.   .   .

  

LA TEORIA GENERALE DELLA RELATIVITA'

Spazio-Tempo

(EINSTEIN)

 

 

Nel 1915, Einstein propose quella che è nota oggi come la teoria generale della relatività. Fece il suggerimento rivoluzionario che la gravità non sia una forza come le altre, bensì una conseguenza del fatto che lo spazio-tempo non è piatto, come si era supposto in precedenza, bensì incurvato, o "distorto", dalla distribuzione della massa e dell'energia in esso presenti. I corpi come la Terra non sono fatti per muoversi su orbite incurvate da una forza chiamata gravità; essi seguono invece la cosa più vicina che esista a una traiettoria rettilinea in uno spazio curvo, ossia una geodetica. Una geodetica è la traiettoria più breve (o più lunga) fra due punti vicini. Per esempio, la superficie della Terra è uno spazio curvo bidimensionale. Una geodetica sulla Terra è chiamata un cerchio massimo, ed è la via più breve che esista fra due punti. Poichè la geodetica è la traiettoria più breve fra due aeroporti, essa è la linea che l'ufficiale di rotta di una linea aerea dirà al pilota di seguire. Nella relatività generale, i corpi seguono sempre linee rette nello spazio-tempo quadrimensionale, ma nel nostro spazio tridimensionale ci appaiono sempre muoversi lungo traiettorie curve. (E' un po' come osservare un aereo che voli al di sopra di una regione montuosa. Benchè esso segua una linea retta nello spazio tridimensionale, sul suolo bidimensionale la sua ombra segue una traiettoria incurvata.)

La massa del Sole incurva lo spazio-tempo in modo tale che, benchè la Terra segua una traiettoria rettilinea nello spazio quadrimensionale, nello spazio tridimensionale essa ci appare muoversi in un'orbita circolare. In realtà le orbite dei pianeti predette dalla relatività generale sono quasi esattamente identiche a quelle predette dalla teoria newtoniana della gravitazione. Nel caso di Mercurio, però, che essendo il pianeta più vicino al sole sperimenta gli effetti gravitazionali più forti, e che ha un'orbita alquanto allungata, la relatività generale predice che l'asse maggiore dell'ellisse dovrebbe ruotare attorno al Sole spostandosi di un grado circa ogni diecimila anni. Per quanto piccolo sia questo effetto, esso era già stato osservato prima del 1915 e fornì una delle prime conferme della teoria di Einstein. In anni recenti gli scarti ancora più piccoli delle orbite degli altri pianeti rispetto alle traiettorie predette da Newton sono stati misurati col radar e trovati in accordo con le predizioni della relatività generale.

Anche i raggi di luce devono seguire le geodetiche nello spazio-tempo. Di nuovo, il fatto che lo spazio sia incurvato ha come conseguenza che la luce non sembri propagarsi nello spazio in linea retta. Così la relatività generale predice che la traiettoria della luce dovrebbe essere incurvata dai campi gravitazionali. Per esempio, la teoria predice che i coni di luce di punti in prossimità del Sole dovrebbero essere leggermente incurvati verso l'interno, in conseguenza della massa del Sole. Ciò significa che i raggi di luce provenienti da una stella lontana che si trovassero a passare in prossimità del disco solare sarebbero deviati di un piccolo angolo e che in conseguenza di questa deflessione un osservatore sulla Terra vedrebbe la stella spostata in una posizione diversa. Ovviamente, se la luce proveniente dalla stella passasse sempre in prossimità del Sole, noi non saremmo in grado di dire se la luce sia veramente deviata, o se invece la stella si trovi veramente dove la vediamo. Mentre la Terra compie le sue rivoluzioni attorno al Sole, però, varie stelle vengono occultate dal Sole e la loro luce, nell'istante in cui sfiora il bordo del disco solare prima e dopo l'occultamento, subisce una deflessione. Esse mutano perciò la loro posizione apparente relativamente ad altre stelle.

Di solito è molto difficile osservare questo effetto, perchè la luce proveniente dal Sole, quando il disco del Sole viene coperto dalla Luna e la luce solare non illumina più l'atmosfera terrestre. La predizione fatta da Einstein della deflessione della luce delle stelle non potè essere verificata immediatamente nel 1915, perchè era allora in corso la prima guerra mondiale; nel 1919, però, una spedizione britannica recatasi nell'Africa occidentale per osservare un'eclissi, confermò che la luce delle stelle veniva effettivamente deflessa dal Sole nel modo predetto dalla teoria. E' perciò un'ironia della storia che un posteriore esame delle fotografie eseguite nel caso della spedizione abbia dimostrato errori dello stesso ordine di grandezza dell'effetto che si cercava di misurare. La misurazione si era rivelata un caso di mera fortuna, ovvero era stata influenzata dal fatto di conoscere già il risultato che si voleva ottenere, un fenomeno non inconsueto nella scienza. La deflessione della luce è però stata confermata con precisione da varie osservazioni posteriori.

