TCL COMMANDS

This is an exhaustive list of all the Tcl commands added to eggdrop.  All

of the normal Tcl built-in commands are still there, of course.  But you

can also use these to manipulate features of the bot.  They are listed

according to category.

NOTICE:  This list is accurate for the v1.3 series of eggdrop!

SCRIPTS WHICH WERE WRITTEN FOR v0.9 OR v1.0 OR v1.1 WILL PROBABLY NOT WORK

WITHOUT MODIFICATION.  Commands which have been changed in the v1.3 series

(or are just new commands) are marked with vertical bars on the left.

CORE EGGDROP COMMANDS


*** OUTPUT COMMANDS ***


*** USER RECORD MANIPULATION COMMANDS ***


*** CHANNEL COMMANDS ***


*** DCC COMMANDS ***


*** MISCELLANEOUS COMMANDS ***





GLOBAL VARIABLES:





COMMAND EXTENSION :







(A) RETURN VALUES







(B) CONTROL PROCEDURES







(C) TCP CONNECTIONS







(D) MATCH CHARACTERS
NOTES MODULE COMMANDS
ASSOC MODULE COMMANDS
FILE SYSTEM MODULE COMMANDS
CORE EGGDROP COMMANDS 

these are commands provided in the core part of eggdrop, for module specific commands, see later

*** OUTPUT COMMANDS ***

  putserv <text>

    sends text to the server, like 'dump' (intended for direct server

      commands); output is queued so that you won't flood yourself off

      the server 

    returns: nothing 

  puthelp <text>

    sends text to the server like 'putserv', but uses a different queue

      (intended for sending messages to channels or people)

    returns: nothing 

  putlog <text>

    sends text to the log for any channel, marked as 'misc' (o)

    returns: nothing

  putcmdlog <text>

    sends text to the log for any channel, marked as 'command' (c)

    returns: nothing

  putxferlog <text>

    sends text to the log for any channel, marked as 'file-area' (x) 

    returns: nothing

  putloglev <level(s)> <channel> <text>

    sends text to the log, tagged with all of the valid levels given (use

    "*" to indicate all log levels) 

    returns: nothing

  dumpfile <nick> <filename>

    dumps out a file from the help/text directory to a user on IRC via

      msg (one line per msg); the user has no flags, so the 

      flag bindings wont work within the file.

Torna inizio documento
*** USER RECORD MANIPULATION COMMANDS ***

  countusers

    returns: number of users in the bot's database 

  validuser <handle>

    returns: "1" if a user by that name exists; '0' otherwise

  finduser <nick!user@host>

    finds the user record which most closely matches the given user@host

    returns: the handle found, or "*" if none

  userlist [flags]

    returns: a list of the handles of users on the bot 

|     you can use the new flag matching system here,

|     usage: [global]{&/|}[chan]{&/|}[bot]

|     matchs the flags relvantly, (chan matches vs anywhere), & specifies

|     and when match, | specifies or, only the first of these is relevant

|     the default is or.

 [global]{&/|}[chan]{&/|}[bot]

  passwdok <handle> <pass>

    checks the password given against the user's password -- if the user has

      not set a password, will always return "1"; check against the password

      "" (a blank string) to find out if a user has no password set

    returns: "1" if password matches for that user; "0" if not

| getuser <handle> <entry-type> [extra info]

|   this is a generic interface to the new generic userfile support, it

|   return info specific to each entry-type, valid entry types are:

|     BOTFL - returns the current bot-specific flags for the user 

|             (if it's a bot :)

|     BOTADDR - (another bot-only thing :) returns a list containing 

|             the bots address, the bots telnet port, and it's relay port.

|     HOSTS - returns a list of the host for the user

|     LASTON - returns a list containing the unixtime last seen,

|             and the last seen place. 
|            OR LASTON #channel returns the time last seen on the channel

|               or 0 if no info 

|     INFO   - returns the user's global info line 

|     XTRA   - returns the old xtra info 

|     COMMENT - returns the master-visible only comment for the user

|     EMAIL  - returns the users email address 

|     URL    - returns the users url address  

| setuser <handle> <entry-type> [extra info]

|   this is the counterpart of getuser, it lets you set the various values

|   extra ones not supported about :

|     PASS - use this to set a users password (no 3rd arg will clear it)

|     HOSTS - for setting hosts, no extra info = clear, otherwise

|             *1* hostmask is added :P 

|     LASTON - 2 forms: 

|              setuser <handle> laston <unixtime> <place> 

|                 sets global laston time 

|              setuser <handle> laston <unixtime> <channel> *

|                 will set a users laston time in a channel record 

|                 (if it already exists)

  chnick <old-handle> <new-handle>

    changes a user's handle 

    returns: "1" on success; "0" if the handle is already used, the handle

      is invalid, or the user can't be found

  chattr <handle> [changes [channel]]

    changes the attributes for a user record, if you include any -- changes

      are of the form "+f", "-o", "+dk", "-o+d", etc; if a channel is 

      specified, the channel-specific flags for that channel are altered

|     you can now use the +o|-o #channel format here too.

