programs adduser, userdel(8), chfn(1), chsh(1), and passwd(1) for dealing with users.
Slackware includes groupadd(8), groupdel(8), and groupmod(8) for dealing with groups. With the
exception of chfn, chsh, and passwd, these are programs that can only be run as root and are therefore
located in /usr/sbin. chfn, chsh, and passwd can be run by anyone and are located in /usr/bin.

Users are added with the adduser program. We'll start out by going through the whole procedure,
showing all the questions that are asked and a brief description of what everything means. The default
answer is in the brackets, and can be chosen for almost all the questions, unless you really want to change
something.

 # adduser

 Login name for new user (8 characters or less) []: jellyd

This is the name that the user will use to login. It needs to be eight characters or less, because all the login
utilities expect it to be so. Generally, you should only use lowercase characters unless you want to type
uppercase letters in inconvenient places.

User id for jellyd [defaults to next available]:

The user ID (UID) is how ownerships are really determined in Linux. Each user has a unique number,
starting at 1000 in Slackware. You can pick a UID for the new user, or you can just let adduser assign the
user the next free one.

Initial group for jellyd [users]:

All users are placed into the “users” group by default. You might want to place the new user into a
different group, but it is not recommended.

Additional groups for jellyd (seperated with commas, no spaces) []:

This question allows you to place the new user into additional groups. It is possible for a user to be in
several groups at the same time. This is useful if you have established groups for things like modifying
web site files, playing games, and so on.

jellyd's home directory [/home/jellyd]:

Home directories default to being placed under /home. If you run a very large system, it's possible that
you have moved the home directories to a different scheme. This allows you to change where the user's
home directory will be. You can also disable an account by changing a person's home directory to
something like /bin/false, though this is not the recommended method.

jellyd's shell [/bin/bash]:

bash is the default shell for Slackware Linux, and will be fine for most people. If your new user comes
from a Unix background, they may be familiar with a different shell. You can change their shell now, or
they can change it themselves later using the chsh command.

jellyd's account expiry date (YYYY-MM-DD) []:

Accounts can be set up to expire on a specified date. By default, there is no expiration date. You can
change that, if you'd like. This option might be useful for people running an ISP who might want to make

an account expire upon a certain date, unless they recieve the next year's payment.

 OK, I'm about to make a new account. Here's

 what you entered so far:

 New login name: jellyd

 New UID: [Next available]

 Initial group: users

 Additional groups: [none]

 Home directory: /home/jellyd

 Shell: /bin/bash

 Expiry date: [no expiration]

 This is it... if you want to bail out, hit Control-C.

 Otherwise, press ENTER to go ahead and make the account.

You now see all the information that has been entered about the new account, and are given the
opportunity to stop. If you entered something incorrectly, you'll have to hit Control-C and start over.
Otherwise, you can hit enter and the account will be made.

 Making new account...

 Changing the user information for jellyd

 Enter the new value, or press return for the default

 Full Name []: Jeremy

 Room Number []: Smith 130

 Work Phone []:

 Home Phone []:

 Other:

All of this information is optional. You don't have to enter any of this if you don't want to, and the user
can change it at any time using chfn. However, it might be useful to enter at least the full name and phone
numbers, just in case you need to get in touch with the person.

 Changing password for jellyd

 Enter the new password (minimum of 5, maximum of 127 characters)

 Please use a combination of upper and lower case letters and numbers.

 New password:

 Re-enter new password:

 Password changed.

 Done...

You'll have to enter a password for the new user. Generally, if the new user is not physically present at
this point, you'll just pick some default password and tell the user to change it to something more secure.

Choosing a Password

Having a secure password is the first line of defense against getting cracked. You do not want to
have an easily guessed password, because that makes it easier for someone to break into your
system. Ideally, a secure password would be a random string of characters, including upper and
lowercase letters, numbers, and random charactes. Just remember that a tab character might not be a
wise choice, depending on what kinds of computers you'll be logging in from.

In general, just use common sense: don't pick a password that is someone's birthday, a common
phrase, something found on your desk, or anything that is easily associated with you. “secure1” is
also bad.

Removing users is not difficult at all. Just run userdel with the name of the account to remove. You'll
have to make sure that the user is not logged in, and that no processes are running as that user. Also,
remember that once you've deleted the user, they're gone.

 # userdel jellyd
Doing this would remove that annoying “jellyd” guy from your system. Good riddance :) This removes
the user from the /etc/passwd and /etc/group files, but doesn't remove the user's home directory. If
you wanted to remove the home directory as well, you would do the following:

 # userdel -r jellyd
Temporarily disabling an account will be covered in the section called Changing Passwords since that
involves modifying the user's password. Changing account information is covered in the section called
Changing Passwords and the section called Changing User Information .

The programs to add and remove groups are very simple. groupadd will just add another entry to the
/etc/group file with a unique group ID, while groupdel will remove the specified group. It is up to you
to go in and edit /etc/group to add users to a specific group.

You create a group like so:

 # groupadd cvs
And remove it like so:

 # groupdel cvs

By hand

Of course, it is possible to add, modify, and remove users and groups by hand. After looking through this
procedure, you'll probably find it much more convenient to use the scripts, though.

First, we'll add a new user to the /etc/passwd(5), /etc/shadow(5), and /etc/group(5) files. The
passwd file holds some information about the user, but (strangely enough) not their password. The

passwd file has to be readable by anyone, but you don't want encrypted passwords world-readable
because this gives would-be crackers a good place to start. So the encrypted passwords are kept in the
shadow file, which is only readable by root, and everyone's password is entered into the passwd file as
“x”. The group file lists all the groups and who is in each.

Let's go ahead and examine the /etc/passwd file and figure out how to add someone. A typical entry in
passwd looks like this:

 chris:x:1000:100:Chris Lumens,Room 2,,:/home/chris:/bin/bash
Each line is an entry for one person, and fields on each line are separated by a colon. The fields are the
login name, encrypted password (“x” for everyone on a Slackware system, since we use the shadow
password suite), user ID, group ID, the optional finger information separated by commas, home directory,
and shell. What you have to do in this file is add a new line onto the end, filling in the appropriate
information.

Make sure that the password is an x, that the user ID is unique, that they are in group 100 (the “users”
group under Slackware), and that they have a valid shell.

Next, we'll need to add an entry in the /etc/shadow file, which holds the passwords. A typical entry
looks like this:

 chris:1w9bsw/N9$UWLr2bRER6YyBS.CAEp7R.:11055:0:99999:7:::
Again, each line is an entry for one person and the fields are separated by colons. The fields are the login
name, encrypted password, days since the Epoch (January 1, 1970) that the password was last changed,
days before the password may be changed, days after which the password must be changed, days before
password expiration that the user is notified, days after expiration that the account is disabled, days since
the Epoch that the account is disabled, and a reserved field.

As you can see, most of that is for account expiration information. If you aren't using expiration
information, you only need to fill in a few fields with some special values. Otherwise, you'll need to do
some calculations and decision making before you can fill those fields in. For our new user, put some
random garbage in the password field. Don't worry about what the password is right now because you're
going to change it in a minute. The only character you cannot include in the password field is a colon.
Leave the “days since password was changed” field blank as well. Fill in 0, 99999, and 7 just as you see
in the example entry, and leave the other fields blank.

For those of you who see my encrypted password above and think you've got a leg up on breaking into
my system, go right ahead. If you can crack that password, you'll know the password to a firewalled test
system. Now that's useful :)

Since everyone is a member of the “users” group by default, you won't need to add the new user to it. If
you want to create a new group or add the new user to other groups, you'll need to modify the
/etc/group file. Here is a typical entry:

 cvs::102:chris,logan,david,root
The fields are group name, group password, group ID, and group members. Creating a new group is a
simple matter of adding a new line with a unique group ID and listing all the people you want to be in the
group. Any users that are in this new group and are logged in will have to log out and log back in for
those changes to take effect.

Now, go back and use the passwd command to create a new password for the user. Then, use mkdir to
create the new user's home directory in the location you entered into the /etc/passwd file.

If you've installed sendmail(8) on your system and actively use mail, you will need to create a new file in
/var/spool/mail with the proper permissions and ownerships for this new user. Here's an example:

 # touch /var/spool/mail/jellyd

 # chown jellyd.users /var/spool/mail/jellyd

 # chmod 660 /var/spool/mail/jellyd
Those commands would create a mail file for the new user “jellyd” and set up the correct ownerships and
permissions.

Removing a user is a simple matter of getting rid of everything you just created. Remove the user's entry
from /etc/passwd and /etc/group. Remove their login name from any groups in the /etc/group file,
remove their mail spool file if they have one, and delete their home directory if needed.

Removing groups is a simple matter of removing the group's entry from /etc/group.

