
A MathLink Tutorial

Todd Gayley
Wolfram Research

MathLink is a library of functions that implement a protocol for sending and receiving Mathematica expressions. Its
uses fall into two general categories. The easiest and most common application is to allow external functions written in
other languages to be called from within the Mathematica environment. If you have an algorithm that needs to be
implemented in a compiled language for efficiency reasons, or if you have code that you don't want to rewrite in
Mathematica, it is a relatively simple matter to incorporate the routines into Mathematica. This use of MathLink is
treated in the first chapter of this tutorial.

The second use of MathLink is to allow your program, running in the foreground, to use the Mathematica kernel in the
background as a computational engine. In effect, the program is a "front end" for the Mathematica kernel. This requires
a deeper understanding of MathLink, and is treated in the second chapter.

Each of these two chapters is designed to stand on its own, so there is some repetition. There are also topics that are
relevant to all MathLink programmers that are treated more fully in one chapter than in the other. I strongly recommend
that you read both, but keep in mind that some of the information may not apply to you, depending on how you plan to
use MathLink.

This document is designed to supplement the information in the MathLink Reference Guide, which is the main documen-
tation for MathLink. There is also some information on newer features of MathLink in the Major New Feautres of
Mathematica Version 2.2 document, which comes with Version 2.2, and is also available on MathSource. My intention
here is to flesh out some details, provide useful code fragments, discuss some underdocumented features, and show
how to accomplish some common tasks.

The information presented here refers to Version 2.2.2 of MathLink and later. Most of the information is also correct
for earlier versions, but a few of the functions and features may not be present.

ML_Tut.nb 1

1. Calling External Programs from the Mathematica Kernel

1.1 The Simplest Example: addtwo

1.2 Using :Evaluate: to Include Accessory Mathematica Code

1.3 Putting and Getting Arguments Manually

1.4 Passing Lists and Arrays

1.5 Passing Arbitrary Expressions

1.6 Requesting Evaluations by the Kernel

1.7 Error Handling

1.8 Troubleshooting and Debugging

1.9 Large Projects

1.10 Special Topics

2. Calling the Mathematica Kernel from External Programs

2.1 A Simple Program

2.2 Opening a Link to the Kernel

2.3 Sending Expressions to the Kernel

2.4 Receiving Expressions from the Kernel

2.5 Blocking, Yield Functions, and All That

2.6 Graphics

3. Using Other Languages

3.1 C++

3.2 FORTRAN and Others

ML_Tut.nb 2

1. Calling External Programs from the Mathematica Kernel

I will refer to external functions that are called from Mathematica as "installable" functions, since they use the
Install mechanism to be incorporated into the Mathematica environment. The intent is that you should be able to
take pre-existing C language routines, and with as little effort as possible (ideally with no source code changes to the
routines themselves), package them so they can be called from Mathematica. For each function you want to call from
Mathematica, you write a template entry that specifies the name of the function, the arguments that the function needs
to be passed and their types, and the type of argument it returns. This template file is then passed through a tool called
mprep, which writes C code that manages most, possibly all, of the MathLink-related aspects of the program.

I want to emphasize how easy, even trivial, it is to perform these steps for many external functions. With just a little
more effort you can handle unusual functions or more sophisticated communication. The MathLink Reference Guide is
perhaps a little intimidating, but some of the information is not directly relevant for programmers who merely want to
call external functions from Mathematica. I hope that this chapter will encapsulate much of the information you need in
a concise form.

1.1 The Simplest Example: addtwo

Let's look at a trivial example of an installable program, the addtwo program that is supplied with MathLink. We will
modify the program in several ways to demonstrate more advanced techniques. Here is the C source file addtwo.c:

 #include "mathlink.h"

 int addtwo(int i, int j) {
 return i+j;
 }

 int main(int argc, char* argv[]) {
 return MLMain(argc, argv);
 }

Note that if you already had a C routine that took two ints and returned an int, all you would have to do to make it
installable would be to insert the one-line main function (actually, for Windows users main is slightly more compli-
cated, but it is still something that can simply be pasted into your own code). The main function is simply a "stub" that
calls the real main function (named MLMain), which is written by mprep.

Here is the template file addtwo.tm:

 :Begin:
 :Function: addtwo
 :Pattern: AddTwo[i_Integer, j_Integer]
 :Arguments: { i, j }
 :ArgumentTypes: { Integer, Integer }
 :ReturnType: Integer
 :End:

ML_Tut.nb 3

The :Function: line specifies the name of the C routine. The :Pattern: line shows how the routine will be
called in Mathematica. The pattern given on this line will become the left-hand side of a function definition, exactly as
you would type it if you were creating the entire function in Mathematica. The :Arguments: line specifies the
expressions to be passed to the external program. These expressions don't have to be the same as the variable names on
the :Pattern: line, although they often will be. You could, for example, put {Abs[i], j^3}. The point is that
what you put on the :Pattern: line and the :Arguments: line is Mathematica code; it will be used verbatim in a
definition that could be caricatured as follows:

AddTwo[i_Integer, j_Integer] :=
 SendToExternalProgramAndWaitForAnswer[{i, j}]

The :ArgumentTypes: and :ReturnType: lines contain special keywords used by mprep to create the appropri-
ate MLGet and MLPut calls that transfer data across the link.

The details of building the executable from the addtwo.tm and addtwo.c source files differ from platform to platform.
On Unix, you will usually use the mcc script that comes with Mathematica. You would use a line like

 mcc addtwo.tm addtwo.c -o addtwo

The steps that mcc performs are as follows: (1) run mprep on the .tm file, to create a .tm.c file; and (2) compile and link
all the source files, including the .tm.c file, specifying to the 'cc' compiler where to find the mathlink.h file and the
MathLink library file (named libML.a on Unix machines). It is the .tm.c file that contains the mprep-generated C
source. Normally, this file is deleted by mcc after it has been compiled, but if you want to see what it looks like you can
prevent its deletion by specifying the -g command-line option to mcc. Advanced users of MathLink can learn a lot by
studying this file. On Macintosh and Windows, the steps to build the program will be different, and you should consult
the README file that comes with MathLink.

The mcc method is convenient for simple projects, but it has some drawbacks, one of which is that it is hard-coded to
call the 'cc' compiler. You might want to skip mcc altogether and write your own makefile. In that case, you will be
calling mprep yourself. Here's an example:

 /math/Bin/MathLink/mprep addtwo.tm -o addtwo.tm.c

Note that mprep is not on your Unix path, so you will need to specify the full pathname. The MathLink library, lib-
ML.a, is also located in the math/Bin/MathLink directory, and the mathlink.h file is in math/Source/Includes.

To use the AddTwo function in Mathematica, you launch the external program with the Install function:

link = Install["addtwo"]

LinkObject[addtwo, 2, 2]

The function LinkPatterns shows what functions are defined by the external program associated with a given link:

LinkPatterns[link]

{AddTwo[i_Integer, j_Integer]}

AddTwo[3,4]

7

ML_Tut.nb 4

You may wonder, "How does the definition for AddTwo appear in Mathematica?" After all, the only thing we've done
is start up the kernel, type Install, and suddenly Mathematica knows about a function called AddTwo. The answer
is that the external program sends to Mathematica the definitions for the functions it exports when the link is first
opened. Here's what such a definition looks like:

?AddTwo

Global`AddTwo

AddTwo[i_Integer, j_Integer] :=
 ExternalCall[LinkObject["addtwo", 2, 2], CallPacket[0, {i, j}]]

Of course, the programmer never sees any of this process, because it is handled at one end by the code that mprep
writes and at the other end by the Install code. Most programmers have no reason to care how this feat is per-
formed, but you should know that all the code involved is accessible. If you are interested, you might want to take a
look at a .tm.c file and the Mathematica package Install.m, which resides in the StartUp subdirectory of the Packages
directory.

1.2 Using :Evaluate: to Include Accessory Mathematica Code

It was mentioned earlier that when the external program is installed it sends code to Mathematica to set up the "Mathe-
matica side" of the functions it exports. You can also specify arbitrary Mathematica code to be sent. You might have
some accessory code that your functions need to have exist in Mathematica. A simple example is usage messages.

You can specify arbitrary Mathematica code to be sent to the kernel when your program is installed by using another
feature of template files, the :Evaluate: line. Here's an example of specifying a usage message:

 :Evaluate: AddTwo::usage = "AddTwo[i, j] adds two integers."

 :Begin:
 :Function: addtwo
 :Pattern: AddTwo[i_Integer, j_Integer]
 :Arguments: { i, j }
 :ArgumentTypes: { Integer, Integer }
 :ReturnType: Integer
 :End:

Defining messages is a trivial example of the use of :Evaluate: lines. Another common use is to make your func-
tions appear in a package context. The current behavior of Install is to cause all functions defined in installable
programs to appear in the Global` context, not the current Mathematica context (this behavior may be changed in a
future version). This means that if you want the AddTwo function to appear in a package context, say MyPackage`,
then you cannot do this:

BeginPackage["MyPackage`"];

Install["addtwo"]

EndPackage[]

ML_Tut.nb 5

The AddTwo function will still be put into the Global` context. The best way to handle this is to put the Begin-
Package statement into an :Evaluate: line in the .tm file:

 :Evaluate: BeginPackage["MyPackage`"]
 :Evaluate: AddTwo::usage = "AddTwo[i, j] adds two integers."
 :Evaluate: Begin["Private`"]

 :Begin:
 :Function: addtwo
 :Pattern: AddTwo[i_Integer, j_Integer]
 :Arguments: { i, j }
 :ArgumentTypes: { Integer, Integer }
 :ReturnType: Integer
 :End:

 :Evaluate: End[]
 :Evaluate: EndPackage[]

Everything that follows an :Evaluate: up until the first blank line or line whose first character is not a space will be
sent as a single unit. This means you need to have a separate :Evaluate: for each separate statement or definition.
There is more discussion of the use of :Evaluate: in
Section 1.9, Large Projects.

1.3 Putting and Getting Arguments Manually

Note that in writing the addtwo program and the template, we have not had to make a single MathLink call. With a little
additional effort you can take more control over the passing of arguments and return values. This would be necessary,
for example, if the external function needed to receive or return expression types that are not among the set handled
automatically by mprep, or if the function returned different types of results (such as an integer or the symbol
$Failed) in different situations.

As an example, we will modify the addtwo program so that it works for larger integers, up to the long integer size. In
the template file, the keyword Integer on the :ArgumentTypes: and :ReturnType: lines causes mprep to
create calls to MLGetInteger and MLPutInteger, which transfer C ints. Instead, we need to call MLGetLong-
Integer and MLPutLongInteger, so we change these two lines:

 :ArgumentTypes: { Manual }
 :ReturnType: Manual

The keyword Manual on the :ArgumentTypes: line informs mprep that we will write our own calls to get the
arguments, and similarly Manual on the :ReturnType: line indicates that we will put the result ourselves. Here's
how the addtwo function looks now:

 void addtwo(void) {

 long i, j, sum;

ML_Tut.nb 6

 MLGetLongInteger(stdlink, &i);
 MLGetLongInteger(stdlink, &j);
 sum = i + j;
 MLPutLongInteger(stdlink, sum);
 }

Note the change in the function's prototype. Remember that the actual call to the addtwo function is made from code
that mprep writes, so its arguments and return value must match mprep's assumptions, as determined from the :Argu-
mentTypes: and :ReturnType: lines of the template. By specifying Manual on the :ArgumentTypes: line,
you tell mprep to pass no arguments to addtwo when it is called. Similarly, by specifying Manual on the :Return-
Type: line, you tell mprep to ignore any return value.