    returns: new flags for the user (if you made no changes, returns current

      flags); if a channel was specified, the channel-specific flags for that

      channel are returned -- returns "*" if that user does not exist

| botattr <handle> [changes [channel]]

|   similar to chattr except for bot attributes rather than normal user

|   attributes, this includes the channel-specific +s share flag

  matchattr <handle> <flags> [channel]

|   returns: "1" if the specified user has the matching flags. 
|     (using the new matching system)   

  matchchanattr <handle> <flags> <channel>

|   returns: identical to previous command with a channel argument, 

|            heck they're the same command now :) dont rely on this 

|            command in new scripts it will go eventually :)

  adduser <handle> <hostmask>

    creates a new user entry with the handle and hostmask given (with no pass-

      word, and the default flags)

    returns: "1" if successful, "0" if it already existed

  addbot <handle> <address>

    creates a new bot entry with the handle and bot linking address given

      (with no password and no flags)

    returns: "1" if successful, "0" if it already existed

  deluser <handle>

    attempts to erase a user record with that handle

    returns: "1" if successful, "0" if no such user exists

  delhost <handle> <hostmask>

    deletes a hostmask from a user's hostmask list

    returns: "1" on success, "0" if that hostmask wasn't in the list or the

      user does not exist

  addchanrec <handle> <channel>

    add a channel record for the user

    returns: "1" on success, "0" if the user does not exist or if there

      isn't such a channel

  delchanrec <handle> <channel>

    removes a channel record for the user; this includes all associated

     channel flags

    returns: "1" on success, "0" if the user does not exist or if there

      isn't such a channel

  getchaninfo <handle> <channel>

    returns: info line for a specific channel (behaves just like 'getinfo')

  setchaninfo <handle> <channel> <info>

   sets the info line on a specific channel for a user

   returns: nothing

  newchanban <channel> <ban> <creator> <comment> [lifetime] [options]

    adds a ban to the enforced ban list of a channel; creator is given

      credit for the ban in the ban list; lifetime is specified in

      minutes; if lifetime is not specified, ban-time (usually 60) is

      used; setting the lifetime to 0 makes it a permanent ban; valid

      options are:

        sticky     forces the ban to be always active on a channel, even

                     with dynamic bans on

        none       (no effect)

    returns: nothing

  newban <ban> <creator> <comment> [lifetime] [options]

    adds a ban to the global ban list (which takes effect on all channels);

      other arguments work exactly like newchanban

    returns: nothing

  killchanban <channel> <ban>

    removes a ban from the enforced ban list for a channel

    returns: "1" if successful, "0" otherwise

  killban <ban>

    removes a ban from the global ban list

    returns: "1" if successful, "0" otherwise

  isban <ban> [channel]

    returns: "1" if that ban is in the global ban list, "0" otherwise; if

      a channel is specified, that channel's ban list is checked too

  ispermban <ban> [channel]

    returns: "1" if that ban is in the global ban list AND is marked as

      permanent, "0" otherwise; if a channel is specified, that channel's

      ban list is checked too

  matchban <nick!user@host> [channel]

    returns: "1" if that user address matches a ban in the global ban list,

      "0" otherwise; if a channel is specified, that channel's ban list is

      checked too

  banlist [channel]

    returns: list of global bans, or (if a channel is specified) list of

      channel-specific bans; each entry is itself a list, containing:

      hostmask, comment, expiration timestamp, time added, last time

      active, and creator (the three timestamps are in unixtime format)

  newignore <hostmask> <creator> <comment> [lifetime]

    adds an entry to the ignore list; creator is given credit for the

      ignore; lifetime is how many minutes until the ignore expires and

      is removed; if lifetime is not specified, ignore-time (usually 60)

      is used; setting the lifetime to 0 makes it a permanent ignore

    returns: nothing

  killignore <hostmask>

    removes an entry from the ignore list

    returns: "1" if successful, "0" otherwise

  ignorelist

    returns: list of ignores; each entry is itself a list, containing:

      hostmask, comment, expiration timestamp, time added, and creator

      (the three timestamps are in unixtime format)

  isignore <hostmask>

    returns: "1" if the ignore is in the list, "0" otherwise

  save

    writes the userfile to disk

    returns: nothing

  reload

    loads the userfile from disk (replacing whatever's in memory)

    returns: nothing

  backup

    makes a simple backup of the userfile that's on disk

    returns: nothing

  getting-users

    returns: "1" if the bot is currently downloading a userfile from

      a sharebot (and hence, user records are about to drastically

      change), "0" if not

Torna inizio documento
*** CHANNEL COMMANDS ***

  channel add <name> <option-list>

    adds a channel record for the bot to monitor; the full list of possible

      options is given in the "eggdrop.conf" sample config file; note that the

      channel options must be in a list (enclosed in {})

    returns: nothing

  channel set <name> <options...>

    sets options for the channel specified; the full list of possible

      options is given in the "eggdrop.conf" sample config file

    returns: nothing

  channel info <name>

    returns: list of info about that channel record: enforced mode, idle

      kick limit, need-op script, need-invite script, and then various

      +/- options as seen in the config file

  channel remove <name>

    destroys a channel record for the bot and makes the bot no longer

      monitor that channel

    returns: nothing

  savechannels

    saves the channel settings to the channel-file if one is defined.

    returns: nothing

  loadchannels

    reloads the channel settings from the channel-file if one is defined.

    returns: nothing

  channels

    returns: list of the channels the bot is monitoring (or trying to)

  botisop <channel>

    returns: "1" if the bot is an op on that channel; "0" otherwise

  isop <nickname> <channel>

    returns: "1" if someone by that nickname is on the channel and has chop;

      "0" otherwise

  isvoice <nickname> <channel>

    returns: "1" if someone by that nickname is on the channel and has voice

      (+v); "0" otherwise

  onchan <nickname> <channel>

    returns: "1" if someone by that nickname is on the bot's channel; "0"

      otherwise

  nick2hand <nickname> <channel>

    returns: handle of the person on the channel with that nickname, if

      someone by that nickname is on the channel; "" otherwise

  handonchan <handle> <channel>

    returns: "1" if the the user@host for someone on the channel matches

      for the handle given; "0" otherwise

  hand2nick <handle> <channel>

    returns: nickname of the first person on the channel whose user@host

      matches that handle, if there is one; "" otherwise

  ischanban <ban> <channel>

    returns: "1" if that is a ban on the bot's channel

  chanbans <channel>

    returns: a list of the current bans on the channel, each element is

      of the form {ban bywho age} age is seconds from the bots POV

  resetbans <channel>

    removes all bans on the channel that aren't in the bot's ban list, and

      refreshes any bans that should be on the channel but aren't

    returns: nothing

  resetchan <channel>

    rereads in the channel info from the server

    returns: nothing

  getchanhost <nickname> <channel>

    returns: user@host of that person if they are on the channel; {} otherwise

  getchanjoin <nickname> <channel>

    returns: timestamp of when that person joined the channel    

  onchansplit <nick> <channel>

    returns: "1" if that nick is split from the channel; "0" otherwise

  chanlist <channel> [flags[&chanflags]]

    flags are any flags that are global flags, the '&' denotes to look for

    channel specific flags.  Examples:

       n         (Botowner)