Changing Passwords

The passwd program changes passwords by modifying the /etc/shadow file. This file holds all the
passwords for the system in an encrypted format. In order to change your password, you would type:

 $ passwd

 Changing password for chris

 Old password:

 Enter the new password (minumum of 5, maximum of 127 characters)

 Please use a combination of upper and lower case letters and numbers.

 New password:
As you can see, you are prompted to enter your old password. It won't appear on the screen as you type it,
just like when you log in. Then, you are prompted to enter the new password. passwd performs a lot of
checks on your new password, and it will complain if your new password doesn't pass its checks. You can
ignore its warnings if you want. You will eventually be prompted to enter your new password again for
confirmation.

If you are root, you can also change another user's password:

 # passwd ted
You will then have to go through the same procedure as above, except that you won't have to enter the old
password. (One of the many benefits of being root...)

If you've got some troublemakers on your system, you can also temporarily disable their accounts. Later
on, you can reenable their accounts. Both disabling an account and reenabling an account can be done
with passwd. To disable an account, do the following as root:

 # passwd -l david
This will change david's password to something that can never match any encrypted value. Then, you
would change their password back later by typing this:

 # passwd -u david
Now, david's account is back to normal. Disabling an account might be useful if the user doesn't play by
the rules you've set up on your system or if they've exported a very large copy of xeyes(1) to your X
desktop.

Changing User Information

There are two pieces of information that a user can change about their account at any time: their shell and
their finger information. Slackware Linux uses chsh (change shell) and chfn (change finger) to modify

these values.

A user can pick any shell that is listed in the /etc/shells file. For most people, bash will do just fine.
Others might be familiar with a shell found on their Unix system at work or school and want to use what
they already know. The shell is changed using chsh:

 $ chsh

 Password:

 Changing the login shell for chris

 Enter the new value, or press return for the default

 Login Shell [/bin/bash]:
After entering your password, enter the full path to the new shell. Make sure that it's listed in the
/etc/shells(5) file first. root can also change a user's shell by running chsh with a username as the
argument.

The finger information is the optional information such as your full name, phone numbers, and room
number. This can be changed using chfn, and follows the same procedure as it did during account
creation. As usual, root can change anyone's finger information.

Shutting Down Properly
It is very important that the system is shut down properly. Simply turning the power off can cause serious
filesystem damage. While the system is on, files are in use even if you aren't doing anything. Remember
that there are many processes running in the background all the time. These processes are controlling the
system and keep a lot of files open. When the system just gets powered-off, these files are not closed
properly and become damaged. Depending on what files become damaged, the system might be
permanently damaged. In any case, you'll have to go through a long filesystem check procedure on the
next reboot.

So, when you go to reboot or power down your computer, it is important to do so the right way. There are
several ways of doing this; you can pick whichever one you think is the most fun. Most of the ways for
turning off the system can also be applied to rebooting.

The first method is through the shutdown(8) program, and it is probably the most popular. shutdown can
be used to reboot or turn off the system at a given time, and can display a message to all the users of the
system telling them that the system is going down.

Basic usage of shutdown to turn off the computer is:

 # shutdown -h now
In this case, we are not going to send any special message to the users; they will see shutdown's default
message. “now” is the time that we want to shutdown, and the “-h” means to halt the system. This is not a
very friendly way to run a multi-user system, but it works just fine on your home computer. A better way
on a multiuser system would be to give everyone a little advance warning:

 # shutdown -h +60
This would shutdown the system in one hour (60 minutes), which would be just fine on a normal
multiuser system. Really important systems should schedule their downtime far in advance and post
warnings about it in the /etc/motd(5).

Rebooting the system uses the same command, but substitutes “-r” for “-h”:

 # shutdown -r now
You can use same time notation with shutdown -r that you could with shutdown -h. There are a lot of

other things that you can do with shutdown to control when to halt or reboot the machine. See the man
page for more details.

The second way of shutting down or powering off the computer is to use the halt(8) and reboot(8)
commands. As the names indicate, halt will immediately halt the operating system, and reboot will
reboot the system. reboot is simply a symbolic link to halt. They are invoked like so:

 # halt

 # reboot
A lower-level way to reboot or shutdown the system is to directly talk to init. All the other methods are
simply convenient ways to talk to init, but you can directly tell it what to do using telinit(8) (note that it
only has one “l”). Using telinit will tell init what runlevel to drop into, which will cause a special script
to get run. This script will kill or spawn processes as needed for that runlevel. This works for rebooting
and shutting down because both of those are special runlevels.

 # telinit 0
Runlevel 0 is halt mode. Telling init to enter runlevel 0 will cause all processes to be killed off, the
filesystems unmounted, and the machine to be halted. This is a perfectly acceptable way to bring down
the system. On many laptops, this will also cause the machine to be turned off.

 # telinit 6
Runlevel 6 is reboot mode. All processes will be killed off, the filesystems will be unmounted, and the
machine will be rebooted. This is a perfectly acceptable method of rebooting the system.

There is one last method of rebooting the system. All the other methods required you to be root.
However, it is possible to reboot the machine if you aren't root, provided that you have physical access to
the keyboard. Doing a three-fingered salute (control-alt-delete) will cause the machine to be immediately
rebooted. What this really does is run the program /usr/sbin/ctrlaltdel(8). So, if that program has strange
permissions or is not present, pressing all those keys down won't do any good.

Summary
This chapter discussed the procedures for adding and removing user and groups. You should be able to do
these tasks using the provided scripts and by hand, should the need arise. Additionally, you should know
what the various parts of adding a user do, techniques for selecting a password, and how to change user
information. Finally, you should know how to shut down your computer properly and why it is important
to do so. These are all important parts of administering a system whether it is your home computer or a
large network server.

Chapter 13. Basic Network Commands
A network consists of several computers connected together. The network can be as simple as a few
computers connected in your home or office, or as complicated as a large university network or even the
entire Internet. When your computer is part of a network, you have access to those systems either directly
or through services like mail and the web.

There are a variety of networking programs that you can use. Some are handy for performing diagnostics
to see if everything is working properly. Others (like mail readers and web browsers) are useful for
getting your work done and staying in contact with other people.

ping

ping(8) sends an ICMP ECHO_REQUEST packet to the specified host. If the host responds, you get an
ICMP packet back. Sound strange? Well, you can “ping” an IP address to see if a machine is alive. If
there is no response, you know something is wrong. Here is an example conversation between two Linux

users:

User A: Loki's down again.

User B: Are you sure?

User A: Yeah, I tried pinging it, but there's no response.

It's instances like these that make ping a very useful day-to-day command. It provides a very quick way
to see if a machine is up and connected to the network. The basic syntax is:

 $ ping <ip address or hostname>
There are, of course, several options that can be specified. Check the ping(1) man page for more
information.

finger

finger(1) will retrieve information about the specified user. You give finger a username or an email
address and it will try to contact the necessary server and retrieve the username, office, telephone number,
and other pieces of information. Here is an example:

 $ finger johnc@idsoftware.com
finger can return the username, mail status, phone numbers, and files referred to as “dot plan” and “dot
project”. Of course, the information returned varies with each finger server. The one included with
Slackware returns the following information by default:

• Username

• Room number

• Home phone number

• Work phone number

• Login status

• Email status

• Contents of the .plan file in the user's home directory

• Contents of the .project file in the user's home directory

The first four items can be set with the chfn command. It stores those values in the /etc/passwd file. To
change the information in your .plan or .project file, just edit them with your favorite text editor. They
must reside in your home directory and must be called .plan and .project.

Many users finger their own account from a remote machine to quickly see if they have new email. Or,
you can see a user's plan or current project. John Carmack of id Software regularly updates his plan file to
tell the user community what he is currently working on.

Like many commands, finger has options. Check the man page for more information on what special
options you can use.

elnet

Someone once stated that telnet(1) was the coolest thing he had ever seen on computers. The ability to

remotely log in and do stuff on another computer is what seperates Unix and Unix-like operating systems
from other operating systems.

telnet allows you to log in to a computer, just as if you were sitting at the terminal. Once your username
and password are verified, you are given a shell prompt. From here, you can do anything requiring a text
console. Compose email, read newsgroups, move files around, and so on. If you are running X and you
telnet to a machine from an xterm, you can run X programs on the remote computer and display them on
yours. See the section called Exporting displays in Chapter 6 for more information.

To login to a remote machine, use this syntax:

 $ telnet <hostname>
If the host responds, you will receive a login prompt. Give it your username and password. That's it. You
are now at a shell. To quit your telnet session, use either the exit command or the logout command.

IMPORTANT NOTE: telnet does not encrypt the information it sends. Everything is sent in plain
text, even passwords. It is not advisable to use telnet over the Internet. Instead, consider the Secure
Shell. It encrypts all traffic and is available for free. See http://www.ssh.org/ for more information.