It is possible to use Manual on one of these lines and not the other. It is also possible to mix Manual with other types
on the :ArgumentTypes: line. For example, if you want to have the first argument read automatically but get the
second one yourself, you can write:

 :ArgumentTypes: { Integer, Manual }

In this case, the addtwo function would be written to take one int argument, and inside it there would be one call to
MLGetInteger. If you use Manual on the :ArgumentTypes: line, it must be the last type in the list. In effect,
Manual means "I want to get all the remaining arguments from the link myself". You cannot specify

 :ArgumentTypes: { Integer, Manual, Integer }

It is likely that the arguments you will be passing to your function are among the set handled automatically by mprep
(integers, reals, lists of these, strings, and symbols). In this case it is quite convenient to have mprep take care of this
part of the MathLink communication. However, I recommend that you manually return results to Mathematica. It only
takes one line of code to send simple types back, and for any of the more advanced MathLink techniques described
below, you will need to have control over what is sent back and when.

1.4 Passing Lists and Arrays

Another case where you need to use the Manual keyword is when you need to return a list to Mathematica. The
MathLink sample program bitops demonstrates this. For our purposes only one of the functions defined in bitops.c is
relevant: the function complements, which takes a list of integers and returns a list of the bitwise complements of
the integers. Here is the template entry in bitops.tm:

 :Begin:
 :Function: complements
 :Pattern: BitComplements[x_List]
 :Arguments: {x}
 :ArgumentTypes: {IntegerList}
 :ReturnType: Manual
 :End:

There is a keyword IntegerList that can be used on the :ArgumentTypes: line, so you can have mprep get the
list for you, but you cannot use it in the :ReturnType: line--you have to use Manual and put the result list your-
self. Here is the C function:

ML_Tut.nb 7

 void complements(int px[], long nx) {

 long i;
 int *cpx;

 cpx = (int *) malloc(nx);
 for(i = 0; i < nx; i++)
 cpx[i] = ~ px[i] ;
 MLPutIntegerList(stdlink, cpx, nx);
 free(cpx);
 }

Note that we have specified only one argument, an IntegerList, to be passed to the external function, but the
function itself is written to take an integer array followed by a long integer. Confusion over this is a source of many
user errors. When the mprep-generated code reads the list of integers, it will determine the length of the list and pass
this to your function. Sometimes users mistakenly believe that they must themselves pass the length of the list from
Mathematica, so they erroneously write the :Arguments: and :ArgumentTypes: lines like this:

 :Arguments: {x, Length[x]}
 :ArgumentTypes: {IntegerList, Integer}

The long parameter that will receive the length of the list always comes immediately after the list itself in the argu-
ments to your function. For example, if you need to receive a list of integers, a list of reals, and an integer, you would
write the :ArgumentTypes: line like this:

 :ArgumentTypes: {IntegerList, RealList, Integer}

and the function prototype would look like:

 void func(int ilist[], long ilen, double rlist[], long rlen, int j);

To put the result list back to Mathematica, you can use MLPutIntegerList or MLPutRealList.

In addition to putting and getting lists of integers and doubles, MathLink has some new functions for putting and
getting multidimensional arrays in a single step, for example MLGetDoubleArray and MLPutDoubleArray.
Check the mathlink.h header file for the complete set. The easiest way to describe these functions is to show a sample
program. The following is an example function that creates an identity matrix of size n:

 void identity_matrix(int n) {

 long dimensions[2];
 char *heads[2] = {"List", "List"};
 long depth = 2;
 int *mat;
 int i,j;

 mat = (int*) calloc(n * n, sizeof(int));

 for(i=0; i<n; i++)
 for(j=0; j<n; j++)

ML_Tut.nb 8

 if(i == j) mat[i + j * n] = 1;

 dimensions[0] = dimensions[1] = n;

 MLPutIntegerArray(stdlink, mat, dimensions, heads, depth);

 free(mat);
 }

The "Array" functions are similar to their "List" counterparts. In a PutArray function, instead of a long length
parameter, you pass an array of longs giving the length in each dimension. The heads parameter is an array of
char* that give the heads in each dimension (List in most cases). If the heads are List in each dimension, you can
simply pass NULL in place of heads.

Here's a complete example showing the use of MLGetDoubleArray and MLPutDoubleArray. The function
transposes a matrix of reals:

 :Begin:
 :Function: transpose
 :Pattern: MyTranspose[l_?MatrixQ]
 :Arguments: {l}
 :ArgumentTypes: {Manual}
 :ReturnType: Manual
 :End:

 void transpose(void) {

 long *dimensions;
 char **heads;
 long depth;
 double *data;
 int i, j;
 double *tdata; /* put the transposed array here */
 long tdimensions[2]; /* reverse of dimensions */

 MLGetDoubleArray(stdlink, &data, &dimensions, &heads, &depth);

 tdata = (double*) malloc(sizeof(double)*dimensions[0]*dimensions[1]);

 for(i=0; i<dimensions[0]; i++)
 for(j=0; j<dimensions[1]; j++)
 tdata[i + j * dimensions[0]] = data[j + i * dimensions[1]];

 tdimensions[0] = dimensions[1];
 tdimensions[1] = dimensions[0];

 MLPutDoubleArray(stdlink, tdata, tdimensions, heads, 2);

ML_Tut.nb 9

 free(tdata);
 MLDisownDoubleArray(stdlink, data, dimensions, heads, depth);
 }

Note the call to MLDisownDoubleArray. Whenever you use MLGet to receive an object whose size cannot be
known at compile time (e.g., a string, symbol, list, or array), MathLink reads the object into its own memory space and
gives you only the address of the data. For example, in MLGetString, you pass the address of a char* (i.e., a
char**), and MathLink stuffs the address of the string it received into your char*. You'll note that you haven't had
to allocate any memory yourself or worry about how big the data is. At this point, MathLink "owns" the data, and it is
waiting for your permission to free the memory that it occupies, which you grant when you call the MLDisown
functions. Between the time you call MLGet and MLDisown, you can only read the data--do not try to modify it in
place. If you need to do that, allocate your own memory and copy the data into it (e.g., using strcpy).

Note that you need to worry about calling MLDisown functions only if you call MLGet yourself. For strings, symbols
and lists that mprep gets automatically for you, it takes care of calling the appropriate Disown functions after your
function returns.

1.5 Passing Arbitrary Expressions

MathLink has functions for passing all native C types, along with single- and multidimensional arrays. There are times,
though, when you need to send or receive expressions that do not fit neatly into C types. Your function might need to
return a list of mixed integers and reals, or a list of lists that is not a matrix, or something even more complicated like
Integrate[x^2, {x,0,1}]. How do you go about transferring expressions like these?

I will focus on returning such expressions from an external function. It is less likely that your function would want to
receive such expressions. It is certainly possible to receive complex expressions, but what would you do with them?
You'd have to write your own code to analyze them and extract the desired information. If you need to deal with
complicated expressions in your external functions, you'd be better off writing some code on the Mathematica side that
acts as a "wrapper" around your template functions, manipulating and decomposing the expressions into meaningful
C-size chunks, and sending these instead. This type of chore is more easily programmed in the Mathematica language.

You send expressions over MathLink in a way that mimics their FullForm representation. There are MathLink
functions for the necessary "atomic" types (integers, reals, strings, and symbols), and if you need to put a "composite"
expression (something with a head and zero or more arguments), you use MLPutFunction to put the head and the
number of arguments, then MLPut calls for each of the arguments in turn. For example, to put the Integrate
expression above, you would use:

 MLPutFunction(stdlink, "Integrate", 2);
 MLPutFunction(stdlink, "Power", 2);
 MLPutSymbol(stdlink, "x");
 MLPutInteger(stdlink, 2);
 MLPutFunction(stdlink, "List", 3);
 MLPutSymbol(stdlink, "x");
 MLPutInteger(stdlink, 0);
 MLPutInteger(stdlink, 1);

ML_Tut.nb 10

Of course, if you want to return an expression like this from your function, you will need to declare a Manual return
type in the .tm file.

A very common error is attempting to put more than one expression from the external function. An external function,
just like any built-in function, cannot return two things. In the earlier examples, we sent complex expressions back to
Mathematica, but always only one of them. Here is an example of this error:

 void return_two(void) {

 int i, j;

 MLGetInteger(stdlink, &i);
 MLGetInteger(stdlink, &j);

 MLPutInteger(stdlink, i);
 MLPutInteger(stdlink, j);
 }

The two integers returned need to be wrapped in a head of some sort so that they become part of a single expression.
The put calls need to be written like this:

 MLPutFunction(stdlink, "List", 2);
 MLPutInteger(stdlink, i);
 MLPutInteger(stdlink, j);

1.6 Requesting Evaluations by the Kernel

The external function can request evaluations by Mathematica between the time it is called and the time it returns its
result. For example, you might want Mathematica to assist you in computing something, or you might want to trigger
some side effect such as displaying an error message. The MathLink function MLEvaluate is designed for this
purpose. MLEvaluate takes a string argument that will be interpreted by Mathematica as input. The result will be
returned to your function as an expression wrapped with the head ReturnPacket. You should read this Return-
Packet from the link whether you care what is in it or not.

As an example, let's go back to the addtwo function and say you want to detect an overflow when adding the two
long integers (that is, a sum that is outside the range of a long). If an overflow occurs, you want to show an error
message in Mathematica and then return the symbol $Failed instead of the sum.

You can use MLEvaluate to trigger the message, but how do you get the definition of the message into Mathematica
in the first place? You use an :Evaluate: line in your .tm file:

 :Evaluate: AddTwo::ovflw = "The sum cannot fit into a C long type."

The addtwo function now looks like this:

 void addtwo(void) {

 long i, j, sum;

ML_Tut.nb 11

 MLGetLongInteger(stdlink, &i);
 MLGetLongInteger(stdlink, &j);
 sum = i + j;
 if(i>0 && j>0 && sum<0 || i<0 && j<0 && sum>0) {
 MLEvaluate(stdlink, "Message[AddTwo::ovflw]");
 MLNextPacket(stdlink);
 MLNewPacket(stdlink);
 MLPutSymbol(stdlink, "$Failed");
 } else {
 MLPutLongInteger(stdlink, sum);
 }
 }

After the call to MLEvaluate, Mathematica will send back a ReturnPacket containing the return value of the
Message function (which is simply the symbol Null). You need to drain this packet from the link, so you call
MLNextPacket (which will return RETURNPKT) and then MLNewPacket to discard the contents. If you wanted to
read the contents of the ReturnPacket, then you would replace MLNewPacket with an appropriate series of
MLGet calls. As an example, let's say you wanted to have Mathematica compute a Bessel function for you. Here's how
you would send the request and read the result:

 MLEvaluate(stdlink, "BesselJ[0, 5.0]");
 MLNextPacket(stdlink); /* a RETURNPKT will be waiting */
 MLGetDouble(stdlink, &my_double); /* inside there will be a real */

MLNextPacket, MLNewPacket, and the MLGet functions are discussed in more detail in the second chapter of this
tutorial, where they are used more extensively.

Using MLEvaluate is not the only way the external function can send code to Mathematica for evaluation. Anything
sent wrapped in the head EvaluatePacket will be treated in this way. In fact, MLEvaluate is merely a conve-
nience function whose code just creates the expression EvaluatePacket[ToExpression["the string"]]
and sends this to Mathematica.