       &n        (Channel owner)

       o&m       (Global op, Channel master)

|   now you can use even more complex matching of flags, including +&- flags

|   and & or | (and or or) matching

    returns: list of nicknames currently on the bot's channel that have all

       of the flags specified; if no flags are given, all of the nicknames

       are returned

  getchanidle <nickname> <channel>

    returns: number of minutes that person has been idle; "0" if the speci-

      fied user isn't even on the channel

  getchanmode <channel>

    returns: string of the type "+ntik key" for the channel specified

  jump [server [port [password]]]

    jumps to the server specified, or (if none is specified) the next server

      in the list

    returns: nothing

  pushmode <channel> <mode> [arg]

    sends out a channel mode change (ex: pushmode #lame +o goober) through

      the bot's queueing system; all the mode changes will be sent out at

      once (combined into one line as much as possible) after the script

      finishes, or when 'flushmode' is called

  flushmode <channel>

    forces all previously pushed channel mode changes to go out right now,

      instead of when the script is done (just for the channel specified)

  topic <channel>

    returns: string of the current topic on the specified channel

  validchan <channel>

    checks if the bot is monitoring that channel

    returns: 1 if the channel exists, 0 if not

  isdynamic <channel>

    returns: 1 if the channel is an existing dynamic channel, 0 if not

Torna inizio documento
*** DCC COMMANDS ***

  putdcc <idx> <text>

    sends text to the dcc user indicated

    returns: nothing

  dccbroadcast <message>

    sends your message to everyone on the party line on the bot net, in the

      form "*** <message>" for local users, and "*** [Bot] <message>" for

      users on other bots

  dccputchan <channel> <message>

    sends your message to everyone on a certain channel on the bot net, in

      a form exactly like dccbroadcast does -- valid channels are 0 thru 99999

    returns: nothing

  boot <user@bot> [reason]

     boot's a user from the partyline

     returns: nothing

  restart

    rehash's the bot and kills all timers

    returns: nothing

  rehash

    rehash's the bot

    returns: nothing

  dccsimul <idx> <text...>

    simulates text typed in by the dcc user specified -- note that in v0.9,

      this only simulated commands; now a command must be preceded by a '.'

      to be simulated

    returns: nothing

  hand2idx <handle>

    returns: the idx (a number greater than or equal to zero) for the user

      given, if she is on the party line in chat mode (even if she is currently

      on a channel or in chat off), the file area, or in the control of a

      script; "-1" otherwise -- if the user is on multiple times, the oldest

      idx is returned

  idx2hand <idx>

    returns: handle of the user with that idx

  valididx <idx>

    returns: "1" if the idx currently exists; "0" if not

  getchan <idx>

    returns: the current party line channel for a user on the party line --

      "0" indicates he's on the group party line, "-1" means he has chat off,

      and a value from 1 to 99999 is a private channel

  setchan <idx> <channel>

    sets a party line user's channel rather suddenly (the party line user

      is not notified that she is now on a new channel); a channel name

      can be used (provided it exists)

    returns: nothing

  console <idx> [channel] [console-modes]

    changes a dcc user's console mode, either to an absolute mode (like "mpj")

      or just adding/removing flags (like "+pj" or "-moc" or "+mp-c"); the

      user's console channel view can be changed also (as long as the new

      channel is defined in the bot)

    returns: a list containing the user's (new) channel view, and (new)

      console mode, or nothing if that user isn't currently in dcc chat

  echo <idx> [status]

    turns a user's echo on or off; the status has to be a 1 or 0

    returns: new value of echo for that user (or the current value, if

      status was omitted)

  putbot <bot-nick> <message>

    sends a message across the bot-net to another bot; if no script intercepts

      the message on the other end, the message just vanishes

    returns: nothing

  putallbots <message>

    broadcasts a message across the bot-net to all currently connected bots

    returns: nothing

  killdcc <idx>

    kills a party-line or file area connection, rather abruptly

    returns: nothing

  bots

    returns: list of the bots currently connected to the botnet

  dccused

    returns: number of dcc connections currently in use

  dcclist

    returns: list of active dcc connections that are in the chat area, the

      file area, or a script; each item in the list will be a sublist with

      four elements: idx, nickname, hostname, and type; type will be "chat",

      "files", "bot", "file_receiving", "file_sending", "file_send_pending",

      or "script" (or "socket" for connections that haven't been put under

|     'control' yet) or any new dcc type that gets added.