FTP Clients
FTP stands for the File Transfer Protocol. It allows you to send and receive files between two computers.
There is the FTP server and the FTP client. We discuss the client in this section.

For the curious, the “client” is you. The “server” is the computer that answers your FTP request and lets
you login. You will download files from and upload files to the server. The client cannot accept FTP
connections, it can only connect to servers.

ftp

To connect to an FTP server, simply run the ftp(1) command and specify the host:

 $ ftp <hostname>
If the host is running an FTP server, it will ask for a username and password. You can log in as yourself
or as “anonymous”. Anonymous FTP sites are very popular for software archives. For example, to get
Slackware Linux via FTP, you must use anonymous FTP.

Once connected, you will be at the ftp> prompt. There are special commands for FTP, but they are
similar to other standard commands. The following shows some of the basic commands and what they do:

Table 13-1. ftp Commands

Command Purpose
ls List files
cd <dirname> Change directory
put <filename> Download a file
put <filename> Upload a file
hash Toggle hash mark stats indicator
prom Toggle interactive mode for downloads
mget <mask> Download a file or group of files; wildcard are allowed
mput <mask> Upload a file or group of files; wildcard are allowed
quit Log off the FTP server
FTP is a fairly simple program to use, but lacks the user interface that many of us are used to nowadays.
The man page discusses some of the command line options for ftp(1).

ncftp

ncftp(1) (pronounced “Nik-F-T-P”) is an alternative to the traditional ftp client that comes with
Slackware. It is still a text-based program, but offers many advantages over ftp, including:

• Tab completion

• Bookmarks file

• Passive and non-passive FTP transfer modes

• More liberal wildcard uses

• Command history

By default, ncftp will try to log in anonymously to the server you specify. You can force ncftp to present
a login prompt with the “-u” option. Once logged in, you can use the same commands as in ftp, only
you'll notice a nicer interface, one that works more like bash.

Figure 13-1. Example NcFTP screen.

email
Electronic mail is one of the most popular things one can do on the Internet. In 1998, it was reported that
more electronic mail was sent than regular mail. It is indeed common and useful.

Under Slackware, we provide a standard mail server, and several mail clients. All of the clients discussed
are text-based. A lot of Windows users may be against this, but you will find that a text based client is
very convienent, especially when checking mail remotely.

pine

pine(1) is not elm. Or so the saying goes. The University of Washington created their program for
Internet news and email out of a need for an easy mail reader for their students. pine is one of the most
popular email clients in use today and is available for nearly every flavor of Unix and even Windows.

Figure 13-2. The Pine main menu.

You will see a menu of commands and a row of command keys at the bottom. pine is indeed a complex
program, so we will not discuss every feature about it here.

To see what's in your inbox, type i. Your messages are listed with their date, author, and subject.
Highlight the message you want and press enter to view it. Pressing r will start a reply to the message.
Once you have written the response, type Ctrl+X to send it. You can press i to get back to the message
listing.

If you want to delete a message, press d. It will mark the highlighted message for deletion. pine deletes
the mail when you exit the program. pine also lets you store your mail in folders. You can get a listing of
folders by pressing l. At the message listing, press s to save it to another folder. It will ask for the folder
name to write the message to.

pine offers many, many features; you should definitely have a look at the man page for more information.
It will contain the latest information about the program.

elm

elm(1) is another popular text-based email client. Though not quite as user friendly as pine, it's definitely
been around a lot longer.

Figure 13-3. Elm main screen.

By default, you are placed in your inbox. The messages are listed with the message number, date, sender,
and subject. Use the arrow keys to highlight the message you want. Press Enter to read the message.

To compose a new message, type m at the main screen. The d key will flag a message for deletion. And
the r key will reply to the current message you are reading. All of these keys are displayed at the bottom
of the screen with a prompt.

The man page discusses elm in more detail, so you will probably want to consult that before using elm.

mailx

mailx(1) is a command line driven mail client. It is very primitive and offers pretty much nothing in the
way of user interfaces. However, mailx is handy for times when you need to quickly mail something,
scripting a bulk mailer, or something similar.

The basic command line is:

 $ mailx -s <subject> <to-addr>
mailx reads the message body from standard input. So you can cat a file into this command to mail it, or
you can just type text and hit ctrl+D when finished with the message.

Here is an example of mailing a program source file to another person.

 $ cat randomfunc.c | mailx -s "Here's that function" \

 asdf@example.net
The man page explains more of what mailx can do, so you will probably want to have a look at that
before using it.

lynx

lynx(1) is a text-based web browser. It is a very quick way of looking up something on the Internet.
Sometimes graphics just get in the way if you know exactly what you're after.

To start lynx, just type lynx at the prompt:

 $ lynx
Figure 13-4. Lynx's default start page.

You may want to specify a site for lynx to open to:

 $ lynx http://www.slackware.com
lynx prints the command keys and what they do at the bottom of the screen. The up and down arrow keys
move around the document, Enter selects the highlighted link, and the left arrow goes back to the
previous page. Typing d will download the currently selected file. The g command brings up the Go
prompt, where you can give lynx a URL to open.

There are many other commands in lynx. You can either consult the man page, or type h to get the help
screen for more information.

wget

wget(1) is a command line utility that will download files from a specified URL. It's useful for retrieving
entire web sites for offline viewing, or for a more safer download of files from HTTP or FTP servers
instead of Netscape. The basic syntax is:

 $ wget <url>
You can also pass options. For example, this will download the Slackware web site:

 $ wget --recursive http://www.slackware.com
wget will create a www.slackware.com directory and store the files in there, just as the site does.

wget can also download files from FTP sites; just specify an FTP URL instead of an HTTP one.

wget has many more options, which make it nice for site specific scripts (web site mirroring and so forth).
The man page should be consulted for more information.

traceroute

Slackware includes the 4.4BSD traceroute(8) command. It's a useful network diagnostic tool. traceroute
displays each host that a packet travels through as it tries to reach its destination. You can see how many
“hops” from the Slackware web site you are with this command:

 $ traceroute www.slackware.com
Each host will be displayed, along with the response times at each host. Here is an example output:

 $ traceroute www.slackware.com

 traceroute to www.slackware.com (204.216.27.13), 30 hops max, 40 byte packets

 1 zuul.tdn (192.168.1.1) 0.409 ms 1.032 ms 0.303 ms

 2 207.171.227.254 (207.171.227.254) 18.218 ms 32.873 ms 32.433 ms

 3 border-sf-2-0-4.sirius.com (205.134.230.254) 15.662 ms 15.731 ms 16.142 ms

 4 pb-nap.crl.net (198.32.128.20) 20.741 ms 23.672 ms 21.378 ms

 5 E0-CRL-SFO-03-E0X0.US.CRL.NET (165.113.55.3) 22.293 ms 21.532 ms 21.29 ms

 6 T1-CDROM-00-EX.US.CRL.NET (165.113.118.2) 24.544 ms 42.955 ms 58.443 ms

 7 www.slackware.com (204.216.27.13) 38.115 ms 53.033 ms 48.328 ms
traceroute is similar to ping in that it uses ICMP packets. There are several options that you can specify
with traceroute. The default maximum number of “hops” is 30, but that can be changed with the “-m”
option. Other options are explained in detail in the web page.

Talking to Other People

talk

talk(1) allows two users to chat. It splits the screen in half, horizontally. To request a chat with another
user, use this command:

 $ talk <person> [ttyname]
Figure 13-5. Two users in a talk session.

If you specify just a username, the chat request is assumed to be local, so only local users are queried.
The ttyname is required if you want to ring a user on a specific user (if the user is logged in more than
once). The required information for talk can be obtained from the w(1) command.

talk can also ring users on remote hosts. For the username you simply specify an email address. talk will
try to contact that remote user on that host.

talk is somewhat limited. It only supports two users and is half-duplex.

ytalk

ytalk(1) is a backwards compatible replacement for talk. It comes with Slackware as the ytalk command.
The syntax is similar, but has a few differences:

 $ ytalk <username>[#ttyname]
Figure 13-6. Three users in a ytalk session.

The username and terminal are specified the same as under talk, except you must put them together with
the hash mark (#).

ytalk offers several advantages:

• It supports more than two users.

• A menu of options that can be brought up anytime with Esc.

• You can shell out while still in the talk session.

• Plus more...

If you're a server administrator, you'll want to make sure that the ntalk port is enabled in
/etc/inetd.conf. ytalk needs that to work properly.

Summary
You should now know some basic network diagnosis commands. Using these, you can determine if there
is a problem with a computer or the network between your system and a remote one. Also, you should
know about several mail readers, web browsers, ftp clients, and communication programs.

