
VIDEO-DVM
10-LINES DESCRIPTION

copyright 1997 by Alberto Ricci Bitti
a.riccibitti@ra.nettuno.it

www.geocities.com/CapeCanaveral/Launchpad/3632

Video-DVM is a very cheap DVM that shows how an output as complex as a videocomposite signal
can be generated entirely in software: two I/O pins and three resistors are all the hardware required.
Connected to any TV set it displays voltages, included max and min peaks, using both giant digits and
an analog bar-display . A serial data output for computer data logging is provided, too.

The micro is the Atmel’s AT90S1200, ideally suited for hobbysts thanks to its 512 words flash
memory, public programming protocols, free assembler and simulator available at www.atmel.com.

The circuit is not only a working project but also a guideline for any application using a tv set as giant
display: all the hard work (interrupt driven, time balanced display software) is ready made, letting even
novices to modify the code to build anything ranging from a multimeter to a frequency meter to a game
scoreboard to a watering timer to a video pattern generator to a weight scale to....

Video-DVM
copyright 1997 by Alberto Ricci Bitti

a.riccibitti@ra.nettuno.it
www.geocities.com/CapeCanaveral/Launchpad/3632

"building the Video-DVM can be very instructive, a major characteristic in these days of hyper-
specialized ICs that leave almost nothing to fantasy and exploration..."

Name a few of the most useful characteristics
of microcontrollers and you will name measure,
control, display and connectivity. Add latest
RISC technology with a lightening fast
instruction cycle time (that allows even a video
signal to be generated in real time) and the
capability to be flash programmed without
costly equipments and -et voilà- you have the
Video-DVM, a cheap, funny, giant-size display
volt meter with built in serial interface!

The Video-DVM displays voltages on your TV
screen, both with giant digits and analog-bar;

records maximum and minimum peak; it also
sends measured data to a personal computer
through a serial interface.
It sports :

• An analog input capable to measure
voltages in the range 0..4 V;

• A video display output capable to direct
drive any ordinary TV set via the SCART
(VCR) input;

• A serial data output, to log data on a
personal computer;

• Needs only a single +5V, 15 mA typ. supply.

With his big on-screen display, the Video-DVM
is great to show to a large audience practically
anythig that can be converted to volts, from
temperature in a serious phisics experiment in
the classroom to a love-meter for a party.

But the Video-DVM is a lot more than a
funny toy:
It is really cheap and easy to modify to suit your
needs, letting everyone to experiment with
video signals and data display. The
programming itself meets the severe constraints
of real time direct video synthesis, digital
conversion, serial data timing, and reduced
code size. The analog to digital converter can
be easily connected to a variety of sensors, or
can be replaced with new code to display time
or count pulses. Last but not least, thanks to its
serial datastream the Video-DVM can also be
used as a simple data logger.

All the hard work of interrupt-driven raster
generation, serial data routines, ADC converter
driving is ready made, letting anyone to modify
the code in little steps to suit any specific need
or brilliant idea.
In other words, building the Video-DVM can
be very instructive, a major characteristic in
these days of hyper-specialized ICs that leave
almost nothing to fantasy and exploration.

The hardware circuit
The circuit is built around the new Atmel's
AVR 90S1200 microcontroller and the Maxim's
MAX192 analog to digital converter.
Despite to its 16 MHz clock and Flash program
memory and internal EEPROM, the AVR is
very cheap, and is ideally suited for hobbysts:
all the software needed (included a powerful
simulator) is available for free at the Atmel's
web site (www.atmel.com). The chip can be
reprogrammed at least 1000 times in a flash,
using one of the many programmers already
available (some are advertised on Elektor's

pages). The detailed flash programming
protocol is available on the web site, too.
The chip has 32 bytes of RAM, 64 byte of
EEPROM, 512 words of program memory, and
an 8 bit timer. The instruction set is coincise
and very well balanced, and thanks to an
Harward RISC architecture even a complex
task as the one described here is accomplished
using only about 400 instructions.
The instruction cycle time is very short, letting
software video synthesis possible.

A simple two bits, asymmetrical DAC built
around three resistors feeds the composite
video signal at a standard level of 1 Vpp
suitable to be input to any TV set with a
SCART connector or an AV (VCR) input.
Even the serial datastream (ASCII data at 1200
baud, no parity, 8 data bits, 1 stop bit) is
generated by software. The level is TTL: most
personal computers work with TTL levels as
well as with standard RS232 levels, provided
that the connecting cable is not too long, so I
found a voltage translator like the MAX232 not
necessary. If you want, you can add it
externally; in that case you must invert the
polarity inverting the "set bit" and "clear bit"
instructions in code (the position is clearly
annotated on the listing).
All input pins have internal pullups and high
current sink, so the “max-min clear” button and
the three decimal point selection dipswitch or
jumpers are connected directly between the
pins and ground.
A led, flashing each time a measurement is
completed, is connected to an output pin.