  whom <chan>

    returns: list of people on the botnet who are on that channel (0 is

      the default party line); each item in the list will be a sublist

      with six elements: nickname, bot, hostname, access flag ('-', '@',

      '+', or '*'), minutes idle, and away message (blank if the user is

      not away)

|     if you specify a channel of * every user on the botnet is returned

|     with an extra argument indicating the channel the user is on

  getdccidle <idx>

    returns: number of seconds the dcc chat/file system/script user has

      been idle

  getdccaway <idx>

    returns: away message for a dcc chat user (or "" if the user is not

      set away)

  setdccaway <idx> <message>

    sets a party line user's away message and marks them away; if set to

      "", the user is marked un-away

    returns: nothing

  connect <host> <port>

    makes an outgoing connection attempt and creates a dcc entry for it;

      a 'control' command should be used immediately after a successful

      'connect' so no input is lost

    returns: idx of the new connection

  listen <port> <type> [options]

    opens a listening port to accept incoming telnets; type must be one of

      "bots", "all", "users", "script", or "off":

  listen <port> bots [mask]

    accepts connections from bots only; the optional mask is used to identify

      permitted bot names; if the mask begins with '@' it is interpreted to

      be a mask of permitted hosts to accept connections from

    returns: port #

  listen <port> users [mask]

    accepts connections from users only (no bots); the optional mask is used

      to identify permitted nicknames; if the mask begins with '@' it is

      interpreted to be a mask of permitted hosts to accept connections from

    returns: port #

  listen <port> all [mask]

    accepts connections from anyone; the optional mask is used to identify

      permitted nicknames/botnames; if the mask begins with '@' it is

      interpreted to be a mask of permitted hosts to accept connections from

    returns: port #

  listen <port> script <proc>

    accepts connections which are immediately routed to a proc; the proc

      is called with one parameter: the idx of the new connection

    returns: port #

  listen <port> off

    stop listening at a port

    returns: nothing

  dccdumpfile <idx> <filename>

    dumps out a file from the text directory to a dcc chat user;

    the flag matching that's used everywhere else works here too

Torna inizio documento
*** MISCELLANEOUS COMMANDS ***

  bind <type> <attr(s)> <command-name> [proc-name]

    adds a new keyword command to the bot; valid types are listed below; the

      <attr(s)> are the flags that a user must have to trigger this command;

      the <command-name> for each type is listed below; <proc-name> is the

      name of the Tcl procedure to call for this command (see below for the

      format of the procedure call); if the proc-name is omitted, no binding

      is added -- instead, the current binding is returned (if it's stackable,

      a list of the current bindings is returned)

|     yes, you can use the new flag binding method here too, and this is

|     where it becomes truely phearfull since you may never need to check

|     attr's inside functions again...imagine:

|        bind pub -o&+o command command_proc

|     to only allow channel-spec ops to use it! no problem! works fine!

    returns: name of the command that was added, or (if proc-name was omitted),

      a list of the current bindings for this command

  unbind <type> <attr(s)> <command-name> <proc-name>

    removes a previously-made binding

    returns: name of the command that was removed

  logfile [<modes> <channel> <filename>]

    creates a new logfile, which will log the modes given for the channel

      listed -- or, if no logfile is specified, just returns a list of

      logfiles; "*" can be used to mean all channels; you can also change

      the modes and channel of an existing logfile with this command --

      entering a blank mode and channel makes the bot stop logging there

    returns: filename of logfile created, or (if no logfile is specified) a

      list of logfiles like: "{mco * eggdrop.log} {jp #lame lame.log}"

  maskhost <nick!user@host>

    returns: hostmask for the string given ("n!u@1.2.3.4" -> "*!u@1.2.3.*",

      "n!u@lame.com" -> "*!u@lame.com", "n!u@a.b.edu" -> "*!u@*.b.edu")

  timer <minutes> <tcl-command>

    executes the tcl command after a certain number of minutes have passed

    returns: a timerID

  utimer <seconds> <tcl-command>

    executes the tcl command after a certain number of seconds have passed

    returns: a timerID

  timers

    returns: list of active minutely timers; each entry in the list contains

      the number of minutes left till activation, the command that will be

      executed, and the timerID

  utimers

    returns: list of active secondly timers, identical in format to the

      output from 'timers'

  killtimer <timerID>

    removes a minutely timer from the list

    returns: nothing

  killutimer <timerID>

    removes a secondly timer from the list

    returns: nothing

  unixtime

    returns: a long integer which is the current time according to unix

  time

    returns: the current time in 24-hour format (ie "14:15")

  strftime <formatstring> [time]

    returns: a formatted string of time using standard strftime

      format, uses the value of time, or now if no time specified

  date

    returns: the current date in standard format (ie "21 Dec 1994")

  ctime <unixtime>

    returns: a string of the date/time represented by the unix time given

      (ie "Fri Aug  3 11:34:55 1973")

  myip

    returns: a long number representing the bot's IP address, as it might

      appear in (for example) a DCC request

  rand <limit>

    returns: a random integer between 0 and limit-1  

  control <idx> <command>

    removes a user from the party line and sends all future input from them

      to the Tcl command given; the command will be called with two parameters:

      the idx of the user, and the input text; the command should return "0"

      to indicate success and "1" to indicate that it relinquishes control of

      the user back to the bot; the idx must be for a user in the party line

      area or the file area; if the input text is blank (""), it indicates

      that the dcc user has dropped connection

    returns: nothing

  sendnote <from> <to> <message>

    simulates what happens when one user sends a note to another (this can

      also do cross-bot notes)

    returns: "1" if the note was delivered locally or sent to another bot,

      "2" if the note was stored locally, "3" if the user's notebox is too

      full to store a note, "4" if a Tcl binding caught the note, "5" if

      the note was stored because the user is away, or "0" if the send failed

  link [via-bot] <bot>

    attempts to link to another bot directly (or, if you give a via-bot,

      it tells the via-bot to try

    returns: "1" if it looks okay and it will try; "0" if not

  unlink <bot>

    attempts to remove a bot from the botnet

    returns: "1" if it will try or has passed the request on; "0" if not

  encrypt <key> <string>

    returns: encrypted string (using blowfish), encoded into ascii using

      base-64 so it can be sent over the botnet

  decrypt <key> <encrypted-base64-string>

    returns: decrypted string (using blowfish)

  die [reason]

    causes the bot to log a fatal error and exit completely; if no reason

    is given, "EXIT" is used

| unames

|  returns:  The current operating system the bot is using.