Chapter 14. Archive Files
Under Slackware Linux, there are several programs that can be used to compress and archive files. These
programs are especially useful for making backups and sending copies of files between machines over a
network connection. There are programs for dealing with Unix formatted archives, as well as Windows
archives.

gzip

gzip(1) is the GNU compression program. It takes a single file and compresses it. The basic usage is as
follows:

 $ gzip infile
The resulting file will be named infile.gz and will usually be smaller than the input file. Note that
infile.gz will replace infile. This means that infile will no longer exist, even though a gzipped
copy will. Regular text files will compress nicely, while jpeg images, mp3s, and other such files will not
compress too well as they are already compressed. This basic usage is a balance of final file size and
compression time. The maximum compression can be achieved like so:

 $ gzip -9 infile
This will take a longer time to compress the file, but the result will be as small as gzip can make it. Using
lower values for the command line option will cause it to compress faster, but the file will not be as
compressed.

Decompressing gzipped files can be done using two commands, which are really just the same program.
gzip will decompress any file with a recognized file extension. A recognized extension can be any of the
following: .gz, -gz, .z, -z, .Z, or -Z. The first method is to call gunzip(1) on a file, like so:

 $ gunzip infile.gz
This will leave a decompressed version of infile in the current directory, and the .gz extension will be
stripped from the filename.

The other way to decompress a gzipped file is to call gzip on the file:

 $ gzip -d infile.gz
This will cause exactly the same behavior as calling gunzip. The reason for this is simple: gunzip is
simply a symbolic link to /bin/gzip:

 $ cd /usr/bin

 $ ls -l gunzip

 lrwxrwxrwx 1 root root 9 Feb 2 09:45 gunzip -> /bin/gzip
So, running gunzip is really just running gzip with a different name. The program can determine how it is
being called and take action appropriately. In this case, gzip will know that it is being called as gunzip
and decompress the file. Therefore, you can use gzip or gunzip to decompress any gzipped file.

bzip2

bzip2(1) is an alternative compression program installed on Slackware Linux. It uses a different
compression algorithm from gzip, which results in some advantages and some disadvantages. The main
advantage for bzip2 is the compressed file size. bzip2 will almost always compress better than gzip. In
some instances, this can result in dramatically smaller files. This can be a great advantage for people on
slower modem connections.

The disadvantage to bzip2 is that it is more CPU intensive than gzip. This means that bzipping a file will

generally take longer and will use more of the CPU than gzipping the file would. When considering
which compression program to use, you must weigh this speed vs. compressed size and determine which
is more important.

The usage of bzip2 is very similar to gzip, so not much time will be spent discussing that. Simply call
bzip2 with a filename to compress it:

 $ bzip2 infile
The resulting output file will usually be smaller than the input file, and will be called infile.bz2. As
with gzip, the input file will no longer exist, since bzip2 replaces the input file with a compressed copy.

You can also use a numeric command line argument to tweak compression rates and speed as with gzip.
The following example shows how to achieve maximum compression with bzip2 with considerable CPU
usage:

 $ bzip2 -9 infile
There are two commands to decompress files ending in a .bz2 extension, just as with gzip. You can use
bzip2 or bunzip2(1) to decompress bzipped files. Using bzip2 requires using a command line argument:

 $ bzip2 -d infile.bz2
This will decompress the bzipped file and replace it with the decompressed copy. This resulting file will
also have been stripped of the .bz2 extension. Similarly, you can use bunzip2 to decompress the file:

 $ bunzip2 infile.bz2
You'll get the same behavior either way, thanks again to a symbolic link. Checking out /bin/bunzip2
shows that it is simply a symbolic link to /bin/bzip2. This uses the same trick that gzip did. You'll find
that calling a program using several different names to achieve different behaviors is a favorite trick of
Linux programmers.

 $ cd /bin

 $ ls -l bunzip2

 lrwxrwxrwx 1 root root 5 Feb 2 09:45 /bunzip2 -> bzip2

tar

tar(1) is the GNU tape archiver. It takes several files or directories and creates one large file. This allows
you to compress an entire directory tree, which is impossible by just using gzip or bzip2. tar has many
command line options, which are explained in its man page. This section will just cover the most
common uses of tar.

The most common use for tar is to decompress and unarchive a package that you've downloaded from a
web site or ftp site. Most files will come with a .tar.gz extension. This is commonly known as a
“tarball”. It means that several files were archived using tar and then compressed using gzip. You might
also see this listed as a .tar.Z file. It means the same thing, but this is usually encountered on older Unix
systems.

Alternatively, you might find a .tar.bz2 file somewhere. Kernel source is distributed as such because it
is a smaller download. As you might have guessed, this is several files archived with tar and then
bzipped.

You can get to all the files in this archive by making use of tar and some command line arguments.
Unarchiving a tarball makes use of the -z flag, which means to first run the file through gunzip and
decompress it. The most common way to decompress a tarball is like so:

 $ tar -xvzf hejaz.tar.gz
That's quite a few options. So what do they all mean? The -x means to extract. This is important, as it

tells tar exactly what to do with the input file. In this case, we'll be splitting it back up into all the files
that it came from. -v means to be verbose. This will list all the files that are being unarchived. It is
perfectly acceptable to leave this option off, if somewhat boring. Alternatively, you could use -vv to be
very verbose and list even more information about each file being unarchived. The -z option tells tar to
run hejaz.tar.gz through gunzip first. And finally, the -f option tells tar that the next string on the
command line is the file to operate on.

There are a few other ways to write this same command. On older systems lacking a decent copy of GNU
tar, you might see it written like so:

 $ gzip -dc hejaz.tar.gz | tar -xvf -
This command line will unzip the file and send the output to tar. Since gzip will write its output to
standard out if told to do so, this command will write the decompressed file to standard out. The pipe then
sends it to tar for unarchiving. The “-” means to operate on standard input. It will unarchive the stream of
data that it gets from gzip and write that to the disk.

Another way to write the first command line is to leave off the dash before the options, like so:

 $ tar xvzf hejaz.tar.gz
You might also encounter a bzipped archive. The version of tar that comes with Slackware Linux can
handle these the same as gzipped archives. Instead of the -x command line option, you'd use -y:

 $ tar -xvyf foo.tar.bz2
It is important to note that tar will place the unarchived files in the current directory. So, if you had an
archive in /tmp that you wanted to decompress into your home directory, there are two options. First, the
archive could be moved into your home directory and then run through tar. Or, you could specify the
path to the archive file on the command line:

 $ tar -xvzf /tmp/bar.tar.gz
The contents of the archive would be dumped into your home directory, and the original compressed
archive file will still be in /tmp.

The second most common operation with tar is making your own archives. Making an archive is no more
complicated than unarchiving other files; it just takes a different set of command lines options.

To create a compressed tar archive of all the files in the current directory (including any subdirectories
and their files), you would use tar like so:

 $ tar -cvzf archive.tar.gz .
In this command line, the -c option tells tar to create an archive, while the -z option runs the resulting
archive file through gzip to compress it. archive.tar.gz is the file that you want to create. You can call
it anything you want, and if you include a full path name, it will put the archive in that directory. Here is
an example of that:

 $ tar -cvzf /tmp/archive.tar.gz .
The archive would then go into /tmp. You can also list all the file and directories that you want to be
included in the archive by listing them at the end of the command. In this case, the . is the directory to
include in the archive. This could easily be replaced with a list of various files, or whatever you want to
archive.

zip
Finally, there are two utilities that can be used on zip files. These are very common in the Windows
world, so Linux has programs to deal with them. The compression program is called zip(1), and the
decompression program is called unzip(1).

Compressing one file is easy:

 $ zip foo *
This will create the file foo.zip, which will contain all the files in the current directory. zip will add the
.zip extension automatically, so there's no need to include that in the file name. You can also recurse
through the current directory, zipping up any directories that are also laying around:

 $ zip -r foo *
Decompressing files is easy, as well.

 $ unzip foo
This will extract all the files in the file foo.zip, including any directories in the archive.

The zip utilities have several advanced options for creating self-extracting archives, leaving out files,
controlling compressed file size, printing out what will happen, and much more. See the man pages for
zip and unzip to find out how to use these options.

Summary
This chapter discussed the programs that are used for compressing and decompressing archive files. You
should know what an archive file is, how to create one using tar and your choice of compression
program, how to decompress one, and how to handle Windows-based archives. Almost anything that you
download or upload will involve an archive, so these are important skills to know.

Chapter 15. vi
vi(1) is the standard Unix text editing program, and mastering it is essential for system administrators.
There are several versions (or clones) of vi available, including vi, elvis, vile, and vim. One of these is
available on just about any version of Unix, as well as on Linux. All of these versions include the same
basic feature set and commands, so learning one clone should make it easy to learn another.

vi includes a number of powerful features including syntax highlighting, code formatting, a powerful
search-and-replace mechanism, macros, and more. These features make it especially attractive to
programmers, web developers, and the like. System administrators will appreciate the automation and
integration with the shell that is possible.