After Mathematica calls your external function, it reads from the link, expecting to find the final result. The head
EvaluatePacket tells Mathematica "This is not the final answer. Evaluate this and return the result to me wrapped
in ReturnPacket. Keep waiting for the final answer." In this way, the external function can initiate dialogs of
arbitrary length and complexity with the kernel before it returns.

If it is most convenient to send the code you need evaluated as a string (for example, if the code is known at compile
time), you can use MLEvaluate. In some cases, though, it may be easiest to send it as an expression wrapped in
EvaluatePacket. In the above example computing BesselJ, it is likely that the arguments to BesselJ will be
variables in your own program, not constants embedded in a string. Rather than constructing a string and sending it
with MLEvaluate, you might want to replace the MLEvaluate line with the following lines:

 MLPutFunction(stdlink, "EvaluatePacket", 1);
 MLPutFunction(stdlink, "BesselJ", 2);
 MLPutInteger(stdlink, my_int);
 MLPutDouble(stdlink, my_double);
 MLEndPacket(stdlink);

ML_Tut.nb 12

You read the resulting ReturnPacket in the same way as before.

1.7 Error Handling

Our addtwo function is still missing an extremely important aspect of MathLink programming: error checking. Most
MathLink functions return 0 to indicate an error has occurred, and you should check their return values, at least for the
reading functions. If you continue to issue MathLink calls after an error has occurred, without clearing the error, things
will no longer work as expected. Specifically, the link simply refuses to do anything until you clear the error. Checking
for MLGet errors is handled for you by the code that mprep writes for any arguments that are read automatically. If you
don't do any manual getting of arguments, then you don't have to worry about error checking. For any MLGet calls that
you write yourself, it's up to you.

The exact series of steps you take after an error has been detected depends on whether you want to try to recover or
not. If an MLGet call fails, the easiest thing to do is to simply abandon the external function call completely and return
the symbol $Failed. It would be more informative to trigger some kind of diagnostic message. There is a MathLink
function called MLErrorMessage, which returns a string describing the current error, and this string is a good
candidate for use in an error message to be seen by the user. Here is a code fragment that demonstrates how to detect an
error, issue a useful message, and then safely bail out of the function call. For each MLGet-type call in your code, you
can wrap it with something like:

 if(!MLGetLongInteger(stdlink, &i)) {
 char err_msg[100];
 sprintf(err_msg, "%s\"%.76s\"%s",
 "Message[AddTwo::mlink,",
 MLErrorMessage(stdlink),
 "]");
 MLClearError(stdlink);
 MLNewPacket(stdlink);
 MLEvaluate(stdlink, err_msg);
 MLNextPacket(stdlink);
 MLNewPacket(stdlink);
 MLPutSymbol(stdlink, "$Failed");
 return;
 }

Naturally, if you have more than one or two MLGet calls in your code, you would want to implement this as a function
or macro. Upon detecting the error, the first thing you do is call MLClearError to attempt to remove the error
condition, and then MLNewPacket to abandon the rest of the packet containing the original inputs to the function (in
case it hasn't been completely read yet). The sprintf is used to construct a string of the form

 "Message[AddTwo::mlink, \"the text returned by MLErrorMessage\"]"

which is what is sent to MLEvaluate. The gyrations required to produce this string using sprintf are a bit clumsy;
this is getting close to a case where it would be easiest to send the code as an expression rather than a string, as demon-
strated earlier. The remaining lines are the same as in the previous example of MLEvaluate. The message triggered
here, AddTwo::mlink, needs to be defined in an :Evaluate: line in the addtwo.tm file as follows:

ML_Tut.nb 13

 :Evaluate: AddTwo::mlink = "There has been a low-level MathLink error.
 The message is: `1`."

Now let's see these error messages in action. Earlier, we introduced the AddTwo::ovflw error message, to be
triggered when the two integers can be read from the link properly, but their sum is detected to have overflowed:

AddTwo[2000000000, 1000000000]

AddTwo::ovflw: The sum cannot fit into a C long type.

$Failed

The AddTwo::mlink error is triggered whenever the arguments are not read properly by MLGetLongInteger,
which will be the case if either one is too large to fit into a C long type:

AddTwo[5000000000, 1]

AddTwo::mlink:
 There has been a low-level MathLink error. The message is:
 machine integer overflow.

$Failed

1.8 Troubleshooting and Debugging

If you get either one of these two errors when you try Install["progname"]:

LinkOpen::linkf: LinkOpen[progname] failed.

LinkConnect::linkc: LinkObject[progname, 1, 1] is dead; attempt to connect failed.

then either the program is not being found, or it is launching and then immediately crashing. If you Install a
program that exists but is not properly MathLink-aware, then Install will hang until you abort it. Install does
not interpret the string you give it, and in particular it does not search the directories on $Path (this behavior may
change in the future). The directories it does search are dependent on factors outside of Mathematica, such as the
operating system and shell. On Unix, for example, the path that is searched is the path inherited by shell processes
launched by the kernel. You may need to give a complete pathname to the program. To make sure that your program is
at least minimally able to run, simply launch it from the command line (under Unix) or by double-clicking it (Macin-
tosh or Windows). You should get a "Listen on:" prompt, which you can dismiss, followed by a "Connect to:" prompt,
which you also dismiss, at which point the program will exit.

If your program passes the above test, but otherwise behaves unexpectedly, then a few simple debugging techniques
will likely pinpoint the error. If the program crashes because of something in your computational code, or if it exits
because you are using MathLink calls incorrectly, you will probably see the following message:

LinkObject::linkd:
 LinkObject[progname, 18, 3] is closed; the connection is dead.

In most cases, there is a simple error in your MathLink code. Most of the MathLink functions return 0 to indicate that
an error has occurred. Go back into your source and insert statements to check the return values of each MathLink
function (start with the reading functions--MLNextPacket, MLNewPacket, and anything with Get in its name).

If you want to run your installable program with a debugger, you will generally need to launch it inside the debugger,
and then establish a connection with Mathematica manually, rather than having Mathematica launch your program

ML_Tut.nb 14

automatically. This issue is discussed in the MathLink Reference Guide, along with an example using the Unix gdb
debugger. The details differ from platform to platform, but the concept is the same. One side of the link needs to open
in Listen mode, and the other side then uses Connect mode to connect to that listening link. Which side does which is
not important; in my example I reverse the roles in the MathLink Reference Guide example. Begin by launching the
program in your debugger. You will get a "Listen On" prompt, to which you give an arbitrary link name (on Macintosh
and Windows, these are arbitrary strings, like myLink; on Unix, they will be numbers, 5000 for example). Now, switch
to Mathematica and type:

link = Install["name", LinkMode->Connect]

where name is the linkname you specified to the "Listen On" prompt. Use string quotes around the name, even if it is a
number (you don't use string quotes earlier, when you reply to the Listen On prompt). Note that Install can take the
same sort of arguments that LinkOpen takes. Here, we give a linkname as the first argument (when we want Mathe-
matica to launch the program, this is just the filename), and specify link options as well.

1.9 Large Projects

The examples so far have all been single functions. They are a good model for the occasional numerical function that
you want to incorporate into Mathematica. The potential for installable functions is much greater, though. You can
create entire packages or sets of packages, implemented in one or more external programs, that effectively "graft" new
capabilities onto the kernel. Some special issues arise when considering larger projects based on installable programs.

First, you will undoubtedly need to write some Mathematica code to go along with your C functions. I suggest writing
"wrapper" functions in Mathematica that perform the handling of options, some processing of arguments and error
checking, and other tasks that are more easily done in Mathematica. These are the functions that are visible to the user,
and they then call private functions that are the ones named in templates and map directly to functions in the external
program. You can develop very sophisticated interactions between the C and Mathematica code.

Through the use of :Evaluate: lines in your .tm file, you can embed your entire package code in the program
source files, so that there is no separate .m file to be loaded. The advantage to this is convenience for users (they can
just Install the program and be ready to go), but the disadvantage is that any modification of the package code
requires that the program be recompiled. Chances are that your users will not be doing this, though, and during develop-
ment you can keep the package code in a separate .m file.

The basic decision is whether you will have the package code embedded in the external program, so what the user
types is Install["progname"], or have a package (.m) file that calls Install within it, so what the user types
is <<Packagename`. The problem with the latter approach is that users need to either: (1) always give the program a
predetermined name and always put it someplace it will automatically be found by Install, or (2) edit the .m file to
reflect what they choose to name the program and the pathname where they put it. The advantage to this approach is
that it makes your program behave more like a seamless extension to the kernel. Specifically, the context-handling
functions will work correctly with it, so that users use Get and Needs with your package name just like any other
package name, and may even be unaware that an external MathLink program is involved. Having written significant
programs that use both approaches, I recommend the second method, writing your package code in a .m file that calls
Install internally.

You can embed C code in a .tm file, and it will be passed along unchanged by mprep. This means that you don't need a
separate .c file, and this is convenient if your code is not long or complicated. In fact, all your code--templates, package

ML_Tut.nb 15

code, and C code--can be included in one .tm file if desired. Here is a sample of the suggested structure of such a .tm
file:

:Evaluate: BeginPackage["MyPackage`"]

 All of the package code is here, in :Evaluate: sections...

:Evaluate: FirstFunction::usage = "FirstFunction does..."

 etc....

:Evaluate: EndPackage[]

 The C code begins:

#include "mathlink.h"

void template_func1() { ...

 etc....

 Templates begin:

:Evaluate: Begin["MyPackage`Private`"]

:Begin:
:Function: template_func1

 etc....

:Evaluate: End[]

If you are writing a commercial-quality program, make sure that your external functions behave as if they were well-
written built-in functions. This means, among other things, that they should be abortable, and they should return
Mathematica-style messages for all errors or warning conditions.

1.10 Special Topics

ü 1.10.1 If You Don't Know the Length of the Result

Notice that you have to specify the number of arguments that will follow in every MLPutFunction call. Sometimes
it is inconvenient to have to know ahead of time the number of arguments that you will send. For example, you might
be running a loop, generating one element of the result list in every iteration, and you don't know ahead of time when
the loop will end. There are a couple of tricks for getting around this problem.

ML_Tut.nb 16

One method doesn't involve MathLink at all--you just allocate enough local storage in your C program to hold all the
elements, counting them as you place them in this storage, and when you are finished you put them on the link in the
usual way. This is relatively easy, except you have to deal with the hassle of memory management in C. You may need
to do a lot of allocating and reallocating memory to hold the result as it grows, and you need to be sure you free it all
before returning.