GLOBAL VARIABLES:

  (All config-file variables are global, too.  But these variables

  are set by the bot.)

  botnick

    current nickname the bot is using, ie 'Valis' or 'Valis0', etc

  botname

    current nick!user@host that the server sees, ie 'Valis!valis@crappy.com'

  server

    current server the bot is using, ie 'irc.math.ufl.edu:6667'

  version

    current bot version (ie: "1.1.2+pl1 1010201 pl1");

      first item is the text version, second item is a numerical version,

      and any following items are the names of patches that have been added

  numversion

    current numeric bot version (ie: "1010201");

      Numerical version is "MMNNRRPP" where:



MM is the Major release number



NN is the Minor release number



RR is the sub-release number



PP is the patch level for that sub-release

  uptime

    unixtime value for when the bot was started

  lastbind

    The last command binding which triggered.   This allows you to 

    identify which command triggered a tcl routine.

Torna inizio documento
COMMAND EXTENSION:

You can use the 'bind' command to attach Tcl procedures to certain events.

For example, you can write a Tcl procedure that gets called every time a

user says "danger" on the channel.  The following is a list of the types of

bindings, and how they work.  Under each binding type is the format of the

bind command, the list of arguments sent to the Tcl proc, and an explanation.

Some bindings are marked as "stackable".  That means that you can bind

multiple commands to the same trigger.  Normally, for example, a binding

of "bind msg - stop msg_stop" (which makes a msg-command "stop" call the

Tcl proc "msg_stop") will overwrite any previous binding you had for the

msg-command "stop".  With stackable bindings, like 'msgm' for example,

you can bind to the same command or mask again and again.  When the

binding is triggered, ALL the Tcl procs that are bound to it will be

called, one after another.

To remove a binding, use "unbind".  For example, to remove that binding

for the msg-command "stop", use "unbind msg - stop msg_stop". 

  (1)  MSG

       bind msg <flags> <command> <proc>

       procname <nick> <user@host> <handle> <args>

       used for /msg commands; the first word of the user's msg is the

       command, and everything else becomes the argument string

  (2)  DCC

       bind dcc <flags> <command> <proc>

       procname <handle> <idx> <args>

       used for commands from a dcc chat on the party line; as in MSG, the

       command is the first word and everything else is the argument string;

       the idx is valid until the user disconnects; after that it may be

       reused, to be careful about storing an idx for long periods of time

  (3)  FIL

       bind fil <flags> <command> <proc>

       procname <handle> <idx> <args>

       the same as DCC, except this is triggered if the user is in the file

       area instead of the party line

       (THIS IS ONLY AVALIABLE WHEN THE filesys.so MODULE IS LOADED)

  (4)  PUB

       bind pub <flags> <command> <proc>

       procname <nick> <user@host> <handle> <channel> <args>

       used for commands given on a channel; just like MSG, the first word

       becomes the command and everything else is the argument string

  (5)  MSGM   (stackable)

       bind msgm <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <text>

       matches the entire line of text from a /msg with the mask; this is

       more useful for binding Tcl procs to words or phrases spoken anywhere

       within a line of text

  (6)  PUBM   (stackable)

       bind pubm <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel> <text>

       just like MSGM, except it's triggered by things said on a channel

       instead of things /msg'd to the bot; the mask is matched against

       the channel name followed by the text, ie, "#nowhere hello there!",

       and can contain wildcards

  (7)  NOTC   (stackable)

       bind notc <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <text>

       matches the entire line of text from a /notice with the mask; it

       is considered a breach of protocol to respond to a /notice on IRC,

       so this is intended for internal use (ie, logging, etc) only

  (8)  JOIN   (stackable)

       bind join <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel>

       triggered by someone joining the channel; the <mask> in the bind

       is matched against "#channel nick!user@host" and can contain

       wildcards

  (9)  PART   (stackable)

       bind part <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel>

       triggered by someone leaving the channel; as in JOIN, the <mask>

       is matched against "#channel nick!user@host" and can contain

       wildcards

  (10) SIGN   (stackable)

       bind sign <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel> <reason>

       triggered by a signoff, or possibly by someone who got netsplit and

       never returned; the signoff message is the last argument to the proc;

       wildcards can be used in <mask>, which contains the channel name

  (11) TOPC   (stackable)

       bind topc <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel> <topic>

       triggered by a topic change; can use wildcards in <mask>, which is

       matched against the channel name and new topic

  (12) KICK   (stackable)

       bind kick <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel> <kicked-nick> <reason>

       triggered when someone is kicked off the channel; the <mask> is

       matched against "#channel nick" where the nickname is of the person

       who got kicked off (can use wildcards); the proc is called with

       the nick, user@host, and handle of the kicker, plus the channel,

       the nickname of the person who was kicked, and the reason; <flags>

       is unused here

  (13) NICK   (stackable)

       bind nick <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel> <newnick>

       triggered when someone changes nicknames; wildcards are allowed;

       the mask is matched against "#channel newnick"

  (14) MODE   (stackable)

       bind mode <flags> <mask> <proc>

       proc-name <nick> <user@host> <handle> <channel> <mode-change> <victim>

       mode changes are broken down into their component parts before being

       sent here, so the <mode-change> will always be a single mode, like

       "+m" or "-o" and victim will show the value of the mode change

       (for o/v/b) otherwise ""; flags are ignored; the bot's automatic

       response to a mode change will happen AFTER all matching Tcl procs

       are called; the <mask> will have the channel prefixed (ie, "#turtle +m")