On Slackware Linux, the default version of vi available is elvis. Other versions - including vim and gvim
- are available if you've installed the proper packages. gvim is an X Window version of vim that includes
toolbars, detachable menus, and dialog boxes.

Starting vi

vi can be started from the command line in a variety of ways. The simplest form is just:

 $ vi
Figure 15-1. A vi session.

This will start up vi with an empty buffer. At this point, you'll see a mostly blank screen. It is now in
“command mode”, waiting for you to do something. For a discussion of the various vi modes, see the
section called Modes . In order to quit out of vi, type the following:

 :q
Assuming that there have been no changes to the file, this will cause vi to quit. If there have been changes
made, it will warn you that there have been changes and tell you how to disregard them.

You can also start vi with a pre-existing file. For example, the file /etc/resolv.conf would be opened
like so:

 $ vi /etc/resolv.conf
Finally, vi can be started on a particular line of a file. For example, you could start up vi on line 47 of
/usr/src/linux/init/main.c like so:

 vi +47 /usr/src/linux/init/main.c
vi will display the given file and will place the cursor at the specified line. In the case where you specify a
line that is after the end of the file, vi will place the cursor on the last line. This is especially helpful for
programmers, as they can jump straight to the location in the file that an error occurred, without having to
search for it.

Modes

vi operates in various modes, which are used to accomplish various tasks. When you first start vi, you are
placed into command mode. From this point, you can issue various commands to manipulate text, move
around in the file, save, quit, and mode. Editing the text is done in insert mode. You can quickly move
between modes with a variety of keystrokes, which are explained below.

Command Mode

You are first placed into command mode. From this mode, you cannot directly enter text or edit what is
already there. However, you can manipulate the text, search, quit, save, load new files, and more. This is
intended only to be an introduction to the command mode. For a description of the various commands,
see the section called vi Keys .

Probably the most often used command in command mode is changing to insert mode. This is

accomplished by hitting the i key. The cursor changes shapes, and -- INSERT -- is displayed at the
bottom of the screen (note that this does not happen in all clones of vi). From there, all your keystrokes
are entered into the current buffer and are displayed to the screen. To get back into command mode, hit
the escape key.

Command mode is also where you move around in the file. On some systems, you can use the arrow keys
to move around. On other systems, you may need to use the more traditional keys of “hjkl”. Here is a
simple listing of how these keys are used to move around:

h move left one character
j move down one character
k move up one character
l move right one character

Simply press a key to move. As you will see later, these keys can be combined with a number to move
much more efficiently.

Many of the commands that you will use in command mode begin with a colon. For example, quitting is
:q, as discussed earlier. The colon simply indicates that it is a command, while the “q” tells vi to quit.
Other commands are an optional number, followed by a letter. These commands do not have a colon
before them, and are generally used to manipulate the text.

For example, deleting one line from a file is accomplished by hitting dd. This will remove the line that the
cursor is on. Issuing the command 4dd would tell vi to remove the line that the cursor is on and the three
after that. In general, the number tells vi how many times to perform the command.

You can combine a number with the movement keys to move around several characters at a time. For
example, 10k would move up ten lines on the screen.

Command mode can also be used to cut and paste, insert text, and read other files into the current buffer.
Copying text is accomplished with the y key (y stands for yank). Copying the current line is done by
typing yy, and this can be prefixed with a number to yank more lines. Then, move to the location for the
copy and hit p. The text is pasted on the line after the current one.

Cutting text is done by typing dd, and p can be used to paste the cut text back into the file. Reading in text
from another file is a simple procedure. Just type :r, followed by a space and the file name that contains
the text to be inserted. The file's contents will be pasted into the current buffer on the line after the cursor.
More sophisticated vi clones even contain filename completion similar to the shell's.

The final use that will be covered is searching. Command mode allows for simple searching, as well as
complicated search-and-replace commands that make use of a powerful version of regular expressions. A
complete discussion of regular expressions is beyond the scope of this chapter, so this section will only
cover simple means of searching.

A simple search is accomplished by hitting the / key, followed by the text that you are searching for. vi
will search forward from the cursor to the end of the file for a match, stopping when it finds one. Note
that inexact matches will cause vi to stop as well. For example, a search for “the” will cause vi to stop on
“then”, “therefore”, and so on. This is because all of those words do match “the”, but only at the
beginning.

After vi has found the first match, you can continue on to the next match simply by hitting the / key
followed by enter. You can also search backwards through the file by replacing the slash with the ? key .
For example, searching backwards through the file for “the” would be accomplished by typing ?the.

Insert Mode

Inserting and replacing text is accomplished in insert mode. As previously discussed, you can get into
insert mode by hitting i from command mode. Then, all text that you type is entered into the current
buffer. Hitting the escape key takes you back into command mode.

Replacing text is accomplished in several ways. From command mode, hitting r will allow you to replace
the one character underneath the cursor. Just type the new character and it will replace the one under the
cursor. You will then be immediately placed back into command mode. Hitting R allows you to replace
as many characters as you'd like. To get out of this replacement mode, just hit escape to go back into
command mode.

There is yet another way to toggle between insertion and replacement. Hitting the insert key from
command mode will take you into insert mode. Once you are in insert mode, the keyboard's Insert key
serves as a toggle between insert and replace. Hitting it once will allow you to replace. Hitting it once
more will once again allow you to insert text.

Opening Files

vi allows you to open files from command mode as well as specifying a file on the command line to open.
To open the file /etc/lilo.conf:

 :e /etc/lilo.conf
If you have made changes to the current buffer without saving, vi will complain. You can still open the
file without saving the current buffer by typing :e!, followed by a space and the filename. In general, vi's
warnings can be suppressed by following the command with an exclamation mark.

If you want to reopen the current file, you can do so simply by typing e!. This is useful if you have
somehow messed up the file and want to reopen it.

Some vi clones (for example, vim) allow for multiple buffers to be open at the same time. For example, to
open up the file 09-vi.sgml in my home directory while another file was open, I would type:

 :split ~/09-vi.sgml
The new file is displayed on the top half of the screen, and the old file is displayed in the bottom half of
the screen. There are a lot of commands that manipulate the split screen, and many of these commands
start to resemble something out of EMACS. The best place to look up these commands would be the man
page for your vi clone. Note that many clones do not support the split-screen idea, so you might not be
able to use it at all.

Saving Files

There are several ways to save files in vi. If you want to save the current buffer to the file randomness,
you would type:

 :w randomness
Once you've saved the file once, saving it again is as simple as typing :w. Any changes will be written out
to the file. After you've saved the file, you are dumped back into command mode. If you want to save the
file and quit vi (a very common operation), you would type :wq. That tells vi to save the current file and
quit back to the shell.

On occasion, you want to save a file that is marked as read-only. You can do this by adding an
exclamation point after the write command, like so:

 :w!

 :wq!
However, there will still be instances where you cannot write the file (for example, you are attempting to
edit a file that is owned by another user). When this happens, vi will tell you that it cannot save the file. If
you really want to edit the file, you'll have to come back and edit it as root.

Quitting vi

One way to quit vi is through :wq, which will save the current buffer before quitting. You can also quit
without saving with :q or :q!. The latter is used when you've modified the file but have not made any
changes to it.

On occassion, your machine might crash or vi might crash. However, both elvis and vim will take steps to
minimize the damage to any open buffers. Both editors save the open buffers to a temporary file on
occasion. This file is usually named similarly to the open file, but with a dot at the beginning. This makes
the file hidden.

This temporary file gets removed once the editor quits under normal conditions. This means that the
temporary copy will still be around if something crashes. When you go back to edit the file again, you
will be prompted for what action to take. In most cases, a large amount of your unsaved work can be
recovered. elvis will also send you a mail (from Graceland, oddly enough :) telling you that a backup
copy exists.

vi Configuration

Your vi clone of choice can be configured in several ways.

A variety of commands can be entered while in command mode to set up vi just how you like it.
Depending on your editor, you can enable features to make programming easier (like syntax hilighting,
auto-indenting, and more), set up macros to automake tasks, enable textual substitutions, and more.

Almost all of these commands can be put into a configuration file in your home directory. elvis expects a
.exrc file, while vim expects a .vimrc file. Most of the setup commands that can be entered in command
mode can be placed in the configuration file. This includes setup information, textual substitutions,
macros, and more.

Discussing all these options and the differences between the editors is quite an involved subject. For more
information, check out the man page or web site for your preferred vi editor. Some editors (like vim) have
extensive help within the editor that can be accessed with the :help command, or something similar. You
can also check out the O'Reilly book Learning the vi Editor by Lamb and Robbins.