It would be easier just to send the elements as they are generated. Then you would need to allocate only enough storage
to hold a single element, reusing the same space for each successive element. One way to do this is to create a nested
list wrapped in Flatten. If you think about it, you'll see that you never have to make any promises about the total
number of elements that will appear in the final flattened list. Every sublist contains two elements: an integer (in this
particular example) and another sublist. When all the integers you need have been sent, you send two empty lists (to
fulfill the final promise of two arguments), which will be obliterated by the Flatten. The expression that is sent
might look like Flatten[{1,{2,{3,{4,{{},{}}}}}}], which evaluates to {1,2,3,4}. It's actually a bit
more complicated, since if you send a list that is nested too deeply, you will hit Mathematica's $RecursionLimit,
and trigger an error. The way around this is to temporarily set $RecursionLimit to Infinity, which is best done
by localizing its value in a Block. Thus, the actual Mathematica code you will send will look like:

 Block[{$RecursionLimit = Infinity},
 Flatten[{1,{2,{3,{4,{{},{}}}}}}]
]

The sequence of MathLink calls to send this is straightforward:

 MLPutFunction(stdlink, "Block", 2);
 MLPutFunction(stdlink, "List", 1);
 MLPutFunction(stdlink, "Set", 2);
 MLPutSymbol(stdlink, "$RecursionLimit");
 MLPutSymbol(stdlink, "Infinity");
 MLPutFunction(stdlink, "Flatten", 1);
 MLPutFunction(stdlink, "List", 2);
 while(not_finished) {
 /* Here is the computation that generates the elements of the
 result. This would probably be the main computational section
 of your function. */
 i = generate_next_element();
 MLPutInteger(stdlink, i); /* or whatever the list elements are */
 MLPutFunction(stdlink, "List", 2);
 }
 MLPutFunction(stdlink, "List", 0);
 MLPutFunction(stdlink, "List", 0);

This may look complicated, but it's just "boilerplate" code that can be pasted into your program where necessary.

If the elements of the result list are themselves lists, then Flatten will not work since it will flatten out the sublists as
well. You can use Level instead in this case. Level[listOfLists, {-2}] extracts those expressions of depth
2 from the nested list, which is what you want if the elements of the outer list are simple lists. If they are matrices, use
{-3} as the Level specification, since a matrix has depth 3.

This is an interesting example because what you send back to Mathematica is in effect a "program", the execution of
which produces the results. Of course, every Mathematica expression is a "program" and vice-versa, but it is a conceptu-

ML_Tut.nb 17

ally useful mental leap here. There are lots of other programs you can send that will evaluate to the desired list (a
method similar to the above could be based on Join), and you can even do something as fancy as sending back a
program that itself reads from the link, collecting the elements until it reads an "END" marker. Once you start thinking
in these terms, a wealth of sophisticated interactions become possible.

Another method for dealing with the problem of not knowing ahead of time how many elements will be in the result
list involves the use of a "loopback link", and it is described in the next section. This method is the most elegant and
probably the most desirable, except in cases where the speed of the MathLink transfer is the most important
consideration.

ü 1.10.2 Loopback Links

Beginning in Version 2.2 of Mathematica, a new link mode was introduced--the "loopback" mode (joining Launch,
Listen, and Connect). This link type is quite useful, but underused by MathLink programmers. Brief documentation for
loopback links can be found in the Major New Features of Mathematica Version 2.2 document.

A loopback link is a link that "points back" at you. You both write to and read from it. You can think of it as a
U-shaped track onto which you can place expressions for storage and later examination or retrieval. If you think about
it, you'll see that loopback links effectively give the C progammer a Mathematica expression "type".

There are a lot of interesting things you can do with loopback links, but I will focus on one application of great use in
installable programs. This is to solve the problem discussed in the previous section: how to send an expression (like a
list) back to Mathematica when you don't know in advance how many arguments it will have. The loopback link
provides a very simple solution--as you generate the elements of the result list, put them on a loopback link, not the
link back to the kernel, counting them as you go. Then when it comes time to send them to Mathematica, you know
how many there are, and you can specify this when you use MLPutFunction to put the enclosing List.

The loopback link method for solving this problem has an additional advantage over the nested list method mentioned
in the last section. It may be that during the generation of the result list you encounter an error condition or some other
circumstance where you no longer want to send the list at all (you might want to send the symbol $Failed instead,
and you might want to trigger an error message). If you are putting the result on a loopback link, you don't send
anything to the kernel until the computation is finished, and you can decide at that time to send whatever you want.

You open a loopback link in the usual way, except you specify "loopback" as the linkmode. Let's look at a complete
function that returns a list of integers to Mathematica by first placing them on a loopback link.

 void foo(void) {

 int i, num_elements;
 char loopback_argv[3] = {"-linkmode", "loopback", NULL};
 MLINK loopback;

 loopback = MLOpen(2, loopback_argv);
 if(!loopback) {
 /* might want to issue a message as well */
 MLPutSymbol(stdlink, "$Failed");
 return;
 }

ML_Tut.nb 18

 num_elements = 0;
 while(some_test) {
 i = generate_next_element();
 MLPutInteger(loopback, i);
 num_elements++;
 }

 MLPutFunction(stdlink, "List", num_elements);
 for(i=1; i<=num_elements; i++) MLTransferExpression(stdlink, loopback);

 MLClose(loopback);
 }

Note the use of MLTransferExpression to move the integers from the loopback link to the kernel link. This
function is described in the Major New Features of Version 2.2 document. It provides a very convenient means for
moving expressions from one link to another, since you don't need to be concerned with the exact structure of each
expression. The destination link is given first, the source link second.

The above method is similar to storing the integers in memory allocated and maintained by you in your C program. The
advantage of using a loopback link is that you let MathLink deal with all the memory-management issues. There are no
calls to malloc, realloc or free, or checks for writing past the end of your allocated storage. Memory manage-
ment would not be difficult in the case of a list of integers, but if you were accumulating a list of strings or functions, it
would be a big chore, with many possibilities for memory leaks and other bugs.

I cheated a bit, though, in not checking for errors in the MLPut calls onto the loopback link. An MLPut might trigger a
memory allocation inside MathLink, which could conceivably fail. You don't really need to worry about this when
writing to stdlink, the link to the kernel, because that link is being drained by the other side as you pour data into it.
A local link will require enough memory to hold all the data at once, so you should check for errors in the MLPut calls
if you are storing a lot of data.

ü 1.10.3 Making Your Function Abortable

If your function takes significant time to execute, you will want to make it abortable. That is, when the user types the
usual abort key sequence (Control-C in Unix, Command-period on Macintosh, etc.), the function should terminate as
quickly as possible and return something appropriate.

To understand how this is done, you need to know that a link actually contains two separate "channels" of communica-
tion. One channel is for the expressions being sent back and forth, and the other one is for urgent messages that need to
be sent out of sequence with the flow of expressions. Examples are requests to interrupt or abort execution. This
second channel is the one that is managed by the "Message" functions in MathLink: MLPutMessage, MLGetMes-
sage, and a few others. Don't confuse these with the MLErrorMessage function (which returns a string describing
an internal MathLink error), or the familiar Mathematica error messages.

Normally, programmers writing installable functions don't need to worry about the low-level details at all. Handling
messages from the kernel is performed in code that mprep writes for you. All you need to know is that there is a global
variable MLAbort in installable programs whose value will reflect whether or not the user has requested that the

ML_Tut.nb 19

function be aborted. If you are running a time-consuming loop, you should periodically check the value of MLAbort.
If it is non-zero, then you should bail out as quickly as possible.

What should your function return to Mathematica if the user aborts the evaluation? A quick answer might be the
symbol $Aborted. Indeed, this is what the MathLink Reference Guide suggests, and this is what your function will
return if you do not use Manual as the return type in the template, because then it is the mprep-generated code that
takes care of sending the final answer to Mathematica. That code checks the variable MLAbort, and if it is set,
$Aborted is sent no matter what your function returns.

However, sending $Aborted is probably not the ideal behavior. After all, when the user aborts a calculation that does
not involve an external function, the entire evaluation aborts, and $Aborted is returned as the Out[] value. It is not
the case that whatever function was executing at the time the abort was requested returns $Aborted. That is, if you
evaluate f[g[x]], and you abort during the execution of g[x], you don't get f[$Aborted] as the result. Unfortu-
nately, if g was an external program that returned $Aborted, this is what you would get. If you're writing a program
that involves calling external functions, you don't want to worry that an expression deep inside your code is going to
evaluate to $Aborted instead of something meaningful simply because the user tried to abort at an inopportune time!

 While the external function is executing, Mathematica captures abort requests and sends them to the function as
MathLink messages. As a MathLink programmer, if you want your functions to behave like built-in ones, it is your
responsibility to "propagate" the abort request back to Mathematica's normal abort-processing mechanisms, which are
restored when the external function returns. You do this by returning not the symbol $Aborted, but rather the
function Abort[]. If you return Abort[], then Mathematica will halt the entire evaluation no matter how deep
inside it, just like it does with programs written entirely in Mathematica.

The fact that the abort behavior of mprep-generated code is not ideal is another reason to routinely use the Manual
return type and put the result to Mathematica yourself.

Earlier, I said that all you need to know is that there is a global variable MLAbort in installable programs. This isn't
strictly true, however--there is one more detail you need to be aware of. On systems without preemptive multitasking
(Macintosh and Windows), your function needs to yield the processor so that the kernel has a chance to actually send
the abort message to you. You could write calls to an appropriate function depending on the platform (e.g., on Macin-
tosh, call WaitNextEvent), but there is an easier solution that will keep your code portable between systems.
MathLink supports something called a yield function, which is discussed more fully in Section 2.5.2. For now, simply
note that template programs define and install a yield function (it is written by mprep) that calls the appropriate func-
tion to yield the processor temporarily to other programs. Therefore, you can simply call the yield function periodically
during your calculation.

Note that many MathLink functions call the yield function themselves internally (including the Put-type calls). There-
fore, you don't need to worry about calling the yield function if you are making MLPut calls during your computation
(for example, if you are putting pieces of the result on the link periodically during your calculation). You need to call
the yield function only if your function doesn't make any MLPut calls before checking the value of MLAbort. You
also don't need to do it if you are running under Unix (but you might want to, for portability reasons).

Here is a skeleton of a template program that performs a long calculation and periodically checks MLAbort. Note that
MLCallYieldFunction is new in Version 2.2.2, and don't worry about what the arguments mean--just copy the
code exactly as it appears below.

 void long_function(void) {

ML_Tut.nb 20

 int result = 1;

 while(some_test && !MLAbort) {
 result = perform_computation(result);
 MLCallYieldFunction(MLYieldFunction(stdlink), stdlink,
 (MLYieldParameters)0);
 }

 if(MLAbort) {
 MLPutFunction(stdlink, "Abort", 0);
 /* Contrast with: MLPutSymbol(stdlink, "$Aborted"); */
 } else {
 MLPutInteger(stdlink, result);
 }
 }

What if you are sending elements of a result list to Mathematica as you go, so that when you detect an abort you have
already sent a partial answer? You cannot "take back" what you've sent and send something else (like Abort[])
instead. However, if you simply call MLEndPacket in the middle of sending an expression (i.e., at a place where
MLEndPacket is illegal), Mathematica will get the symbol $Aborted by default.

In summary, a time-consuming function should periodically check the value of MLAbort. You might need to call the
yield function periodically, to allow the kernel process to send the abort message to you. If you are putting the result
back to Mathematica manually, you should send the function Abort[] and return. If you are not using Manual on
the :ReturnType: line of the template file, then you should immediately return a value from your function (it can be
garbage, since it will not be sent to Mathematica anyway). The mprep-generated code will send $Aborted in its
place. Finally, if you have already sent part of the result by the time you detect the abort, you should just call MLEnd-
Packet, which will cause Mathematica to get the symbol $Aborted by default.

ML_Tut.nb 21

2. Calling the Mathematica Kernel from External Programs

Using MathLink to "install" external programs into Mathematica is very useful, but it only scratches the surface of what
can be done. The real power of MathLink is that you can add the computational and programming services of the
Mathematica kernel to your own programs. MathLink is not just a way to control the kernel, it is the way. When you
use the standard "notebook front end" that ships with Mathematica, you are using MathLink in this way. There is no
privileged communication between front end and kernel--everything takes place via the same open, documented set of
MathLink functions that is available to all programmers.