  (15) CTCP

       bind ctcp <flags> <keyword-mask> <proc>

       proc-name <nick> <user@host> <handle> <dest> <keyword> <args...>

       destination will be a nickname (the bot's nickname, obviously) or

       a channel name; keyword is the ctcp command and args may be empty;

       if the proc returns 0, the bot will attempt its own processing of

       the ctcp command

  (16) CTCR

       bind ctcr <flags> <keyword-mask> <proc>

       proc-name <nick> <user@host> <handle> <dest> <keyword> <args...>

       just like ctcp, but this is triggered for a ctcp-reply (ie, ctcp

       embedded in a notice instead of a privmsg)

  (17) RAW   (stackable)

       bind raw <flags> <keyword-mask> <proc>

       procname <from> <keyword> <args...>

       previous versions of eggdrop required a special compile option to

       enable this binding, but it's now standard; the mask is checked

       against the keyword (either a numeric like "368" or a keyword like

       "PRIVMSG"); from will be the server name or the source user (depending

       on the keyword); flags are ignored; the order of the arguments is 

       identical to the order that the IRC server sends to the bot -- the

       pre-processing only splits it apart enough to determine the keyword;

       if the proc returns 1, eggdrop will not process the line any further

       (THIS COULD CAUSE YOUR BOT TO BEHAVE ODDLY IN SOME CASES)

  (18) BOT

       bind bot <flags> <command> <proc>

       proc-name <from-bot> <command> <args>

       triggered by a message coming from another bot in the botnet; works

       similar to a DCC binding; the first word is the command and the rest

       becomes the argument string; flags are ignored

  (19) CHON   (stackable)

       bind chon <flags> <mask> <proc>

       proc-name <handle> <idx>

       when someone first enters the "party-line" area of the bot via dcc

       chat or telnet, this is triggered before they are connected to a

       chat channel (so yes, you can change the channel in a 'chon' proc);

       mask matches against handle; this is NOT triggered when someone

       returns from the file area, etc

  (20) CHOF   (stackable)

       bind chof <flags> <mask> <proc>

       proc-name <handle> <idx>

       triggered when someone leaves the party line to disconnect from the

       bot; mask matches against the handle; note that the connection may

       have already been dropped by the user, so don't send output to that

       idx

  (21) SENT   (stackable)

       bind sent <flags> <mask> <proc>

       proc-name <handle> <nick> <path/to/file>

       after a user has successfully downloaded a file from the bot, this

       binding is triggered; mask is matched against the handle of the user

       that initiated the transfer; nick is the actual recipient (on IRC) of

       the file; the path is relative to the dcc directory (unless the file

       transfer was started by a script call to 'dccsend', in which case the

       path is the exact path given in the call to 'dccsend')

       (THIS IS ONLY AVALIABLE WHEN THE transfer.so MODULE IS LOADED)

  (22) RCVD   (stackable)

       bind rcvd <flags> <mask> <proc>

       proc-name <handle> <nick> <path/to/file>

       triggered after a user uploads a file successfully; mask is matched

       against the user's handle; nick is the nickname on IRC that the file

       transfer originated from; the path is where the file ended up,

       relative to the dcc directory (usually this is your incoming dir)

       (THIS IS ONLY AVALIABLE WHEN THE transfer.so MODULE IS LOADED)

  (23) CHAT   (stackable)

       bind chat <flags> <mask> <proc>

       proc-name <nick> <channel#> <text>

       when someone says something on the botnet, it invokes this binding;

       flags is ignored; nick could be a user on this bot (ie "DronePup")

       or on another bot (ie "Eden@Wilde"); the mask is checked against the

       text

  (24) LINK   (stackable)

       bind link <flags> <mask> <proc>

       proc-name <botname> <via>

       triggered when a bot links into the botnet; botname is the name of

       the bot that just linked in; via is the bot it linked through; the

       mask is checked against the bot that linked; flags is ignored

  (25) DISC   (stackable)

       bind disc <flags> <mask> <proc>

       proc-name <botname>

       triggered when a bot disconnects from the botnet for whatever reason;

       just like the link bind, flags are ignored; mask is checked against the

       nickname of the bot that left

  (26) SPLT   (stackable)

       bind splt <flags> <mask> <proc>

       procname <nick> <user@host> <handle> <channel>

       triggered when someone gets netsplit on the channel; be aware that

       this may be a false alarm (it's easy to fake a netsplit signoff

       message); <mask> may contain wildcards, and is matched against the

       channel and nick!user@host just like join; anyone who is SPLT will

       trigger a REJN or SIGN within the next 15 minutes

  (27) REJN   (stackable)

       bind rejn <flags> <nick!user@host> <proc>

       procname <nick> <user@host> <handle> <channel>

       someone who was split has rejoined; <mask> can contain wildcards,

       and contains channel and nick!user@host just like join

  (28) FILT   (stackable)

       bind filt <flags> <mask> <proc>

       procname <idx> <text>

       DCC party line and file system users have their text sent through

       filt before being processed; if the proc a blank string, the text

       is considered parsed; otherwise the bot will use the text returned

       from the proc and continue parsing that

  (29) FLUD   (stackable)

       bind flud <flags> <type> <proc>

       procname <nick> <user@host> <handle> <type> <channel>

       any floods detected through the flood control settings (like

       'flood-ctcp') are sent here before processing; if the proc

       returns 1, no further action is taken on the flood; if the proc

       returns 0, the bot will do its normal "punishment" for the flood;

       the flood type is "pub", "msg", "join", or "ctcp" (and can be

       masked to "*" for the bind); flags is ignored

  (30) NOTE

       bind note <flags> <nickname> <proc>

       procname <from> <to> <text>

       incoming notes (either from the party line, someone on IRC, or

       someone on another bot on the botnet) are checked against these

       binds before being process; if a bind exists, the bot will not

       deliver the note; the nickname must be an exact match (no wild-

       cards), but it is not case sensitive; flags is ignored

  (31) ACT   (stackable)

       bind act <flags> <mask> <proc>

       proc-name <nick> <channel#> <action>

       when someone does an action on the botnet, it invokes this binding;

       flags is ignored; the mask is checked against the text of the

       action (this is very similar to the CHAT binding)