Many common programs in Linux will load up a text file in vi by default. For example, editing your
crontabs (see the section on cron) will start up vi by default. If you do not like vi and would like another
editor to be started instead, all you need to do is set the VISUAL environment variable to the editor you
prefer. For information on setting environment variables, see the section called Environment Variables in
Chapter 8. If you want to make sure that your editor will be the default every time you login, add the
VISUAL setting to your .bash_profile or .bashrc files.

vi Keys
This section is a quick reference of many common vi commands. Some of these were discussed earlier in
the chapter, while many will be new.

Table 15-1. Movement

Operation Key
left, down, up, right h, j, k, l

To the end of the line $

To the beginning of the line ^

To the end of the file G

To the beginning of the file :1

To line 47 :47

Table 15-2. Editing

Operation Key
Removing a line dd

Removing five lines 5dd

Replacing a character r

Removing a character x

Removing ten characters 10x

Undo last action u

Join current and next lines J

Table 15-3. Searching

Operation Key
Search for “asdf” /asdf

Search backwards for “asdf” ?asdf

Repeat last search forwards /

Repeat last search backwards ?

Table 15-4. Saving and Quitting

Operation Key
Quit :q

Quit without saving :q!

Write and quit :wq

Write, without quitting :w

Reload currently open file :e!

Write buffer to file asdf :w asdf

Open file hejaz :e hejaz

Read file asdf into buffer :r asdf

Read output of ls into buffer :r !ls

Summary

You should now have some basic familiarity with vi - the standard Unix text editor. vi is a fairly complex
program with lots of commands and configuration options. However, you should be able to open a file,
move around, edit the file, and quit. This is all you will have to do for most day-to-day operations. As you
find the need for more power, you can use vi's extensive help to learn about it.

Chapter 16. Slackware Package Management
A software package is a bundle of related programs that are ready for you to install. When you download
a source code archive, you have to configure, compile, and install it by hand. With a software package,
this has already been done for you. All that you have to do is install the package. Another handy feature
of using software packages is that it is very easy to remove and upgrade them, if you so desire. Slackware
comes with programs for all your package management needs. You can install, remove, upgrade, make,
and examine packages very easily.

Overview of Package Format
Before learning the utilities, you should become familiar with the format of a Slackware package. A
package is simply a tar archive file that has been compressed with gzip. A package is built so that it can
be extracted in the root filesystem.

Here is a fictitious program and its example package:

 ./

 usr/

 usr/bin/

 usr/bin/makehejaz

 usr/doc/

 usr/doc/makehejaz-1.0/

 usr/doc/makehejaz-1.0/COPYING

 usr/doc/makehejaz-1.0/README

 usr/man/

 usr/man/man1

 usr/man/man1/makehejaz.1.gz

 install/

 install/doinst.sh

The package system will extract this file in the root directory to install it. An entry in the package
database will be created that contains the contents of this package so that it can be upgraded or removed
later.

Notice the install/ subdirectory. This is a special directory that can contain a postinstallation script
called doinst.sh. If the package system finds this file, it will execute it after installing the package.

Other scripts can be embedded in the package, but those are discussed more in detail in the section called
makepkg.

Package Utilities
There are four main utilities for package management. They perform installation, removal, and upgrades
of packages.

pkgtool

pkgtool(8) is a menu-driven program that allows installation and removal of packages. The main menu
looks like this:

Figure 16-1. Pkgtool's main menu.

Installation is offered from the current directory, another directory, or from floppy disks. Simply select
the installation method you want and pkgtool will search that location for valid packages to install.

You may also view a list of installed packages, which would look like this:

Figure 16-2. Pkgtool view mode.

If you want to remove packages, select the remove option and you will be presented with a checklist of all
the installed packages. Flag the ones you want to remove and select OK. pkgtool will remove them.

Some users prefer this utility to the command line utilities. However, it should be noted that the command
line utilities offer many more options. Also, the ability to upgrade packages is only offered through the
command line utilities.

installpkg

installpkg(8) handles installation of new packages on the system. The syntax is as follows:

 # [ROOT=<path>] installpkg [option] <package name>...

Three options are provided for installpkg. Only one option can be used at a time.

Table 16-1. installpkg Options

Option Effects
-m Performs a makepkg operation on the current directory.
-warn Shows what would happen if you installed the specified package. This is useful for production

systems so you can see exactly what would happen before installing something.

-r Recursively install all packages in the current directory and down. The <package name> can
use wildcards, which would be used as the search mask when recursively installing.

If you pass the ROOT environment variable before installpkg, that path will be used for the root directory.
This is useful for setting up new drives for your root directory. They will typically be mounted to /mnt or
something other than /.

The installed package database entry is stored in /var/log/packages. The “entry” is really just a plain
text file, one for each package. If the package has a postinstallation script, it is written to
/var/log/scripts/<packagename>.

You may specify several packages or use wildcards for the package name. Be advised that installpkg will
not tell you if you are overwriting an installed package. It will simply install right on top of the old one. If
you want to ensure that old files from the previous package are safely removed, use upgradepkg.

removepkg

removepkg(8) handles removing installed packages from the system. The syntax is as follows:

 # [ROOT=<path>] removepkg [option] <package name>...

Four options are provided for removepkg. Only one option may be used at a time.

Table 16-2. removepkg Options

Option Effects
-copy The package is copied to the preserved packages directory. This creates a tree of the original

package without removing it.
-keep Saves temporary files created during the removal. Really only useful for debugging

purposes.
-preserve The package is removed, but copied to the preserved packages directory at the same time.
-warn Shows what would happen if you removed the package.
If you pass the ROOT environment variable before removepkg, that path will be used for the root
directory. This is useful for setting up new drives for your root directory. They will typically be mounted
to /mnt or something other than /.

removepkg looks at the other installed packages and only removes files unique to the package you
specify. It will also scan the postinstallation script for the specified package and remove any symbolic
links that were created by it.

During the removal process, a status report is displayed. After the removal, the package database entry is
moved to /var/log/removed_packages and the postinstallation script is moved to
/var/log/removed_scripts.

Just as with installpkg, you can specify several packages or use wildcards for the package name.

upgradepkg

upgradepkg(8) will upgrade an installed Slackware package. The syntax is as follows:

 # [ROOT=<path>] upgradepkg <package name>...

or

 # [ROOT=<path>] upgradepkg \

 <old package name>%<new package name>

upgradepkg works by first installing the new package and then removing the old package so that old files
are no longer around on the system. If the upgraded package name has changed, use the percent sign
syntax to specify the old package (the one that is installed) and the new package (the one you are
upgrading it to).

If you pass the ROOT environment variable before upgradepkg, that path will be used for the root
directory. This is useful for setting up new drives for your root directory. They will typically be mounted
to /mnt or something other than /.

upgradepkg is not flawless. You should always back up your configuration files. If they get overwritten,
you'll still have a copy of the originals for any needed repair work.

Just as with installpkg and removepkg, you can specify several packages or use wildcards for the
package name.

rpm2tgz/rpm2targz

The Red Hat Package Manager is a popular packaging system available today. Many software distributors
are offering their products in RPM format. Since this is not our native format, we do not recommend
people rely on them. However, some things are only available as an RPM (even the source).

We provide a program that will convert RPM packages to our native .tgz format. This will allow you to
extract the package (perhaps with explodepkg) to a temporary directory and examine its contents.

The rpm2tgz program will create a Slackware package with a .tgz extension, while rpm2targz creates an
archive with a .tar.gz extension.

Making Packages
Making Slackware packages can be both easy and difficult. There is no specific method for building a
package. The only requirement is that the package be a tar gzipped file and if there is a postinstallation
script, it must be /install/doinst.sh.

If you are interested in making packages for your system or for a network that you manage, you should
have a look at the various build scripts in the Slackware source tree. There are several methods we use for
making packages.

explodepkg

explodepkg(8) will do the same thing that installpkg does to extract the package, but it doesn't actually
install it and it doesn't record it in the packages database. It simply extracts it to the current directory.

If you look at the Slackware source tree, you will see how we use this command for “framework”
packages. These packages contain a skeleton of what the final package will look like. They hold all the
necessary filenames (zero-length), permissions, and ownerships. The build script will cat the package
contents from the source directory to the package build directory.

makepkg

makepkg(8) will package up the current directory into a valid Slackware package. It will search the tree
for an symbolic links and add a creation block to the postinstallation script for creating them during the

package install. It also warns of any zero-length files in the package tree.

This command is typically run after you have created your package tree.

Making Tags and Tagfiles (for setup)
The Slackware setup program handles installation of the software packages on your system. There are
files that tell the setup program which packages must be installed, which ones are optional, and which
ones are selected by default by the setup program.