The voltage is read using a 10 bit serial ADC
converter. It has its own voltage reference set a
4.096 V. Four I/O lines are needed for data
tranfers (Data input, Data output, Chip enable,
Serial clock). Even if it is specified for 10 bits,
the ADC supplies two more "sub LSB" bits: this
means that 12 bits are effectively read from the
ADC, altough only 10 bits have the guaranteed
precision. Nonetheless, I found these two extra

bits very precise. All 12 bits are shown on the
display, covering the span from 0.000 to 4.095
volts with direct reading of millivolts. Only one
of the eight inputs available on the MAX192 is
used, but the software driver is already capable
to read any input you want. With minor
changes, you can set up the Video-DVM to

measure four voltages, three with digital
display and one as an analog bar.
The circuit is operated at 5 volts, stabilized; a
reset generator (MC34064-5V) is connected to
the reset pin to protect the chip from brown-out
during power on and power off.

Direct Video Synthesis.
From the hardware point of view, the hardware
involved in video synthesis is exceptionally
simple: two output pins and three resistors,
allowing for four signal levels to be generated
(sync, black, white, light grey). From the
software point of view, video synthesis requires
a very fast instruction cycle (here 62.5 nS) and

a carefully timed, instruction-balanced, hand
tuned, optimized code.
In order to achieve proper generation of the
complex video signal, a robust timing system is
absolutely necessary. Even a single 16 MHz
clock cycle (62.5 nS) delay is clearly visible on
the display, so you have to think twice before
putting down even a single instruction.

First of all, we must choose a suitable time
base: choosing the raster line duration (64 uS)
as time base let us to build the entire frame a
line after another (the non-interlaced frame
consists of 312 lines), as well as placing easily
the horizontal sync pulse (a few microseconds
at start of each video line) and the vertical pulse
(a few lines at start of each frame).
The only timer avalable on the micro is capable
to generate repetitive interrupts every 16 uS
without the need of reloading; that is, four
interrupts every raster line.

At each fourth interrupt we make a new video
line: to do this, each time the interrupt routine
is executed, a counter is incremented and every
four interrupts we are (almost) at the start of a
new line.
"Almost" because we must take care about the
time needed to service the interrupt routine
upon interrupt request. This time is not
constant, depending on the instruction being
executed at the time of the interrupt generation.
Some instructions have a longer execution time
than others, so the interrupt service time can
vary in an unpredictable way, distorting the
display.
The best workaround I found for that problem
is to go in sleep mode just before the fourth,
critical interruption happens: the following
interrupt will then wake up the micro with
constant, known timing.
I have named the two output pins CsyncBit
(composite sync) and VideoBit.
Putting both Csync and VideoBit to logic level
zero, the video signal is at 0 volts (sync level);
with only CsyncBit high, we get the black level;
with both CsyncBit and VideoBit high, we get a
white display.

Not surprising, all the video generation works
around the timer interrupt routine. Every fourth
interrupt a new line is started with the sync
pulse; then the repetitive housekeeping
(counting of lines, serial communications)
routines are executed. All this work is done so

quickly that we have to add a delay loop to wait
for the start of the visible portion of the video
line.
At this point, a multiple jump structure is
executed to determine what kind of line we are
on.
The jumps are based on line number (vertical
position), so that we can decide if the current
line will show current voltage (in that case we
call the character display routine), or the analog
bar (bar routine or bar ruler routines), or small
numbers showing the peak values (character
display routines with reduced size parameter).
Of course, there is also a "void" line routine for
blank lines in between.

For blank lines, the interrupt routine simply
ends, bringing control to the main program; for
display lines, the control is not released until
the entire line is drawn with the appropriate
graphics; for vertical retrace lines, the display is
blanked and the sync polarity inverted.
At the end of display lines, or at most shortly
after the third interrupt, the micro is freezed
using the sleep instruction, waiting for the
fourth, time-critical interrupt.

During the "housekeeping" interval at start of
each video line the serial data is output; with no
more hardware timers available, the serial port
is made in software. Every 13 horizontal lines a
new bit is transmitted, achieving a baud rate of
1200 bps: that is perfectly adequate to the small
amount of data we have.
Data is sent as an ASCII string, terminated by a
CR (ASCII 13) character. You can use a
QBasic program, or any terminal program (as
the Hyperterminal supplied with Windows 95
or the Terminal supplied with Windows 3.11)
to gather the data.

All the video generation routines are carefully
hand-tuned. Do not remove the NOPs from
code, they are here to balance execution times!
When executing branches, execution times
associated with every possible path must be

carefully considered. Fortunately for you, all
the code needed to handle the video signal is
ready made and works by himself under
interrupt.
Feel free to modify or add code to the main
program to suit your fantasy. Even the multiple
jump structure that select the display contents is
not too difficult to understand, so you can easy
build hundreds of different displays, with
charaters of any size or with multiple analog
bars.
All the routines and variables have long names,
hopefully self-explanatory. The code is
intensely commented. Please remember that
only one subroutine call is allowed at a time.