  (32) WALL   (stackable)

       bind wall <flags> <mask> <proc>

       proc-name <nick> <msg>

       when the bot receives a wallops, it invokes this binding; flags is

       ignored; the mask is checked against the text of the wallops msg

  (33) BCST   (stackable)

       bind bcst <flags> <mask> <proc>

       proc-name <bot> <channel#> <text>

       when a bot says something on the botnet, it invokes this binding;

       flags is ignored; the mask is checked against the text

  (34) CHJN   (stackable)

       bind chjn <flags> <mask> <proc>

       proc-name <bot> <nick> <channel#> <flag><sock> <from>

       when someone joins a botnet channel, it invokes this binding;

       flags is ignored; the mask is checked against the text

  (35) CHPT   (stackable)

|      bind chpt <flags> <mask> <proc>

|      proc-name <bot> <nick> <sock> <chan>

       when someone parts a botnet channel, it invokes this binding;

       flags is ignored; the mask is checked against the channel

  (36) TIME   (stackable)

       bind time - <mask> <proc>

       proc-name <min> <hour> <day> <month> <year>

       allows you to schedule procedure calls at certain times,

       mask matches 5 space seperated integers of the form:

       "min hour day month year"

  (37) AWAY   (stackable)

       bind away - <mask> <proc>

       proc-name <bot> <idx> <msg>

       triggers when a user goes away or comes back on the botnet

       (msg == "" when returning)

  (38) LOAD   (stackable)

       bind load - <mask> <proc>

       proc-name <module>

       triggers when a module is loaded.

  (38) UNLD   (stackable)

       bind unld - <mask> <proc>

       proc-name <module>

       triggers when a module is unloaded.

  (39) NKCH   (stackable)

       bind nkch - <mask> <proc>

       proc-name <oldnick> <newnick>

       triggered whenever a local users nick is changed (in the userfile)

Torna inizio documento
(A) RETURN VALUES

    Several bindings pay attention to the value you return from the proc

    (using "return $value").  Usually they expect a 0 or 1, and failing

    to return any value is interpreted as a 0.

    Here's a list of the bindings that use the return value from procs

    they trigger:

    MSG   Return 1 to make the command get logged like so:

          (nick!user@host) !handle! command

    DCC   Return 1 to make the command get logged like so:

          #handle# command

    FIL   Return 1 to make the command get logged like so:

          #handle# files: command

    PUB   Return 1 to make the command get logged like so:

          <<nick>> !handle! command

    CTCP  Return 1 to ask the bot not to process the CTCP command on its

          own.  Otherwise it would send its own response to the CTCP

          (possibly an error message if it doesn't know how to deal with

          it).

    FILT  Return 1 to indicate the text has been processed, and the bot

          should just ignore it.  Otherwise it will treat the text like

          any other.

    FLUD  Return 1 to ask the bot not to take action on the flood.

          Otherwise it will do its normal punishment.

    RAW   Return 1 to ask the bot not to process the server text.  This

          can affect the bot's performance (by causing it to miss things

          that it would normally act on) -- you have been warned.

    WALL  Return 1 to make the command get logged liked so:

          !nick! msg

Torna inizio documento
(B) CONTROL PROCEDURES

    Using the 'control' command you can put a DCC connection (or outgoing

    TCP connection) in control of a script.  All text that comes in on

    the connection is sent to the proc you specify.  All outgoing text

    should be sent with 'putdcc'.

    The control procedure is called with these parameters:

       procname <idx> <input-text>

    This allows you to use the same proc for several connections.  The

    idx will stay the same until the connection is dropped -- after that,

    it will probably get reused for a later connection.

    To indicate that the connection has closed, your control procedure

    will be called with blank text (the input-text will be "").  This

    is the only time it will ever be called with "" as the text, and it

    is the last time your proc will be called for that connection.

    If you want to hand control of your connection back to eggdrop, your

    proc should return 1.  Otherwise, return 0 to retain control.

Torna inizio documento
(C) TCP CONNECTIONS


    Eggdrop allows you to make two types of TCP ("telnet") connections:

    outgoing and incoming.  For an outgoing connection, you specify the

    remote host and port to connect to.  For an incoming connection,

    you specify a port to listen at.

    All of the connections are *event driven*.  This means that the bot

    will trigger your procs when something happens on the connection,

    and your proc is expected to return as soon as possible.  Waiting

    in a proc for more input is a no-no.

    To initiate an outgoing connection, use:

       set idx [connect "hostname.goes.here" 3333]

    (as an example).  $idx now contains a new DCC entry for the outgoing

    connection.

    All connections use non-blocking (commonly called "asynchronous",

    which is a misnomer) I/O.  Without going into a big song and dance

    about asynchronous I/O, what this means to you is:

    * assume the connection succeeded immediately

    * if the connection failed, an EOF will arrive for that idx

    The only time a 'connect' call will return an error is if you gave

    a hostname and it couldn't find the IP for that hostname (this is

    considered a "DNS error").  Otherwise it will appear to have succeeded,

    and if the connection failed, you will immediately get an EOF.

    Right after doing a 'connect' call, you should set up a 'control' for

    the new idx (see the section above).  From then on, the connection

    will act just like a normal DCC connection that has been put under

    the control of a script.  If you ever return "1" from the control

    proc (indicating that you want control to return to eggdrop), the bot

    will just close the connection and dispose of it.  Other commands

    that work on normal DCC connections, like 'killdcc' and 'putdcc', 

    will work on this idx too.

    To create a listening port, use:

       listen 6667 script grabproc

    which will create a new listening port at 6667, and assign it to the

    script 'grabproc'.