A tagfile is in the first software series directory and is called tagfile. It lists the packages in that
particular disk set and their status. The status can be:

Table 16-3. tagfile Status Options

Option Meaning
ADD The package is required for proper system operation
SKP The package will be automatically skipped
REC The package is not required, but recommended
OPT The package is optional
The format is simply:

 <package name>: <status>

One package per line. The original tagfiles for each software series are stored as tagfile.org. So if you
mess up yours, you can restore the original one.

Many administrators prefer writing their own tagfiles and starting the installer and selecting “full”. The
setup program will read the tagfiles and perform the installation according to their contents. If you use
REC or OPT, a dialog box will be presented to the user asking whether or not they want a particular
package. Therefore, it is recommended that you stick with ADD and SKP when writing tagfiles for
automated installs.

Just make sure your tagfiles are written to the same location as the originals. Or you can specify a custom
tagfile path if you have custom tagfiles.

Summary
You should now be familiar with the idea of a software package and how these are used in Slackware.
You should be familiar with the various package management utilities and how to use them. The most
important parts of this chapter are how to install, remove, and upgrade packages. That's the most common
use of the package utilities. However, you should also have some understanding of making and inspecting
packages.

Chapter 17. ZipSlack and BigSlack
What is ZipSlack/BigSlack?
“ZipSlack” is a special version of Slackware Linux. It's an already installed copy of Slackware that's
ready to run from your DOS or Windows partition. It's a basic installation, you do not get everything that
comes with Slackware. If you want everything with ZipSlack, then you should try “BigSlack”.

ZipSlack gets its name from the form it's distributed in, a big .ZIP file. Users of DOS and Windows will
probably be familiar with these files. They are compressed archives. The ZipSlack archive contains
everything you need to get up and running with Slackware.

It is important to note that ZipSlack and BigSlack are significantly different than a regular installation.
Even though they function the same and contain the same programs, their intended audiences and
functions differ. Several advantages and disadvantages of ZipSlack and BigSlack are discussed below.

One last thing, you should always review the documentation included in the actual ZipSlack or BigSlack
directory. It contains the latest information regarding installation, booting, and general use of the product.

Advantages

• Does not require repartitioning of your hard disk.

• Great way to learn Slackware Linux without stumbling through the installation process.

Disadvantages

• Uses the DOS filesystem, which is slower than a native Linux filesystem.

• Will not work with Windows NT.

Getting ZipSlack/BigSlack
Obtaining ZipSlack or BigSlack is easy. If you have purchased the official Slackware Linux CD set, then
you already have ZipSlack and BigSlack. Just find the CD that contains the one you want and place it in
your CD-ROM drive. It's usually the third or fourth disc, but always trust the labels over this
documentation.

If you want to download ZipSlack or BigSlack, you should first visit our “Get Slack” web page for the
latest download information:

http://www.slackware.com/getslack/

ZipSlack and BigSlack are part of each Slackware release. Locate the release you want, and go to that
directory on the FTP site. The latest release directory can be found at this location:

ftp://ftp.slackware.com/pub/slackware/slackware/

You'll find ZipSlack in the /zipslack subdirectory and BigSlack in the /bigslack directory. ZipSlack is
offered as one big .ZIP file or floppy-sized chunks. The chunks are in the /zipslack/split directory.
BigSlack is only offered in chunk form.

Don't stop at just the .ZIP files. You should also download the documentation files and any boot images
that appear in the directory.

Installation
Once you've downloaded the necessary components, you'll need to extract the .ZIP file (or files if you
downloaded the chunks). Be sure to use a 32-bit unzipper. The size and filenames in the archive are too
much for a 16-bit unzipper. Examples of 32-bit unzippers include WinZip and PKZIP for Windows.

Both ZipSlack and BigSlack are designed to be extracted directly to the root directory of a drive (such as
C: or D:). A \LINUX directory will be created that contains the actual Slackware installation. You'll also

find the files necessary to booting the system in that directory as well.

After you've extracted the files, you should have a \LINUX directory on the drive of your choosing (we'll
use C: from here on)

Booting ZipSlack/BigSlack
There are several ways to boot ZipSlack and BigSlack. The most common is to use the included
LINUX.BAT to boot the system from DOS (or from DOS mode under Windows 9x). This file must be
edited to match your system before it will work.

Start by opening the C:\LINUX\LINUX.BAT file in your favorite text editor. At the top of the file you will
notice a large comment. It explains what you need to edit in this file (and also what to do if you are
booting from an external Zip drive). Don't worry if you don't understand the root= setting. There are
several examples, so feel free to pick one and try it. If it doesn't work, you can edit the file again,
comment out the line you uncommented, and pick another one.

After you uncomment the line you want by removing the “rem ” at the beginning of the line, save the file
and exit the editor. Bring your machine into DOS mode.

A DOS prompt window in Windows 9x will NOT work.

Type C:\LINUX\LINUX.BAT to boot the system. If all goes well, you should be presented with a login
prompt.

Log in as root, with no password. You'll probably want to set a password for root, as well as adding an
account for yourself. At this point you can refer to the other sections in this book for general system
usage.

If using the LINUX.BAT file to boot the system didn't work for you, you should refer to the included
C:\LINUX\README.1ST file for other ways to boot.

Adding, Removing, and Upgrading Software
ZipSlack and BigSlack can use the same packages that a regular Slackware installation uses. That means
you can use the standard Slackware package tools to add software, remove software, and upgrade
software. You can even add packages right off the Slackware CD-ROM.

Refer to Chapter 16 for more information.

Common Problems
These are the most common problems that users of ZipSlack and BigSlack run into. We offer several
other methods of help if your problem isn't listed here. The next section discusses those in detail.

Unable to open initial console

This is typically caused by specifying the incorrect device partition for the root= setting in the LINUX.BAT
file. Edit the LINUX.BAT file again and choose another root= partition. If you have absolutely no idea
what this means, you can simply try each one until you get one that works.

This can also be caused by unpacking the .ZIP files in a location other than a root directory of a drive.
The archives need to be extracted directly to a drive and not a subdirectory.

Kernel panic: VFS : Unable to mount root fs

This means you've specified the wrong device for the root= setting in the LINUX.BAT file. You need to
edit that file again and choose another root= device. If you don't know which one it is, just try all of them
until you find one that works.

Getting Help
Before asking for help, you should read through the documentation in the C:\LINUX directory to see if
there is an answer to your question.

If you've read the documentation and still have problems, the methods below will hopefully get your
problem resolved.

ZipSlack FAQ

The list of common questions and their answers can be found in both the FAQ.TXT file in the C:\LINUX
directory as well as on the web site:

http://www.slackware.com/faq/

ZipSlack Discussion Forum

The online discussion forum for ZipSlack lets you talk to other ZipSlack and BigSlack users. You can
post your questions here and also offer your help to other users. It's a great way to get direct help from
other users.

http://www.slackware.com/forum/

Support Via Email

The Slackware Support Team will try to help you if you are having problems with ZipSlack or BigSlack.
Be sure to clearly state the problem and provide any information that you think is necessary to solving the
problem.

<support@slackware.com>

Summary
You should understand what ZipSlack and BigSlack are. If you've decided that you want to use either,
you should know how to install, boot, troubleshoot, and get help. ZipSlack and BigSlack can be very
convenient if you just want to try out Slackware, but don't want to remove your existing Windows
partitions.

Glossary
Account

All of the information about a user, including username, password, finger information, UID and GID, and
home directory. To create an account is to add and define a user.

Background

Any process that is running without accepting or controlling the input of a terminal is said to be running

in the background.

Boot disk

A floppy disk containing an operating system (in our case, the Linux kernel) from which a computer can
be started.

Compile

To convert source code to machine-readable “binary” code.

Daemon

A program designed to run in the background and, without user intervention, perform a specific task
(usually providing a service).

Darkstar

The default hostname in Slackware; your computer will be called darkstar if you do not specify some
other name.

One of Patrick Volkerding's development machines, named after “Dark Star”, a song by the Grateful
Dead.

Desktop Environment

A graphical user interface (GUI) that runs atop the X Window System and provides such features as
integrated applications, cohesive look-and-feel between programs and components, file and window
management capabilities, etc. A step beyond the simple window manager.

Device driver

A chunk of code in the kernel that directly controls a piece of hardware.

Device node

A special type of file in the /dev filesystem that represents a hardware component to the operating
system.

DNS

Domain Name Service. A system in which networked computers are given names which translate to
numerical addresses.

Domain name

A computer's DNS name, excluding its host name.

Dot file

In Linux, files which are to be hidden have filenames beginning with a dot ('.').

Dotted quad

The format of IP addresses, so called because it consists of four numbers (range 0-255 decimal) separated
by periods.

Dynamic loader

When programs are compiled under Linux, they usually use pieces of code (functions) from external
libraries. When such programs are run, those libraries must be found and the required functions loaded
into memory. This is the job of the dynamic loader.