Un'altra predizione della relatività generale è che in prossimità di un corpo di massa relativamente grande come la Terra il tempo dovrebbe scorrere più lentamente. Causa di questo fenomeno è la relazione esistente fra l'energia della luce e la sua frequenza (ossia il numero delle onde di luce al secondo): quanto maggiore è l'energia tanto più grande è la frequenza. Propagandosi verso l'alto nel campo gravitazionale terrestre, la luce perde energia e quindi la sua frequenza diminuisce. (Ciò significa che aumenta l'intervallo di tempo fra una cresta d'onda e la successiva.) Chi si trovasse più in alto vedrebbe tutti i fenomeni sulla superficie terrestre impiegare più tempo per verificarsi. Questa predizione fu verificata nel 1962 usando un paio di orologi molto esatti collocati sulla cima e alla base di un serbatoio d'acqua sopraelevato. L'orologio alla base, che era più vicino alla superficie terrestre, risultò funzionare più lentamente, in preciso accordo con la relatività generale. La differenza nel funzionamento degli orologi ad altitudini diverse al di sopra della Terra ha oggi un'importanza considerevole, con l'avvento di sistemi di navigazione molto esatti fondati su segnali emessi da satelliti. Se si ignorassero le predizioni della relatività generale, le posizioni calcolate in volo potrebbero essere sbagliate di vari chilometri.

Le leggi di Newton misero fine all'idea di una posizione assoluta nello spazio. La teoria della relatività si è liberata anche del tempo assoluto. Consideriamo un paio di gemelli. Supponiamo che un gemello vada a vivere sulla cima di una montagna, mentre l'altro rimane al livello del mare. Il primo gemello invecchierà più rapidamente del secondo, cosicchè, quando essi torneranno a incontrarsi, uno dei due sarà più vecchio dell'altro. In questo caso la differenza d'età sarebbe molto piccola. Si avrebbe invece una differenza d'età molto maggiore - questa volta in conseguenza della dilatazione relativistica dal tempo alle alte velocità - se uno dei due gemelli partisse per un lungo viaggio su un'astronave lanciata nello spazio interstellare a una velocità prossima a quella della luce. Al suo ritorno, l'astronauta sarebbe molto più giovane del suo gemello rimasto sulla Terra. Questo caso è noto come il paradosso dei gemelli, ma è un paradosso solo se in fondo alla propria mente non si riesce ad andare oltre l'idea di un tempo assoluto.

Nella teoria della relatività non esiste un tempo unico assoluto, ma ogni individuo ha la sua propria misura personale del tempo, che dipende da dove si trova e da come si sta muovendo.

 

 

Back

 

 

L'effetto DOPPLER

 

 

Negli anni Venti, quando gli astronomi cominciarono a osservare gli spettri di stelle appartenenti ad altre galassie, trovarono qualcosa di estremamente peculiare: essi presentavano gli stessi insiemi caratteristici di righe di assorbimento che erano già stati osservati per stelle appartenenti alla Galassia, ma con una differenza: che erano tutti spostati di una medesima quantità relativa verso l'estremo rosso dello spettro. Per capire le implicazioni di questo fatto, dobbiamo prima comprendere l'effetto Doppler. La luce visibile consiste in fluttuazioni, o onde, in un campo elettromagnetico. La frequenza della luce è estremamente elevata, variando da quattrocento a settecento milioni di milioni di onde al secondo. L'occhio umano vede le diverse frequenze della luce come colori diversi, con le frequenze minori che si collocano all'estremo rosso dello spettro e le frequenze maggiori all'estremo blu. Immaginiamo ora una sorgente di luce che si trovi a una distanza costante da noi, come una stella, e che emetta luce a una frequenza costante. E' chiaro che la frequenza delle onde che noi riceviamo sarà la stessa alla quale la luce è stata emessa (il campo gravitazionale della galassia non sarà abbastanza grande da esercitare un effetto significativo sulla frequenza della luce). Supponiamo ora che la sorgente cominci a muoversi verso di noi. Quando la sorgente emette la cresta d'onda successiva, si troverà ad una distanza minore da noi, cosicchè il tempo di tale cresta d'onda impiegherà a giungere fino a noi sarà minore di quello che avrebbe impiegato se la stella fosse stata immobile. Ciò significa che l'intervallo di tempo fra due creste d'onda che riceviamo sarà minore. Nel caso della luce, perciò, questo significa che le stelle che si allontanano da noi avranno il loro spettro spostato verso l'estremo rosso dello spettro e quelle che si muovono verso di noi avranno il loro spettro spostato verso il blu. Questo rapporto fra frequenza e velocità,  che è chiamato effetto Doppler, è un'esperienza quotidiana.

 

 

 

Back