Using MathLink to drive the kernel is more complex than writing installable functions because you have to write all the
MathLink code yourself, and you will be having more complicated interaction with the kernel.

It is important to remember that you do not use the kernel as if it were a compiled library of mathematical routines.
Rather, you are interacting with a separate program that has its own thread of execution. You will be running the kernel
in so-called "mathlink mode", which means that all the kernel's input will come from your program, all its output will
be directed to your program, and all communication will take place in the form of "packets". You have to know the
proper way to send expressions to the kernel, what type of results to expect back, and how to read them off the link.

Two useful resources you might not be aware of are available on MathSource. The first is the Macintosh program Link
Tutor, written by this author, which gives you a point and click interface for executing MathLink functions. You can
execute MathLink functions one at a time in an interactive session and see the results. It is a good tool for learning what
types of packets the kernel will send you under certain conditions, in what order, and what their contents are. The other
resource is frontend.c, a small C program that implements a more or less complete terminal-like interface to the kernel.
This is a good place to see code for reading out the contents of all of the packet types you might get from the kernel.

2.1 A Simple Program

Let's look at a simple example of a program that uses the kernel for computation. This program will launch the kernel,
have it calculate the sum of two integers, then close it and quit. We will look at these specific programming techniques
in detail later; for now note the general idea and how simple it is.

 #include <stdio.h>
 #include "mathlink.h"

 int main(int argc, char * argv[]) {

 int i, j, sum;
 MLINK lp;
 int pkt;
 MLEnvironment env;

 printf("Enter two integers:\n\t");
 scanf("%d %d", &i, &j);

 env = MLInitialize(NULL);
 if(env == NULL) return 1;
 lp = MLOpen(argc, argv);

ML_Tut.nb 22

 if(lp == NULL) return 1;

 /* Send Plus[i, j] */
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, i);
 MLPutInteger(lp, j);
 MLEndPacket(lp);

 /* skip any packets before the first ReturnPacket */
 while (MLNextPacket(lp) != RETURNPKT) MLNewPacket(lp);

 /* inside the ReturnPacket we expect an integer */
 MLGetInteger(lp, &sum);

 printf("sum = %d\n", sum);
 MLClose(lp);
 MLDeinitialize(env);
 return 0;
 }

2.2 Opening a Link to the Kernel

ü 2.2.1 MLOpen

The MathLink function that opens a link is MLOpen. There are a lot of details about how links are opened, what
protocols are used, and so forth, that are treated in the MathLink Reference Guide. I will just briefly discuss some of the
main points. You can use MLOpen to launch the kernel directly from your program, and this is probably what you will
most often want to do. MLOpen takes an argc/argv pair of arguments, like the main function of a C program. This
is so you can pass the argc and argv originally passed to your program directly into MLOpen, allowing the user to
specify arguments for the link when they launch your program. MLOpen will ignore command line arguments that do
not make sense to it, so you don't have to worry about interference from arguments that you want your own main
function to use. A typical Unix command line to launch a program that will itself launch a kernel might look like this:

 myprog -linkname 'math -mathlink' -linkmode launch

Note that 'math -mathlink' must be quoted so that it is sent to MLOpen as a single argument (the -mathlink is an argu-
ment to math, so in effect there is a command line within the command line). Alternatively, you can just hard-code the
argv array in your program like this:

 int argc = 4;
 char *argv[5] = {"-linkname",
 "math -mathlink",
 "-linkmode",
 "launch",
 NULL};

ML_Tut.nb 23

The advantage of allowing the user to specify the link options on the command line is that they might want to use a
linkmode other than 'launch', or perhaps they will need to specify a different name for the kernel program than just
'math'. Of course, you can query the user for link arguments through prompts or a dialog box if you wish, instead of
reading the command line.

The above example was typical for Unix. On the Macintosh, the link name will normally look a bit different, perhaps
the following:

 int argc = 4;
 char *argv[5] = {"-linkname",
 "'Hard Disk:Math 2.2:Mathematica Kernel' -mathlink",
 "-linkmode",
 "launch",
 NULL};

Notice the very important inner set of single quotes around the pathname. Because Macintosh folder and file names can
have spaces in them, it is important that the pathname be enclosed in single quotes so it is seen inside MLOpen as a
single string, not separate chunks broken up by spaces.

In Windows, don't forget that C treats the '\' character specially in string constants. If you are embedding filenames into
your code, make sure you use two consecutive '\' to indicate a directory separator, as in this example:

 int argc = 4;
 char *argv[5] = {"-linkname",
 "c:\\wnmath\\math -mathlink",
 "-linkmode",
 "launch",
 NULL};

ü 2.2.2 MLConnect

If MLOpen fails, it will return NULL. However, the fact that MLOpen returns non-NULL does not mean that the link is
connected and functioning properly. There are a lot of things that could be wrong. For example, if you launch a pro-
gram that knows nothing about MathLink, the MLOpen will still succeed. There is a difference between opening a link
(which involves setting up your side) and connecting one (which verifies that the other side is alive and well).

If the link cannot be connected, then the first MathLink call you make that tries to read or write something will fail, or
worse, hang indefinitely. Rather than put some special-case test on your first reading or writing function (which may be
physically quite distant in your code from the MLOpen call), you might want to call MLConnect after MLOpen.
MLConnect will try to connect the link without actually reading or writing anything, and it's a convenient, self-docu-
menting way of ensuring that the link is functioning properly before proceeding with your program. MLConnect takes
a link object as its argument, and returns non-zero to indicate a successful connection.

It's important to note that the MLConnect function will block until the connection succeeds or until it detects a fatal
problem with the link. Thus, your program will hang during the startup time of the kernel (if you call MLConnect
immediately after MLOpen). A more serious problem is that if the user mistakenly launches a program that is not
MathLink-aware, MLConnect will block indefinitely. Dealing with blocking in MathLink functions is discussed more
thoroughly later, but for now note that there are two strategies: installing a yield function or polling MLReady. The use

ML_Tut.nb 24

of MLReady deserves special comment in the present context. Before the link is connected, MLReady has a special
meaning: it tells whether the other side is ready to participate in a connection. In other words, it tells whether MLCon-
nect will block or not. Thus, before you call MLConnect, you can repeatedly call MLReady, waiting for it to return
TRUE, and perhaps bail out of the attempt to connect after some period elapses.

ü 2.2.3 Using Listen and Connect LinkModes

You do not have to launch the kernel in your program. If it is already running, users can establish a connection to your
program manually. This is done using the Listen and Connect link modes. One side must open a link in Listen mode,
and the other opens a link with Connect mode, specifying the listening link to connect to. For example, your program
can open a listening link, announcing to the user what "name" is being broadcast (or letting the user pick a name), and
then the user can manually connect to that link from Mathematica. For example, if you opened a link on a Macintosh
with this argv array:

 char *argv[5] = {"-linkname",
 "myLink",
 "-linkmode",
 "listen",
 NULL};

then the command in Mathematica to connect to that link would be the following:

LinkOpen["myLink", LinkMode->Connect]

At this point, the connection will be established so that expressions can be read and written on each end, but the kernel
is still functioning in its normal interactive mode; it has not become a "slave" to your program (it is not yet in "mathlink
mode"). To point the kernel's attention toward your program, you need to set the kernel's $ParentLink variable to
be the link to your program:

$ParentLink = %;

(* or, just do it in one line:
 $ParentLink = LinkOpen["myLink", LinkMode->Connect]
*)

When you use the Launch linkmode, all this is taken care of for you.

As an experiment, some time when you are using the front end, type $ParentLink = Null. This will "unattach"
the master/slave relationship between front end and kernel. On Macintosh or Windows, you will see the kernel's
terminal-interface window appear in the background. Switch to it, and you will see that you can now interact with it as
if you had launched it by itself, instead of from the front end. In the kernel window, type $ParentLink = First[-
Links[]] (this will point $ParentLink back at the link to the front end, which is still open). Switch back to the
front end, and you should be able to continue with your session.

ML_Tut.nb 25

ü 2.2.4 MLInitialize and MLDeinitialize

In the sample program above there is a call to MLInitialize before the link is opened. Starting with Version 2.2.2,
all correct MathLink programs must call MLInitialize before making any MathLink calls, and MLDeinitial-
ize after closing all opened links. MLInitialize and MLDeinitialize have never been documented before
Version 2.2.2, so it is likely that all existing MathLink programs do not call them. Does this mean that every existing
MathLink program is suddenly broken when built with version 2.2.2 of the MathLink libraries? Technically yes, but in
practice there will rarely be a problem. If you are the author of a MathLink program that you distribute in source code
form, you should update the code to call these two functions. If you are currently writing a program, make sure it calls
them (this change is backward compatible with older versions of MathLink).

Note that this is not a concern when writing "installable" functions (treated in the first chapter of these notes). With
installable functions, the mprep tool writes most of the MathLink code, including calls to MLInitialize and
MLDeinitialize.

Here is how to use them. Declare a variable of type MLEnvironment and assign it the return value from MLInitial-
ize. Then pass this variable to MLDeinitialize before your program exits.

 MLEnvironment env;

 ...

 env = MLInitialize(NULL);
 if(env == NULL) clean_up_and_exit();
 link = MLOpen(....);

 ...

 MLClose(link);
 MLDeinitialize(env);
 return;

2.3 Sending Expressions to the Kernel

The things you send with MathLink are Mathematica expressions, not just strings or numbers or some other limited
type. Since everything in Mathematica is an expression, you have its full power and expressiveness at your disposal.
There are two classes of expressions in Mathematica: "atomic" expressions, which have no subparts (these are strings,
symbols, and numbers), and "composite" expressions, which have a head and zero or more arguments. Composite
expressions are things you would write with square brackets, such as f[], h[x, y], {1,2,3} (which is a shorthand
for List[1,2,3]), 2+2 (which is a shorthand for Plus[2,2]), and Integrate[x^2, {x,0,1}]. There are
MLPut functions for the necessary atomic types (MLPutString, MLPutSymbol, MLPutInteger, etc.), and for
composite expressions you use MLPutFunction. You send expressions using these MLPut calls in a way that
mirrors their FullForm representation in Mathematica. Thus, to send the expression {1.23, f[x], {5, "a
string"}}, you would say:

ML_Tut.nb 26

 MLPutFunction(link, "List", 3);
 MLPutReal(link, 1.23);
 MLPutFunction(link, "f", 1);
 MLPutSymbol(link, "x");
 MLPutFunction(link, "List", 2);
 MLPutInteger(link, 5);
 MLPutString(link, "a string");

If you aren't sure what sequence of calls is required for some expression, just launch Mathematica, type in FullForm[-
Hold[expression]], and the output can be translated directly into the appropriate calls. Ignore the Hold that will
be wrapped around the output--it is included merely to prevent the expression from evaluating (you want to see the
FullForm of the original expression, not of what it evaluates to).

I mentioned earlier that when the kernel is in "mathlink mode", it sends all results in the form of packets, and expects
all input in packets. (The use of the term "packet" here should not be confused with the concept of packets that might
exist in some low-level communication protocol; TCP/IP packets, for example. The MathLink programmer need have
no concern over such low-level issues.) MathLink packets are simply functions, "heads" that serve to convey to the
receiving side of the link some information about what to do with the contents. When the kernel sends back the result
of computing 2+2, it sends back the answer wrapped in the do-nothing function ReturnPacket:

ReturnPacket[4]

The ReturnPacket wrapper tells your program that the content is the result of an evaluation.