Environment variable

A variable set in the user's shell which can be referenced by that user or programs run by that user within
that shell. Environment variables are generally used to store preferences and default parameters.

Epoch

A period of history; in Unix, “The Epoch” begins at 00:00:00 UTC January 1, 1970. This is considered
the “dawn of time” by Unix and Unix-like operating systems, and all other time is calculated relative to
this date.

Filesystem

A representation of stored data in which “files” of data are kept organized in “directories”. The filesystem
is the nearly universal form of representation for data stored to disks (both fixed and removable).

Foreground

A program that is accepting or controlling a terminal's input is said to be running in the foreground.

Framebuffer

A type of graphics device; in Linux, this most often refers to the software framebuffer, which provides a
standard framebuffer interface to programs while keeping specific hardware drivers hidden from them.
This layer of abstraction frees programs of the need to speak to various hardware drivers.

FTP

The File Transfer Protocol. FTP is a very popular method of transferring data between computers.

Gateway

A computer through which data on a network is transferred to another network.

GID

Group Identifier. The GID is a unique number attributed to a group of users.

Group

Users in Unix belong to “groups”, which can contain many other users and are used for more general
access control than the existence of users alone can easily allow.

GUI

Graphical User Interface. A software interface that uses rendered graphical elements such as buttons,
scrollbars, windows, etc. rather than solely text-based input and output

Home directory

A user's “home directory” is the directory the user is placed in immediately upon logging in. Users have
full permissions and more or less free reign within their home directories.

HOWTO

A document describing “how to” do something, such as configure a firewall or manage users and groups.
There is a large collection of these documents available from the Linux Documentation Project.

HTTP

The Hypertext Transfer Protocol. HTTP is the primary protocol on which the World Wide Web operates.

ICMP

Internet Control Message Protocol. A very basic networking protocol, used mostly for pings.

Kernel

The heart of an operating system. The kernel is the part that provides basic process control and interfaces
with the computer's hardware.

Kernel module

A piece of kernel code, usually a driver of some sort, that can be loaded and unloaded from memory
separately from the main body of the kernel. Modules are handy when upgrading drivers or testing kernel
settings, because they can be loaded and unloaded without rebooting.

Library

A collection of functions which can be shared between programs.

LILO

The LInux LOader. LILO is the most widely-used Linux boot manager.

LOADLIN

LOADLIN is a program that runs under MS DOS or Windows and boots a Linux system. It is most
commonly used on computers with multiple operating systems (including Linux and DOS/Windows, of
course).

Man section

Pages in the standard Unix online manual ("man") are grouped into sections for easy reference. All C
programming pages are in section 3, system administration pages in section 5, etc.

MBR

The Master Boot Record. A reserved space on a hard drive where information on what to do when
booting is stored. LILO or other boot managers can be written here.

Motif

A popular programming toolkit used in many older X programs.

MOTD

Message of the Day. The motd (stored in Linux in /etc/motd is a text file that is displayed to all users
upon logging in. Traditionally, it is used by the system administrator as a sort of “bulletin board” for
communicating with users.

Mount point

An empty directory in a filesystem where another filesystem is to be “mounted”, or grafted on.

Nameserver

A DNS information server. Nameservers translate DNS names to numerical IP addresses.

Network interface

A virtual representation of a network device provided by the kernel. Network interfaces allow users and
programs to talk to network devices.

NFS

The Network Filesystem. NFS allows the mounting of remote filesystems as if they were local to your
computer and thus provides a transparent method of file sharing.

Octal

Base-8 number system, with digits 0-7.

Pager

An X program that allows the user to see and switch between multiple “desktops”.

Partition

A division of a hard drive. Filesystems exist on top of partitions.

PPP

Point-to-Point Protocol. PPP is used mainly for connecting via modem to an Internet Service Provider.

Process

A running program.

Root directory

Represented as “/”, the root directory exists at the top of the filesystem, with all other directories
branching out beneath it in a “file tree”.

Root disk

The disk (usually fixed) on which the root directory is stored.

Routing table

The set of information the kernel uses in “routing” network data around. It contains such tidbits as where
your default gateway is, which network interface is connected to which network, etc.

Runlevel

The overall system state as defined by init. Runlevel 6 is rebooting, runlevel 1 is “single user mode”,
runlevel 4 is an X login, etc. There are 6 available runlevels on a Slackware system.

Secure shell

An encrypted (thus secure) method of logging in remotely to a computer. Many secure shell programs are
available; both a client and server are needed.

Service

The sharing of information and/or data between programs and computers from a single “server” to
multiple “clients”. HTTP, FTP, NFS, etc. are services.

Shadow password suite

The shadow password suite allows encrypted passwords to be hidden from users, while the rest of the
information in the /etc/passwd file remains visible to all. This helps prevent brute-force attempts at
cracking passwords.

Shell

Shells provide a commandline interface to the user. When you're looking at a text prompt, you're in a
shell.

Shell builtin

A command built into the shell, as opposed to being provided by an external program. For instance, bash
has a cd builtin.

Signal

Unix programs can communicate between each other using simple “signals”, which are enumerated and
usually have specific meanings. kill -l will list the available signals.

SLIP

Serial Line Interface Protocol. SLIP is a similar protocol to PPP, in that it's used for connecting two
machines via a serial interface.

Software package

A program and its associated files, archived and compressed into a single file along with any necessary
scripts or information to aid in managing the installation, upgrade, and removal of those files.

Software series

A collection of related software packages in Slackware. All KDE packages are in the “kde” series,
networking packages in the “n” series, etc.

Source code

The (more or less) human-readable code in which most programs are written. Source code is compiled
into “binary” code.

Standard Error (stderr)

The Unix-standard output stream for errors. Programs write any error messages on stderr, so that they can
be separated from normal output.

Standard Input (stdin)

The Unix-standard input stream. Data can be redirected or piped into a program's stdin from any source.

Standard Output (stdout)

The Unix-standard output stream. Normal text output from a program is written to stdout, which is
separate from the error messages reported on stderr and can be piped or redirected into other programs'
stdin or to a file.

Subnet

An IP address range that is part of a larger range. For instance, 192.168.1.0 is a subnet of 192.168.0.0
(where 0 is a mask meaning “undefined”); it is, in fact, the “.1” subnet.

Superblock

In Linux, partitions are discussed in terms of blocks. A block is 512 bytes. The superblock is the first 512
bytes of a partition.

Supplemental disk

In Slackware, a floppy disk used during installation that contains neither the kernel (which is on the boot
disk) nor the root filesystem (which is on the root disk), but additional needed files such as network
modules or PCMCIA support.

Suspended process

A process which has been frozen until killed or resumed.

Swap space

Disk space used by the kernel as “virtual” RAM. It is slower than RAM, but because disk space is
cheaper, swap is usually more plentiful. Swap space is useful to the kernel for holding lesser-used data
and as a fallback when physical RAM is exhausted.

Symbolic link

A special file that simply points to the location of another file. Symbolic links are used to avoid data
duplication when a file is needed in multiple locations.

Tagfile

A file used by the Slackware setup program during installation, which describes a set of packages to be
installed.

Terminal

A human-computer interface consisting of at least a screen (or virtual screen) and some method of input
(almost always at least a keyboard).

Toolkit, GUI

A GUI toolkit is a collection of libraries that provide a programmer with code to draw “widgets” such as
scrollbars, checkboxes, etc. and construct a graphical interface. The GUI toolkit used by a program often
defines its “look and feel”.

UID

User Identifier. A unique number that identifies a user to the system. UIDs are used by most programs
instead of usernames because a number is easier to deal with; usernames are generally only used when the
user has to see things happen.

VESA

Video Electronics Standards Association. The term “VESA” is often used to denote a standard specified
by said Association. Nearly all modern video adapters are VESA-compliant.

Virtual terminal

The use of software to simulate multiple terminals while using only a single set of input/output devices
(keyboard, monitor, mouse). Special keystrokes switch between virtual terminals at a single physical
terminal.

Window manager

An X program whose purpose is to provide a graphical interface beyond the simple rectangle-drawing of
the X Window System. Window managers generally provide titlebars, menus for running programs, etc.

Working directory

The directory in which a program considers itself to be while running.

Wrapper program

A program whose sole purpose is to run other programs, but change their behavior in some way by
altering their environments or filtering their input.

X server

The program in the X Window System which interfaces with graphics hardware and handles the actual
running of X programs.

X Window System

Network-oriented graphical interface system used on most Unix-like operating systems, including Linux.

Appendix A. The GNU General Public License
Table of Contents

Preamble

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

How to Apply These Terms to Your New Programs

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation's software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is

covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy of this License along with
the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed under

the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to
this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

12. NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author

 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

 This is free software, and you are welcome to redistribute it

 under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w' and
`show c'; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program

 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989

 Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