    When a new connection arrives, eggdrop will connect it up and create

    a new idx for the connection.  That idx is sent to 'grabproc'.  The

    proc will generally want to immediately put this idx under control:

       proc grabproc {newidx} {

         control $newidx my_control

       }

    Once your grabproc has been called, the idx behaves exactly like an

    outgoing connection would.

    The best way to learn how to use these commands is to find a script

    that uses them and follow it carefully.  Hopefully this has given you

    a good start though.

Torna inizio documento
(D) MATCH CHARACTERS

    Many of the bindings allow match characters in the arguments.  Here

    are the four special characters:

    ?  matches any single character

    *  matches 0 or more characters of any type

    %  matches 0 or more non-space characters (can be used to match a

          single word)

    ~  matches 1 or more space characters (can be used for whitespace

          between words)

Torna inizio documento
NOTES MODULE COMMANDS 

these commands are provided by notes.so to allow you to store notes for 

users to read later

| notes <user> [numberlist]

|   gets info on notes stored for a user

|   returns: (if no numbers specified) number of notes for user,

|            -1 if no such user, -2 if notefile failure

|            (if a note numberlist specified) a list of notes,

|            -1 if no such user, -2 if notefile failure, 0 if no

|            such note. Each note of the list is also a list: first

|            element from, 2nd element timestamp, 3rd element the

|            note itself. (ex: 'notes mynick "2-4;8;16-"')

| erasenotes <user> <numberlist>

|   erases some or all stored notes for a user

|   returns: -1 if no such user, -2 if notefile failure, 0 if

|            no such note, or number of erased notes.

|            'erasenote mynick "-"' erase all notes for mynick.

| listnotes <user> <numberlist>

|   lists existing notes according to the numberlist (ex: "2-4;8;16-")

|   returns: -1 if no such user, -2 if notefile failure, 0 if no

|            such note, list of existing notes.

  storenote <from> <to> <msg> <idx>

    stores a note for later reading, notify idx of any results (use

    idx == -1 for no notify).

    return 0 on success non-0 on failure

Torna inizio documento
ASSOC MODULE COMMANDS 

  assoc <chan> [name]

    sets the name associated with a botnet channel, if you specify one

    returns: current name for that channel, if any

  killassoc <chan>

    removes the name associated with a botnet channel, if any exists,

    use 'killassoc &' to kill all assocs.

    returns: nothing

Torna inizio documento
FILE SYSTEM MODULE COMMANDS 

  setpwd <idx> <dir>

    changes the directory of a file system user, in exactly the same way

      as a 'cd' command would (ie, the directory can be specified relative

      or absolute)

    returns: nothing

  getpwd <idx>

    returns: the current directory of a file system user

  getfiles <dir>

    returns: list of files in the directory given; the directory is relative

      to dcc-path

  getdirs <dir>

    returns: list of subdirectories in the directory given; the directory

      is relative to dcc-path

  dccsend <filename> <ircnick>

    attempts to start a dcc file transfer to the given nick; the filename must

      be specified either by full pathname or in relation to the bot's startup

      directory

    returns: "0" on success, "1" if the dcc table is full (too many con-

      nections), "2" if it can't open a socket for the transfer, "3" if the

      file doesn't exist, and "4" if the file was queued for later transfer

      (which means that person has too many file transfers going right now)

  filesend <idx> <filename> [ircnick]

    like dccsend, except it operates for a current filesystem user, and

      the filename is assumed to be a relative path from that user's

      current directory

    returns: "0" on failure; "1" on success (either an immediate send

      or a queued send)

  setdesc <dir> <file> <desc>

    sets the description for a file in a file system directory; the

      directory is relative to the dcc-path

    returns: nothing

  getdesc <dir> <file>

    returns: the description for a file in the file system, if one

      exists

  setowner <dir> <file> <handle>

    changes the owner for a file in the file system; the directory is

      relative to the dcc-path

    returns: nothing

  getowner <dir> <file>

    returns: the owner of a file in the file system

  setlink <dir> <file> <link>

    creates or changes a linked file (a file that actually exists on

      another bot); the directory is relative to dcc-path

    returns: nothing

  getlink <dir> <file>

    returns: the link for a linked file, if it exists

  getfileq <handle>

    returns: list of files queued by someone; each item in the list will be

      a sublist with two elements: nickname the file is being sent to, and

      the filename

  setuploads <handle> <#uploads> <size-in-k>

    sets a user's statistics on the number of files uploaded and the total

      kilobytes uploaded

    returns: nothing

  getuploads <handle>

    returns: list containing upload statistics for a user: the first

      element is the number of files uploaded; the second element is the

      total kilobytes uploaded

  setdnloads <handle> <#dnloads> <size-in-k>

    like setuploads, but sets the download statistics

    returns: nothing

  getdnloads <handle>

    returns: list containing download statistics, in the same format

      as getuploads

  mkdir <directory> [required-flags]

    creates a directory in the files system, only users with the

    required flags may access

    returns:

      0 on success

      1 on can't create directory

      2 on directory exists but is not a directory

  rmdir <directory>

    removes a directory from the file system.

    return: 0 on success, 1 on failure

  mv <file> <destination>

    moves the file from it's source to the given destination, file

    can also be a mask, eg /incoming/* provided the destination is

    a directory

    returns: number of files copied on success or negative numbers

      to indicat errors: -1 = invalid source file, -2 = invalid desto

      -3 = you're trying to copy onto itself (duh!) -4 = no matchs found

  cp <file> <destination>

    exactly the same as mv except it leaves the original file there

    aswell

    returns: same as mv

  getflags <dir>

    returns: the flags required to access this directory

  setflags <dir> [flags]

    sets the flags required to access the directory

    returns: 0 on success, -1 on failure

Torna inizio documento