ü 2.3.1 Packets for Sending Things to Mathematica

Everything that you send to the kernel should be wrapped in a packet head. There are three packet types for sending
things to the kernel.

ü The Mathematica "main loop"

To appreciate the difference between the various packets, you need to understand the concept of Mathematica's "main
loop". When you use Mathematica in the usual way, each input string you type is fed through a main loop that begins
with parsing the string into an expression, evaluating the expression, and finally turning the resulting expression back
into a string for printing to the screen. An accounting of the steps in the main loop is given in Appendix A.7.3 of The
Mathematica Book. The steps include application of the $PreRead, $Pre, $Post and $PrePrint functions, and
most importantly, assigning the In and Out values.

The main loop is designed to implement the notion of an interactive "session", with a history of inputs and outputs
recorded in the In and Out values. For your use of the kernel, such a notion may be superfluous. If you are just using
it for computational services, you may have no reason to want a running history of previous inputs and outputs. In this
case, you want to circumvent all the steps in the main loop except the actual evaluation of the expression. On the other
hand, if you are creating your own front end that a user interacts with, you mght want to display the In and Out
prompts, or at least provide a way to recall previous input and output.

The three packet types differ in the form of their contents, the form of the results returned the kernel, the number and
type of packets you will get back, and whether the main loop will be run.

ML_Tut.nb 27

As an example, if the main loop is run, you will always get an InputNamePacket, and perhaps also an Output-
NamePacket, with each evaluation.

ü EvaluatePacket

The contents of an EvaluatePacket are an arbitrary Mathematica expression, which will be evaluated and the
result sent back to you as an expression wrapped in ReturnPacket. The main loop is circumvented.

Here is how you would send 3+3:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, 3);
 MLPutInteger(lp, 3);
 MLEndPacket(lp);

You may have seen or written MathLink code that did not explicitly use a packet head for sending things. In the past, if
you left off a packet head, EvaluatePacket was assumed. Be aware that this behavior is no longer supported;
always use a packet head and an explicit call to MLEndPacket. Note that there is no "MLPutPacket" for sending
the packet head--since packets are just functions, MLPutFunction is used.

Building up complicated expressions with a series of these calls is straightforward, but it can be very tedious. Another
way to send something to Mathematica is as an input string wrapped in the ToExpression function:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "3 + 3");
 MLEndPacket(lp);

For sending 3+3 this isn't any easier, but for something like Plot3D[Sin[x] Cos[y], {x,0,2Pi},
{y,0,2Pi}] it saves a lot of code. You should use this method whenever it is more convenient to send code as a
string (for example if you know it at compile time, or if you are reading the input from a file or keyboard).

Keep in mind that what you are sending to the kernel is Mathematica code in all its generality. Anything that's possible
to type into a Mathematica session can be sent via MathLink. It may be a bit clumsier to create expressions with
sequences of MLPut calls, but keep separate in your thinking the code you want the kernel to execute and the details of
"assembling" that code in your C program.

Say you want not only to send the code as a string, but also to receive the result as a formatted string, exactly as it is
displayed in a normal interactive Mathematica session. You would do this if you wanted to display the result to the
user (i.e., with all the complicated line-breaking logic for having multi-line expressions formatted properly). You need
merely ask yourself how you would write Mathematica code that would take a string, turn it into an expression,
evaluate it, and then turn the result back to a string. That code is simply

ToString[ToExpression["the string"]]

The series of functions to assemble this expression and send it from your C program follows directly:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToString", 1);

ML_Tut.nb 28

 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, my_string);
 MLEndPacket(lp);

ü EnterTextPacket

The contents of an EnterTextPacket must be a string, which will be sent through the entire main loop, beginning
with parsing as Mathematica input. The result of the evaluation will be sent back to you as a formatted string wrapped
in a ReturnTextPacket. Since the main loop is run, you will also get an InputNamePacket, and possibly an
OutputNamePacket. You will not get an OutputNamePacket if the calculation returns Null (because Mathe-
matica doesn't give output prompts for Null return values). Note that the last thing you will get is the InputName-
Packet, because it is the prompt for the next input, not the one you just sent. In other words, the signal that Mathemat-
ica is finished dealing with your last input is the arrival of an InputNamePacket. EnterTextPacket is not
discussed in the MathLink Reference Guide, but causes the same behavior as using the Enter function, and this
function is documented. That is, the following two fragments are equivalent:

 MLPutFunction(lp, "EnterTextPacket", 1);
 MLPutString(lp, "2 + 2");
 MLEndPacket(lp);

 /* OBSOLETE... */
 MLPutFunction(lp, "Enter", 1);
 MLPutString(lp, "2 + 2");
 MLEndPacket(lp);

The use of Enter is now obsolete. Always use EnterTextPacket instead.

EnterTextPacket is what Wolfram Research's own front ends use for sending user input (which is nothing more
than a string of characters when typed in) to the kernel. In future versions of Mathematica this may change, but the
point is that if you want to implement an interface that is similar to what the standard front ends present (accept user
input as a string and print out formatted output as a string, with prompts), you can send input to the kernel as a string
wrapped in EnterTextPacket. It is possible to implement a primitive interface that looks very much like the
kernel-only "terminal interface" with just a small number of lines of MathLink code by using EnterTextPacket,
which is exactly what is done in frontend.c example program, available on MathSource.

ü EnterExpressionPacket

EnterExpressionPacket is like EnterTextPacket in that the main loop is run, except that the contents of an
EnterExpressionPacket must be an expression, not a string to be parsed as code. Furthermore, the result is sent
back to you as an expression wrapped in a ReturnExpressionPacket.

 MLPutFunction(lp, "EnterExpressionPacket", 1);
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, 2);
 MLPutInteger(lp, 2);
 MLEndPacket(lp);

Actually, when you use EnterExpressionPacket, only a subset of the main loop is run. There are some steps at
the beginning of the main loop that occur before the input string is parsed into an expression (application of the $Pre-

ML_Tut.nb 29

Read function is an example). With EnterExpressionPacket, you in effect bypass the parsing step because
what you send is already an expression. Similarly, there is a step at the end of the main loop that converts the result
expression to a string for display on the screen (the application of the $PrePrint function). This step never occurs
with EnterExpressionPacket, since what is sent back is the result still in the form of an expression.

ü Summary of Packet Types for Sending to the Kernel

There are only three packet types: EvaluatePacket, EnterTextPacket, and EnterExpressionPacket.
These packet types differ in whether their contents are to be an expression or a string, whether their results are to be
returned as an expression or a string, and whether they implement the kernel's so-called "main loop".

The one you choose will depend on the answers to the following questions:

Do you want the main input/output loop to be run?

Ask yourself whether you or your users will ever need to refer directly to previous input or output. If the answer is no,
then use EvaluatePacket for sending things to the kernel, which bypasses the main loop. If the answer is yes, then
use EnterTextPacket or EnterExpressionPacket (the "Enter" in their names conveys the property of
running the main loop).

Do you want to send input as a string or as an expression?

As mentioned earlier, if you are letting users type input for the kernel, or if you know at compile time some code you
want to send, it is easiest to send the code as a string. If you will be using an EvaluatePacket (based on your
answer to the previous question), you can send a string as follows:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "some string of Mathematica code");
 MLEndPacket(lp);

If you have decided that you want the main loop, you will be using EnterTextPacket or EnterExpression-
Packet, and the choice between these is whether you want to send a string or an expression.

Do you want to receive output as a string or as an expression?

If you are using EvaluatePacket and want to get the result back as a string, use this:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToString", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "some string of Mathematica code");
 MLEndPacket(lp);

If you use EnterTextPacket the result will always be a string, and with EnterExpressionPacket, it will be
an expression, although you can force the result expression into a string in the same way as with EvaluatePacket,
by wrapping the input expression with ToString when you send it:

ML_Tut.nb 30

 MLPutFunction(lp, "EnterExpressionPacket", 1);
 MLPutFunction(lp, "ToString", 1);
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, 3);
 MLPutInteger(lp, 4);
 MLEndPacket(lp);

2.4 Receiving Expressions from the Kernel

ü 2.4.1 Reading Packets: MLNextPacket and MLNewPacket

Everything the kernel sends to you will be wrapped in a packet. As mentioned earlier, packets are just functions from
the kernel's perspective. Their purpose is to convey to you information about what is inside, whether you might be
interested in it, and how to read it. You can read packets with MLGetFunction if you want to, but this would be
inconvenient. Instead, MathLink has two special functions for manipulating incoming packets: MLNextPacket and
MLNewPacket. Their names are confusingly similar, but their actions are quite different. Think of packets as boxes,
and the kernel as sending you a stream of boxes on a conveyor belt. MLNextPacket opens a box, whereas MLNew-
Packet discards an already-opened box. Once you have opened a box with MLNextPacket, you must either read
out its entire contents, or abandon it with MLNewPacket. It is an error to call MLNextPacket at any time other than
when you are "between" boxes, either because you have completely emptied the last one or because you threw it away
with MLNewPacket. MLNewPacket has only one effect--to abandon already-opened boxes. If you call it between
boxes, it does nothing. That is important to remember because it means it is always safe to call MLNewPacket more
than once. If you encounter a condition where you know you are not interested in any data that might be left in a
packet, or you want to make sure that you are currently between packets, you can call MLNewPacket without worry-
ing if it has already been called.

MLNextPacket returns one of a set of predefined integer constants to indicate the type of packet that was opened.
These constants are defined in mathlink.h, and have names like RETURNPKT, RETURNTEXTPKT, INPUTNAMEPKT,
etc. If you are implementing a sophisticated "front end" for the kernel, you will typically have a switch statement in
your main loop that tests the value of MLNextPacket and branches to code appropriate for reading the contents of
the various packet types. You will need to do this if you are allowing the user to enter arbitrary Mathematica code, so
you need to be prepared to receive virtually any kind of packet type. For example, the user might execute the Input-
String function, which prompts for an input from the user. If this happens, your program will receive an Input-
StringPacket from the kernel, which is a signal that you need to display a dialog box or other prompt to get input
and then send back a TextPacket with the reply. The InputString function is rarely used, of course, and most of
the time you'd only be sending and receiving a handful of common packets, but if you are going to give the user a way
to enter Mathematica code you need to be prepared for anything. An excellent reference for handling the entire set of
packets is the frontend.c sample program, which can be found on MathSource.

For many uses, though, you are only interested in some limited interaction with the kernel (like using it strictly for
computational services), where you know the types of things you will be sending, or at least where you know the types
of results you are interested in (e.g., you don't have to worry about displaying kernel messages, or the results of Print
statements, or graphics). In these cases, you will simply be discarding most packets. Typically, you will only be
interested in one packet type, the result of a computation, which will usually be a ReturnPacket (depending on how
you sent the computation in the first place, as discussed in Section 2.3). This is what was done in the example program

ML_Tut.nb 31

in Section 2.1. In this case, you want to implement the logic, "for every packet that is not a ReturnPacket, throw it
away". That is coded as follows:

 while (MLNextPacket(link) != RETURNPKT)
 MLNewPacket(link);
 read_contents_of_ReturnPacket();

That little piece of code is responsible for more MathLink programming headaches than anything else! That's because it
appears throughout the sample programs, so people copy it verbatim into their own programs without really being
aware of its consequences. Specifically, they use it in situations where a ReturnPacket will not be coming. What
happens then? Well, you drain off all packets waiting for a ReturnPacket, then call MLNextPacket, which will
block forever, so your program hangs.