Custom Fonts
You can redefine fonts to any shape you like;
this is particularly useful for the measurement
unit. You can display instead of the volt (V)
any other letter or shape that fits in a 8x5 pixel
matrix. Font shapes are stored in EEPROM
according to the definition file FONTS.INC.
The file is automatically included during
assembly and results are compiled to
VIDEODVM.EEP; don't forget to separately
program the EEPROM once you programmed
the FLASH.
Fonts are stored rotated 90 degrees clockwise,
into 5 adjacent bytes.
In order to make the font shapes graphically
readable, the file VIS_BYTE.H is also
included: it redefines all single byte values to
strings of underscores and "o": look at the file
FONTS.INC to see as effective this simple trick
can be.

Files
To program the chip you need the following
two files:
VIDEODVM.EEP EEPROM content in Intel

hex format
VIDEODVM.HEX FLASH content in Intel

hex format

If you want to see the inner workings, or if you
want to customize code the following are the
source files:

VIDEODVM.ASM Main Assembly source
1200DEF.INC Atmel register definitions

for AT90S1200
VIS_BYTE.H Visually readable byte

values redefinitions
FONTS.INC Font shapes (EEPROM)

Graphic files:
ORCAD directory content

Schematic + libraries for
ORCAD

SCHEMATI.GIF,
SCHEMATI.PCX,
SCHEMATI.DXF,
SCHEMATI.EPS,
SCHEMATI.TIF The same schematic

diagram in five graphic
formats...

PCB_01.GBX,
PCB_02.GBX Printed circuit board in

Gerber format

Text files:
VIDEODVM.DOC This text in MS-WORD

format

Building the circuit.
All the components used are of the consumer
class, so they are cheap and easy to find. The
MC34064 can be replaced with any three pin,
5V power reset generator; even the MAX192
has equivalents with the same data protocol
with different resolutions.
If your ordinary distributor does not have the
Atmel AT90S1200-16PC yet, due to the fact
that this component is new, it can be requested
to the Elektor’s advertisers that sell also the
programmers for the Atmel flash micros.

To build the circuit is an easy task; the circuit is
simplicity itself and if you don’t like to wait it
can be built even without a ready made PCB, if
you only take care that the ground connections
of the ADC be as short as possible and leave
the digital ground (pin 14 of the MAX192)
separate from the analog ground (pins 9, 13 of
the MAX192) joining them on only one point
near the power supply.
Likely you will have your preferred sensorware
connected to the inputs: be sure that the range
never exceed 4.096 V or goes below 0 V,
placing a series resistor (about 1k) and crowbar
diodes if that range can be exceeded.

Once powered up, the flashing led will tell you
that the microcontroller is working just fine.
The LED flashes once per conversion.
Now is time to connect the Video-DVM to the
TV set: for TV equipped with SCART
connectors the pins for video input are 20
(video) and 17 (ground). The TV must be
disconnected from the mains while you insert
the SCART plug.
Set the TV in AV input mode using the remote
control: older TV sets may not have this
capability, in that case the AV input can be
forced pulling up the SCART pin 8 placing a 1k
series resistor from the pin to +5...12V.
You can now fit the jumpers for the selection of
the decimal point position, play around with
various voltages to the ADC, verify the effect
of the max-min clear button, or simple
contemplate your new electronic toy for a
while.

Last step is to connect the personal computer.
Start the Terminal program in the Accessories
folder (Windows 3.11) or the Hyperterminal
program (Windows 95). Set up the connection
to 1200 baud, no parity, 8 data bits, one stop bit
(1200,n,8,1).

Connect the ground and the serial datastream to
the RX pin as follows:

9 pin connector: 2=RX 5=GND

25 pin connector: 3=RX 7=GND

If you are using other terminal programs or
Basic, you may have to solder some jumpers to
the serial connector in order to make the serial
port available:

9 pin connector:
7=RTS with 8=CTS;

1=DCD with 6=DSR with 4=DTR

25 pin connector:
4=RTS with 5=CTS;

8=DCD with 6=DSR with =DTR

Each time the LED flashes, you must see a new
row of ASCII data on the screen.

Expansions (to be continued!)
I hope that this simple circuit serves as a
starting point for personalized applications.
I tried to make the code highly structured
(routines have only one entry and exit points),
uniform (all interrupt routines use parameters
Arg1-Arg4, and all Main program routines use
Main1-Main4), self explanatory, deeply
commented and modular, so you should be able
to modify it to suit your needs.

The technique illustrated here is very powerful,
and thanks to both measurement and display
capablities available on-board the expansions
are limitless, and they can evolve as your
knowledge of programming increases.
Precision is good enough to transform it in a
complete multimeter; or you can display up to
eight voltages at once in a digital or analog
display; or you can count pulses, laps, time,
frequencies and so on. Implement a watt meter
or symple count how long the fridge or the
heating central have been on today.
Using the software given as a skeleton, you can
even generate simple video patterns (as a

checkerboard) for TV repair; or make a simple
video generator with your logo for a
personalized VHS erasing signal. You can even
use it as a countdown counter for New Year's
Eve; or implement a random number generator
and have a big, highly visible bingo numbers
generator; or just add some pushbuttons and
have a cheap game scoreboard, or a quiz
machine. Counting pulses at each line start you
can generate tones at audible frequencies.
Adding a relay you can set up a threshold
switch as a thermostat, or a flower watering
control. Adding a serial EEPROM you can
store lots of data to load in your computer o
view on screen....