Therefore, it is extremely important to be sure that you actually will be getting a ReturnPacket before you use this
code fragment! Typically, people encounter this error for one of two reasons: they get out of sync with the incoming
packets, so that they have already discarded the ReturnPacket by the time the loop is entered; or, they send computa-
tions to the kernel wrapped in EnterTextPacket (or, equivalently, they wrap it in the function Enter), which
causes results to come back in a ReturnTextPacket, not a ReturnPacket. The latter issue is discussed in
Section 2.3; for now I'll assume you are sending an EvaluatePacket (if you will be getting a ReturnText-
Packet, just substitute that for ReturnPacket in this discussion).

If your program is hanging unexpectedly, it is almost a certain bet that it is hanging in MLNextPacket because you
are looping waiting for a packet type that will never arrive.

Another potential problem is that you have done something to cause a MathLink error before the loop is entered. In
that case, MLNextPacket (like most MathLink functions) will return 0 until the error condition is cleared with
MLClearError. A simple way to avoid this problem is to use the following packet-reading loop instead:

 while ((pkt = MLNextPacket(link)) && pkt != RETURNPKT)
 MLNewPacket(link);
 if(!pkt) {
 handle_error(link); /* including calling MLClearError(link) */
 } else {
 read_contents_of_ReturnPacket();
 }

Finally, it is often the case that you don't even care what is in the ReturnPacket. For example, if you send a defini-
tion to Mathematica like f[x_] := x^2, then you will get back a ReturnPacket that contains the symbol Null
(many users are not aware that an expression of this type returns something, because there is no Out line printed).
Another example is if you read in a package with Get--the return value of Get is the symbol Null. If you don't want
to read the ReturnPacket, throw it away with a final call to MLNewPacket:

 MLPutFunction(link, "Get", 1);
 MLPutString(link, "Statistics`NonlinearFit`");

 while ((pkt = MLNextPacket(link)) && pkt != RETURNPKT)
 MLNewPacket(link);
 MLNewPacket(link); /* abandon the RETURNPKT */

ML_Tut.nb 32

The second most common MathLink error is to forget to drain off the ReturnPackets from code that you send,
especially "initialization" code you send before your real work begins. If you forget to run the "throw away everything
up to and including the next ReturnPacket" loop, then later when you read a ReturnPacket that you expect to
have the result of the first "real" computation, you will instead be getting a ReturnPacket from something sent
earlier. Remember that everything you send will cause a ReturnPacket to be sent back, even if just contains the
symbol Null.

ü 2.4.2 Packets Mathematica Might Send to You

There are quite a few packet types that Mathematica might send to your program. Generally, if you are not allowing a
user to directly interact with Mathematica (so you as the programmer have control over what gets sent), you don't need
to worry about many of them. You either won't get them, or you can just discard them because you are not interested in
their contents. For some of them (e.g., InputNamePacket and OutputNamePacket), whether or not you get
them depends on how you send the input to Mathematica in the first place (see Section 2.3). Here is a brief discussion
of the more important types. Again, I refer you to the frontend.c program for an example of how to handle every one of
the packet types you might get from Mathematica.

ü InputNamePacket, OutputNamePacket

You will get these any time you send something wrapped in EnterTextPacket or EnterExpressionPacket
(you may not always get an OutputNamePacket, as discussed earlier). Their contents are strings, something like
"In[1]:=" or "Out[12]=", which you can print directly to the screen if you want to show the prompts. If you
don't want to show these to the user, you probably should use EvaluatePacket to send the original input, as
explained in Section 2.3, so they won't even be generated.

ü ReturnPacket, ReturnTextPacket, ReturnExpressionPacket

These packets will contain the result of an evaluation. A ReturnTextPacket will contain a formatted string, ready
to be printed directly to the screen (that is, it will have the appropriate line-breaking and padding so that exponents and
fractions will be lined up). A ReturnTextPacket results from sending an EnterTextPacket. In contrast, a
ReturnPacket or a ReturnExpressionPacket will contain an expression, which you will have to read with
an appropriate series of MLGet calls. This is discussed in more detail below.

ü MessagePacket

This packet signals the beginning of a warning or error message generated by the kernel. An example is the following:

Part::partd: Part specification x[[1]] is longer than depth of object.

A MessagePacket will contain two things: first, a symbol (to be read with MLGetSymbol) that is the name of the
function (Part in the above example), then a string that is the "tag" of the message ("partd" above). The Message-
Packet will be followed by a TextPacket that contains the text of the message.

ML_Tut.nb 33

ü TextPacket

This is used for the output of a Print statement, the output of ?Function or Information[Function], and
also the text of a message (see discussion of MessagePacket). The contents will always be a string (to be read with
MLGetString, of course).

ü DisplayPacket

This will hold PostScript code for a graphic, in the form of a string. There may be a series of these, each containing a
piece of the total PostScript. A DisplayEndPacket will signal the last piece of PostScript. How to handle graphics
is discussed elsewhere in this tutorial.

ü 2.4.3 Reading the Contents of a Packet

Once you have "opened" a packet with MLNextPacket and you have decided not to discard it, you need to read out
the contents. This will require some appropriate sequence of MLGet calls. In many cases, the contents of the packet are
something simple, like a string, which can be read with MLGetString. In the case of a ReturnPacket, though, the
contents are an expression, and you may need to implement some expression-reading logic of your own. An example of
this is the function read_and_print_expression from the factorinteger.c example program that is included
with MathLink. The basic idea is to recursively descend into the expression, calling MLGetType for each new element
to find out what MLGet call you will need to read it properly.

If you find yourself embarking on such a project, ask yourself if it is really necessary for you to receive the results as
an arbitrary expression. If you are expecting some simple type of expression, like a number, that is meaningful in a C
program, then fine. But for many applications, there isn't really a whole lot to do with the dismembered expression
pieces you're going to get from the process. Often, what people really want is just a string form of the result, because
they are only going to display it on the screen. If that's the case, send the computation in such a way that you will get
back a formatted string as a result (see Section 2.3).

ü 2.4.4 The "Disown" Functions

MathLink has several functions with "Disown" in their name, for example MLDisownString and MLDisownInte-
gerList. Whenever you use MLGet to receive an object whose size cannot be known at compile time (e.g., a string,
symbol, list, or array), MathLink reads the object into its own memory space and gives you only the address of the data.
For example, in MLGetString, you pass the address of a char* (i.e., a char**), and MathLink stuffs the address
of the string it received into your char*. You don't have to allocate any memory yourself or worry about how big the
data is. At this point, MathLink "owns" the data, and it is waiting for your permission to free the memory that it occu-
pies, which you grant when you call the MLDisown functions. Between the time you call MLGet and MLDisown, you
can only read the data--do not try to modify it in place. If you need to do that, allocate your own memory and copy the
data into it (e.g., using strcpy).

ML_Tut.nb 34

2.5 Blocking, Yield Functions, and All That

When you issue a Get-type call (including MLNextPacket), MathLink will block if there is nothing waiting to be
read from the link. This will cause a problem if you need to do something (like service your user interface) without
interruption. There are three solutions for handling this problem.

ü 2.5.1 MLReady and MLFlush

MLReady returns 0 to indicate that there is no data on the link waiting to be read, and 1 to indicate there is. In other
words, it tells you whether a Get-type call will block. You can use it to check that there is data waiting before you call
a reading function.

 MLFlush(lp);
 if(MLReady(lp)) {
 MLNextPacket(lp);
 ...handle the packet...
 }

Note the call to MLFlush before MLReady. MathLink is buffered, meaning that if you call a Put function, the data is
not necessarily sent right away, but might be held in a buffer instead. Any time you need to ensure that the data is sent
immediately, you can call MLFlush. An example when you might need to do this is if you are sending something to
the kernel that will trigger a side effect, like writing something to a file that your program will read right away.

In the normal flow of writing and reading the link, calls to MLFlush are generally unnecessary, since MathLink
automatically flushes the link at appropriate times. Specifically, if you issue a Get-type call and there is nothing there,
your side of the link will be flushed. MLReady, however, does not flush the link, so it can lie to you in that it is
possible for MLReady to return 0, yet a Get call would not block. This will happen if your side has some data that
when sent will trigger the other side to reply--the Get flushes the link and receives the reply right away. For this
reason, you should always call MLFlush before MLReady.

ü 2.5.2 Let It Block

When MathLink is blocking, it calls what is known as a yield function. A yield function must have two features: (1) it
allows other processes to get processor time (on operating systems like Macintosh and Windows that do not have
preemptive multitasking); (2) it returns 0 or 1 to indicate whether MathLink should continue blocking or bail out of the
read call.

There is a default yield function inside MathLink, the details of which differ from platform to platform. For example,
on the Macintosh, it calls WaitNextEvent to allow other processes to get time. If it didn't yield to other processes,
then the sending side would never get a chance to send anything and your read call would block forever!

You can install your own yield function if you wish, and this provides a solution to the blocking problem. You simply
call back to your main event loop from inside your yield function. When the Get call returns, you process the result,
send something else if you want, and then immediately issue another Get call. Your program can spend most of its life
blocking inside a MathLink function, calling the main event loop to run the user interface or other periodic tasks. Here

ML_Tut.nb 35

is a trivial skeleton of what such a yield function might look like. Note that the second argument to a yield function is
of type MLYieldParameters. This is a reserved argument that is currently used only in MathLink's own default
yield function. You should simply ignore this argument.

 int yield_function(MLINK link, MLYieldParameters yp) {
 one_pass_main_event_loop();
 return 0; /* keep on blocking */
 }

The function you use to install your own yield function is MLSetYieldFunction. The interface to this function has
changed a bit to support some new MathLink platforms (Windows and Power Macintosh). To see how to call it, I
recommend that you look at a .tm.c file generated by mprep (see the first chapter for details). The code generated by
mprep installs its own yield function that works in just the way I've described above (template programs spend their
lives blocking inside MLNextPacket, waiting for the kernel to call them). This will show you the proper way to call
MLSetYieldFunction for your platform and version of MathLink.

Having said this, note that in Versions 2.2.x and earlier of MathLink on Unix, there is a bug that prevents MathLink
from calling your yield function when it is blocking in an MLGet-type call, unless your program receives a Unix
signal. Thus, you will need to set some sort of timer to periodically send yourself a signal, SIGALRM for example.

One final note: MathLink is not fully reentrant, in the sense that you cannot issue a call on a link while another call on
that link is in progress (you can read or write to different links). Therefore, if you allow your user interface to run while
inside the yield function, you must prevent users from doing anything that would trigger a call on the same link. Thus,
before calling the main event loop, you might need to disable some menu choices or other features. You can then
re-enable them before returning from the yield function.

ü 2.5.3 Write a Multithreaded Program

If your operating system and development environment allow you to write multithreaded programs, this is an ideal
solution to the blocking problem. Most operating systems support multithreaded programming, including Macintosh,
Windows NT, the upcoming Windows 4.0, and many flavors of Unix. Simply fork a thread in which the read occurs
and let it block. You carry on other processing in other threads.

2.6 Graphics

When many people think of Mathematica graphics, they think of the PostScript code that is rendered into the image
they see. It is important to remember that a Mathematica graphic is an expression, like everything else in Mathematica.
It might look something like:

Graphics[{Line[{{0,0}, {1,1}}], Point[{.5,.5}],]

The PostScript code is generated as a side-effect of the Display function, and is not an inherent part of the graphics
object.

If you send a command that produces a graphic, say for example:

 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "Plot[x^2, {x,0,1}]");

ML_Tut.nb 36

You will get back a ReturnPacket containing the Graphics object, and also a series of DisplayPackets
containing PostScript (the last one of which is a DisplayEndPacket). If you want to display the graphic you have
two choices: either render the PostScript somehow, or convert the Graphics object into a form that you can render.
This may seem obvious, but many programmers forget that handling the PostScript is not their only option.

It is likely that in the future the PostScipt interpreter that is built into the notebook front end will be spun off as a
separate MathLink program that is callable by programmers. When this happens, it will be easy for MathLink program-
mers to render Mathematica PostScript in their own programs. Until then, though, dealing with PostScript is problem-
atic unless your machine or environment supports PostScript rendering.

You might want to consider dealing directly with the Mathematica graphics expression instead of the PostScript. If you
have a graphics library among your programming tools, you will probably find it is not difficult to convert most
Mathematica graphics into the native functions of your library.

Here are some tips for handling PostScript on various platforms.

ü 2.6.1 Unix

Under Unix, standalone PostScript interpreters have always been part of the Mathematica distribution. You can use
them in the same way as they are used by the non-notebook interface. What you will get is a separate window, not a
part of your program, managed by the PostScript interpreter (e.g., motifps, olps, etc.) To enable this behavior, read in
the appropriate graphics initialization file. On most Unix systems, this will be Motif.m:

 MLPutFunction(link, "EvaluatePacket", 1);
 MLPutFunction(link, "Get", 1);
 MLPutString(link, "Motif.m"); /* NeXT.m on a NeXT */
 MLEndPacket(link);

 /* Now, read and discard packets up to, and including, the next
 ReturnPacket, which will be the return value of the "Get" function.
 It will contain the symbol Null, which is of no interest. */

This imitates what happens when the kernel is run from the Unix command line. When you issue commands that
trigger graphics, you will not get DisplayPackets containing PostScript; rather, a window displaying the graphic
will appear.

ü 2.6.2 Macintosh and Windows

There is currently no supported way to render Mathematica PostScript on these platforms. For Windows, see the
source for the demo Visual Basic front end, which performs this feat.

It is possible to have your program create a skeleton notebook file and write the PostScript to that file. When the file is
opened in the notebook front end, the graphics will be displayed. The frontend.c program demonstrates this.

ML_Tut.nb 37

3. Using Other Languages

3.1 C++

The MathLink library can be called directly from C++ exactly as it is called from C. You don't even need to think about
it. However, there is a complication when writing installable functions, depending on what version of MathLink you
have. The issue is that in some versions of MathLink the C code that is generated by mprep is K&R-style (for compati-
bility with older C compilers), not ANSI-style, and so it will not pass through a C++ compiler. Beginning with Version
2.2.3, mprep has the ability to generate .tm.c files that are legal C++ files (you can rename them .tm.cpp if you wish).
On Macintosh and Windows, this is the default behavior. On Unix platforms, you need to specify a command-line
argument to mprep to have it generate C++-compatible code. This behavior is undocumented and may change in the
future, but for now the argument is -prototypes:

 /math/Bin/MathLink/mprep -prototypes addtwo.tm -o addtwo.tm.c

If you have Version 2.2.2 or earlier, you must use a C compiler on the .tm.c file generated by mprep. You can still code
your external functions in C++ and pass those source files through your C++ compiler. However, note that your
functions are being called from the .tm.c file, and thus from C. C++ provides a mechanism whereby you can inform the
compiler that certain functions will be called from C: the extern "C" declaration. This tells the C++ compiler not
to perform the usual name-mangling.

In summary, if you are not making use of the template mechanism (that is, you will not have a .tm file in your project),
you can call MathLink from C++ without worrying about language issues. If you are using a .tm file, and have Version
2.2.2 or later of the MathLink materials, you also don't need to worry about these issues since you can rename the .tm.c
file .tm.cpp and pass it through the C++ compiler. On Unix, you will need to specify the -proto option to mprep to
enable this. If you have an earlier version of MathLink, you will need to obey these two guidelines:
 -- The .tm.c file must be compiled with a C compiler.
 -- Every C++ function named in the .tm file (and which will therefore be called
 from C) needs to be declared extern "C".

3.2 FORTRAN and Others

The MathLink library is written in C. To create programs that use MathLink, you need to call the functions in this
library. For this reason, and others outlined below, MathLink is easiest to use from C. You can, however, use MathLink
in conjunction with FORTRAN or other languages. This section refers specifically to FORTRAN, but much of the
information is relevant to other languages as well.

As discussed earlier, there are two broad classes of uses of MathLink. The first and most common class of uses is to
make external functions, written in some compiled language like C or FORTRAN, available within Mathematica as if
they were built-in functions. We call such external functions "installable" since they use the Install mechanism to
be made available within Mathematica, or alternatively "template-based" since they involve writing a template file. The
second class of uses of MathLink is to allow your own programs to make use of Mathematica as a computational
engine. It is your program that users interact with, and the services of Mathematica are used in the background. These
two uses of MathLink present different issues and problems to the FORTRAN programmer, so they will be discussed
separately.

ML_Tut.nb 38

ü 3.2.1 Calling External FORTRAN Functions from Mathematica

The mprep program writes C code for a very significant amount of the MathLink-related portions (perhaps all of it) of
an installable program. It is convenient to make use of this template mechanism when you want to call external func-
tions from Mathematica, no matter what language they are written in. This requires that you have a C compiler. You
may not need to know C in any significant sense, because the C code that you write may only be a few lines, and some
of that is "boilerplate" code that is the same for every program and can just be copied out of the MathLink Reference
Guide or the sample programs supplied with MathLink.

You will be creating a C program that needs to call your external FORTRAN function. The exact details of how you
prepare your FORTRAN routine to be called from C depends on details of your FORTRAN compiler, and perhaps also
your C compiler. The difficulty of doing this depends on the types of parameters you need to pass from C to FOR-
TRAN and back. If you only need to pass integers or real numbers, then it may be very simple. It is more complicated
to work with strings and arrays, since their representations differ in the two languages. As a simple example, consider
how you would modify the basic addtwo example. Everything about this example remains the same except the actual C
code for the addtwo function, and the fact that there is now a separately compiled FORTRAN file containing code for
the computation. Here's how the FORTRAN code might look:

 subroutine addtwoF(i, j, k)
 integer*4 i,j,k
 k = i + j
 return
 end

Here's how the addtwo function might look:

 int addtwo(int i, int j) {

 int result;

 addtwoF(&i, &j, &result);
 return result;
 }

The addtwo C code is just a "wrapper" that prepares things for calling the addtwoF function. The & is the
"address-of" operator in C, and it is needed because FORTRAN expects arguments to be passed by reference, not by
value (as is the case with C). Thus, you need to pass to addtwoF not the values of the integers i and j, but the actual
addresses where the values are stored. The FORTRAN code extracts the values from these addresses, adds them, then
stuffs the result at the address of the result variable. On some systems, you may need to put an underscore at the end of
the addtwoF function in the C source, calling it as addtwoF_(&i, &j, &result);

It is also possible that your FORTRAN compiler allows you to specify that parameters to a function will be passed by
value. If this is the case, then you may be able to completely dispense with the C portion of the addtwo function
because your FORTRAN code will be written in a way that it can be called exactly as if it were written in C. The call to
addtwo is made from the code that mprep creates, and of course it writes the addtwo function call as if addtwo
were written in C. If your FORTRAN compiler lets you write FORTRAN that adheres to C's calling conventions, then
you may not need to write any C wrappers around your functions. An example is Absoft FORTRAN, which includes

ML_Tut.nb 39

the VALUE keyword to specify that parameters will be passed by value. Here is what the addtwo code might look like
in such a dialect of FORTRAN:

 integer*4 function addtwo(i, j)
 integer*4 i,j
 VALUE i, j
 addtwo = i + j
 return
 end

In this case, there is no addtwo written in C.

I want to emphasize that different FORTRAN compilers may use different calling conventions, and thus there are many
issues that might need to be resolved. These include what order the arguments are passed in, whether they are on the
stack or in registers, whether the return value is on the stack or in a register, etc.

Whichever of these two methods you choose, remember that you need a C compiler, and that the issue is not how to
call C from FORTRAN, but rather how to call FORTRAN from C. You should consult your FORTRAN compiler's
documentation for information on how to write and compile FORTRAN functions so that they can be called from C.

ü 3.2.2 InterCall TM

There is a commercial product (not from Wolfram Research) called InterCall that simplifies the process of calling
external FORTRAN (or C) functions from within Mathematica. This method uses MathLink only indirectly. InterCall
has many capabilities, and I make no attempt to describe them here. This discussion is not an endorsement of InterCall.
For more information, consult MathSource, which has a lot of InterCall-related materials. Try sending the following
email message to mathsource@wri.com:

 find InterCall

You will get a return mailing of abstracts of items on MathSource pertaining to InterCall. Probably the most useful
item is this one:

0202-587: InterCall(tm) Information Sheet and Abridged Manual (June 1992)
 Author: Terry Robb
 InterCall completely integrates the symbolic capabilities of
 Mathematica with the numeric routines of any external library. You
 can pass a Mathematica function, array, or any other expression as
 an argument to any external routine and InterCall will send the
 correct type of information to that external routine.

 0011: Info.txt Plain-text information sheet (5 kilobytes)

 0022: InterCall.tex TeX version of Abridged InterCall Manual (53
 kilobytes)

 0033: InterCall.ps PostScript version of Abridged InterCall
 Manual (180 kilobytes)

ML_Tut.nb 40

If you want, say, the Info.txt document, send the following message to mathsource@wri.com:

 send 0202-587-0011

ü 3.2.3 Calling Mathematica from a FORTRAN Program

The other class of uses of MathLink is where you write the program that the user interacts with, and use the services of
Mathematica in the background. This requires more in-depth use of the MathLink library, because you will be writing
all the code yourself (opening and closing the link, putting and getting all expressions, checking for and handling
errors, etc.) If you need to make extensive use of MathLink in such a program, it may be easiest to write in C (or at
least write the MathLink-related portions of your program in C). However, since many FORTRAN compilers allow you
to call external functions written in C, it is possible to make MathLink calls directly from a FORTRAN program.
Unfortunately, there are differences in calling conventions and data representations that need to be overcome.

One approach is to write some "glue" code that acts as a wrapper around the MathLink functions and serves to translate
back and forth between FORTRAN and C conventions. (That's what was done in the first example above, although it
was done in reverse--the glue was so that FORTRAN could be called from C.) I suppose it would be possible to write
the glue code in FORTRAN, depending on the capabilities of your FORTRAN compiler, but it would be easiest to
write in C. Either way, if you know enough about C to write this glue, then you'll probably want to just do the whole
project in C. Fortunately, someone else has already written a basic glue library, and it is available on MathSource,
although it has not been updated for a while. I have not used it myself, but I have no reason to believe that it doesn't
still work. To get it, send a message with the following body to mathsource@wri.com:

 send 0205-434

This package provides a C source file that encapsulates a basic set of MathLink calls in such a way that they can be
called from FORTRAN. You compile the file (with a C compiler, of course) to create an external library that provides a
number of functions that you can call from FORTRAN, instead of directly using the functions in the MathLink library
itself.

ML_Tut.nb 41

